ECO No.
36-1053

ENGINEERING CHANGE ORDER

KAVLI INSTITUTE FOR ASTROPHYSICS AND SPACE RESEARCH
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DRAWING NO. | REVISION DRAWING TITLE

36-58010 H Flight Software Standard Patch Release G and Optional Release H

REASON FOR CHANGE:

The standard buscrash patch has been updated to force a science run to end when it is commanded
to do so, eg., by an SCS107 from the OBC, while it is waiting for the biasthief task to complete.
This fixes a bug that was introduced by revision C of the buscrash2 patch.

The optional deahktrip monitors DPA component temperatures and, if an anomalous value
occurs, optionally stops a science run, powers down FEP and video boards, & sets S/W bilevels.

DESCRIPTION OF CHANGE:

In the updated buscrash, code is added to the FepManager::pollBiasComplete() to check
whether any FEPs are still being has been accessed while the biasthief task is commanded to abort.
If not, the task monitor is told to halt the science run.

In deabktrip, code is added to Tf_Dea_Housekeeping Data::append_Entries() to monitor
DEA H/K channels for bad DPA component temperatures and optionally terminate a science
manager task, power down boards, and/or alter S/W bilevels to ‘1110’ (14) to signal to the OBC.

SIGNATURE DATE |REMARKS
ORIGINATOR PGF 06/29/18 Signature on file
MECHANICAL
ELECTRICAL DA 06/29/18 Signature on file
SOFTWARE JEF 06/29/18 Signature on file
STRUCTURE
FABRICATION
SCIENCE
SYSTEMS ENG.
QUALITY RB 06/29/18 Signature on file
PROJ. ENGINEER RFG 06/29/18 Signatute on file
DrruTY PM

PROJ. MANAGER
APM RELEASE

ECO-1053

Existing ACIS Flight Software Patches

ID Name Rev Size Part ECO SPR
Standard Release G
i corruptblock A 16 36-58030.01 994 113
il digestbiaserror A 64 36-58030.02 995 116
ili histogramvar A 16 36-58030.03 999 115
iv rquad A 16 36-58030.14 1000 121
v histogrammean A 156 36-58030.15 996 123
vi zaplexpo A 64 36-58030.16 997 122
vii condoclk A 640 36-58030.17 1012 127
viii fepbiasparity2 A 504 36-58030.19 1015 130
iXx cornermean A 32 36-58030.21 1017 128
x tlmbusy A 344 36-58030.29 1033 138
xi buscrash B 440 36-58030.30 1051 140,151
xii badpix A 60 36-58030.31 1037 141
xiii ~ buscrash2 C 1576 36-58030.32 1047 148,150
Optional Release H
1 smtimedlookup A 3712 36-58030.24 1025 N/A
2 eventhist B 5908 36-58030.05 1025 N/A
3 cc3x3 B 4636 36-58030.06 1018 120,124,126
4 ctireportl A 5452 36-58030.25 1026 N/A
5 ctireport2 A 2784 36-58030.26 1026 N/A
6 compressall A 2368 36-58030.27 1027 134
7 reportgradel A 816 36-58030.22 1021 131,132
8 txings A 3128 36-58030.33 1044 N/A
9 deahktrip A 1940 36-58030.34 1052 N/A
leaf teignore A 36 36-58030.09 1003 N/A
leaf ccignore A 36 36-58030.10 1004 N/A
Under Development
12 fepbiasparityl 2 N/A 36-58030.18 1014 N/A
13 hybrid 3 6104 36-58030.13 1010 N/A
14 squeegy 6 4412 36-58030.23 1023 N/A
15 forcebiastrickle 1 N/A 36-58030.29 1024 133
Engineering Unit Utility Patches
10 tlmio 2 10312 36-58030.07 1010 N/A
11 printswhouse 1 7240 36-58030.08 986 N/A
leaf deaeng 2 2604 36-58030.11 1010 N/A
leaf dearepl 2 556 36-58030.12 1010 N/A

ECO-1053

Name Part Number Description Typos* RIDsP Status
buscrash 36-58030.30 Prevent Trickle-Bias 1 0 Passed RFG
(ECO 36-1051) anomalies and BEP crashes 06/29/2018
deahktrip 36-58030.34 React to anomalous DPA 6 0 Passed RFG
(ECO 36-1052) component temperatures 06/29/2018
S/W Review 36-58010 Documentation accompanying 0 0 Passed RFG
(ECO 36-1053) the individual patch ECOs 06/29/2018
Certification 36-58021.04 Documentation describing the 0 0 Passed RFG
(ECO 36-1054) multi-patch certification tests 06/29/2018

a. typographical errors in the documentation

b. review item discrepancies—requiting changes to the patch code and/or test procedures

MIT CSR

ACIS SOFTWARE PROBLEM REPORT
EEEEEE
ACIS

CENTER FORSPACE RESEARCH
MASSACHUSETTSINSTITUTE OF TECHNOLOGY

FOR: Used on hardware:

Part Number Rev: Sub-Section Name: DEA Rev: Human Interface:
36-54002.08 15 SW ACIS FLT 1.5 Flight

Originator: Phone: Date: RCTU Rev: Front End HW:

P. Ford x3-7277 12/13/06

Description of Problem: (should be sufficiently complete to be duplicated by engineering):

ACIS BEP experienced a bus error during SCS107

When ACIS was halted by an SCS107 (high-radiation shut-down) command on 12/13/2006, the BEP su
bus error and watchdog reboot. Studying previous occasions, it was discovered that bus errors occurred
ever the SCS107 was issued while the ACIS FEPs were computing their bias maps (3 instances) but ne

Corrective Action:

The BEP flight code was examined to determine whether the science thread was correctly examining th
on status of FEPs before accessing their command mailboxes. It was found that the code that marks ba
and columns in the FEP bias maps was not protected against a FEP power-down.

A patch puscrash) was generated that caltepManager: : isEnabled (to determine whether to update
the bias maps. The patch was run on the ACIS engineering unit, and was found to prevent the bus crash.

Problem closed on: Date: Refer to ECO #: Refer to Patch ID:
08/09/2007 | 36-1034 buscrash

Problem ID: M06121301 Status: Closed Sheet; 140 of 154

they were writing those maps to telemetry or processing event data (64 instances) or raw frames (1 instance).

> power-
d pixels

MIT CSR

ACIS SOFTWARE PROBLEM REPORT
EEEEEE
ACIS

CENTER FORSPACE RESEARCH
MASSACHUSETTSINSTITUTE OF TECHNOLOGY

FOR: Used on hardware:

Part Number Rev: Sub-Section Name: DEA Rev: Human Interface:
36-54002.08 15 SW ACIS FLT 1.5 Flight

Originator: Phone: Date: RCTU Rev: Front End HW:
P.Ford x3-6485 03/08/16

Description of Problem: (should be sufficiently complete to be duplicated by engineering):

SCS107 commands failed to terminate a science run during bias creation

On March 3rd 2016 the observatory entered Normal Sun Mode as a result of a pointing maneuver exceeding its
expected limits. The on-board computer executed an SCS107 command sequence which sent the usual safing
commands to ACIS, which was creating a bias map for CCD_S3 in OBSID 17719. During recovery, the ACIS

team noticed that thesSTAT1ST flag in the ACIS bilevel channel was zero, indicating that the BEP’s scienge
thread was still active.

The anomaly was quickly reproduced on the ACIS Engineering Unit and it was found that the simplest way of
returning the flight instrument ®CIENCE_IDLE mode would be to warm-boot the BEP, which was done wjth-
out further incident.

Corrective Action:

The anomaly was traced to the combined behavior of several BEP methods belongirgtaMtheager
classespollOperationComplete() first callsisBusy () to confirm that a FEP is powered up, and thep
queryFepStatus () to check whether its bias map is complete. If no FEPs are still busy creating bias maps,
pollOperationComplete () returnsBoolTrue. The code doesn't distinguish a scenario in which all
maps are available from one in which all FEPs are powered down.

If all FEPs are powered off, the science thread rec@wed True from ScienceMode: :waitForBias(),
which it interprets as the go-ahead for bias trickling (if requested), so ivedltsSForBiasTrickle() to wait
for the bias thief thread to copy the bias maps to telemetry. However, wharstitash2 patch is loaded, its
Test BiasThief::goTaskEntry() method will loop indefinitely without settingusyFlag to Bool -
False totellwaitForBiasTrickle() that the bias maps have been trickled.

Thebuscrash patch has been updated to test that at least one FEP is powered up before trickling the bias. If not,
it tells the task manager to invok&¥ SM ABORT_ RUN, which ends science processing.

Problem closed on: Date: Refer to ECO #: Refer to Patch ID:
36-1051 buscrash

Problem ID: M16030301 Status:Open Sheet: 151 of 154

ECO No.
36-1051

ENGINEERING CHANGE ORDER

KAVLI INSTITUTE FOR ASTROPHYSICS AND SPACE RESEARCH
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DRAWING NO. REVISION DRAWING TTTLE

36-58030.30 B buscrash patch to force scIENCE_IDLE when all FEPs powered off

REASON FOR CHANGE:

During OBSID 17719 on March 3rd 2016 the Chandra OBC commanded ACIS to power down
all FEPs during bias map creation. During recovery, the ACIS team noticed that ACIS 1sTaT1sT
bilevel bit was zero, indicating that the BEP’s science thread was still active. The anomaly was
traced to the combined behavior of several BEP methods belonging to the FepManager class.

DESCRIPTION OF CHANGE:

In ScienceMode::computeBiasO, FepManager method pollOperationCompleteO calls isBusyO to
confirm that a FEP is powered up, and then queryFepstatus() to check whether its bias map is
complete. If no FEPs are still busy creating bias maps, pollOperationComplete() returns
BoolTrue. The code doesn’t distinguish a scenario in which all maps are available from one in
which all FEPs are powered down. In both cases, the science thread receives BoolTrue from
waitForBias(), so it calls waitForBiasTrickle() to wait for the bias thief task to copy bias maps
to telemetry. However, when the buscrash2 patch is loaded, its Test_BiasThief::goTaskEntry()
method will loop indefinitely without setting busyFlag to BoolFalse to tell waitForBiasTrickle()
that the bias maps have been trickled. The buscrash patch has been updated to test that at least one
FEP is powered up before trickling the bias. If not, it tells the task manager to invoke a
EV_SM_ABORT_RUN, which ends science processing;

SIGNATURE DATE REMARKS
ORIGINATOR PGF 06/29/18 Signature on file
MECHANICAL
ELECTRICAL DA 06/29/18 Signature on file
SOFTWARE JEF 06/29/18 Signature on file
STRUCTURE
FABRICATION
SCIENCE
SYSTEMS ENG.
QUALITY RB 06/29/18 Signature on file
PROJ. ENGINEER RFG 06/29/18 Signature on file
DrpruTY PM

PROJ. MANAGER
APM RELEASE

ECO-1051 B

1. Reasons for the Patch

On March 3rd 2016 the observatory entered Normal Sun Mode as a result of a pointing maneuver exceeding
its expected limits. The on-board computer executed an SCS107 command sequence which sent the usual
safing commands to ACIS, which was creating a bias map for ccp_s3 in OBSID 17719. During recovery, the
ACIS team noticed that the 1STAT1ST flag in the ACIS bilevel channel was zero, indicating that the BEP” s
science thread was still active.

The anomaly was quickly reproduced on the ACIS Engineering Unit and it was found that the simplest way
of returning the flight instrument to SCIENCE_IDLE mode would be to warm-boot the BEP, which was done
without further incident.

The anomaly was traced to the combined behavior of several BEP methods belonging to the FepManager
classes. pollOoperationComplete() first calls isBusy() to confirm that a FEP is powered up, and then
queryFepstatus() to check whether its bias map is complete. If no FEPs are still busy creating bias maps,
pollOperationComplete() returns BoolTrue. The code doesn’t distinguish a scenario in which all maps are
available from one in which all FEPs are powered down.

If all FEPs are powered off, the science thread receives BoolTrue from ScienceMode:waitForBias(),
which it interprets as the go-ahead for bias trickling (if requested), so it calls waitForBiasTrickle() to wait
for the bias thief thread to copy the bias maps to telemetry. However, when the buscrash2 patch is loaded, its
Test_BiasThief:goTaskEntry() method will loop indefinitely without setting busyFlag to BoolFalse to
tell waitForBiasTrickle() that the bias maps have been trickled.

The buscrash patch has been updated to test that at least one FEP is powered up before trickling the bias. If
not, it tells the task manager to invoke a EV_SM_ABORT_RUN, which ends science processing.

2. Description of the Original Patch

The purpose of the original patch was to prevent the BEP from crashing when one or more FEPs were
powered down while bias maps were being created. While the existing flight code correctly determined when
the maps were ready, it went on to call FepManager::loadBadPixel() to update the maps with the known
locations of ‘bad’ pixels and columns. If that routine was called for a FEP that wasn’t powered up, a bus error
would result and the BEP would crash.

void FepManager::loadBadPixel (FepId fepid, unsigned row, unsigned col)

{
DebugProbe probe;

fepIo[fepid]->writeBiasValue(row, col, PIXEL BAD);

The patch replaced loadBadPixel() with the following code that tests whether the FEP is powered up:

void Test FepManager::loadBadPixel (FepId fepid, unsigned row, unsigned col)

{
DebugProbe probe;

if (fepManager.isEnabled(fepid) == BoolTrue) {
fepIo[fepid]->writeBiasValue(row, col, PIXEL BAD);
}

3. Update to the buscrash Patch

The new buscrash patch replaces the FepManager class method pollBiasComplete() which was originally

ECO-1051 B

Boolean FepManager::pollBiasComplete()

{
DebugProbe probe;
Boolean retval = BoolFalse;
retval = pollOperationComplete();
return retval;

}

with the following code:

Boolean FepManager::pollBiasComplete()

{
DebugProbe probe;

Boolean retval = BoolFalse;
retval = pollOperationComplete();

if (retval == BoolTrue && fepManager.anyEnabled() == BoolFalse) {
Task * curTask = taskManager.queryCurrentTask();
if (curTask != 0) {
curTask->notify(ScienceMode: :EV_SM ABORT_ RUN) ;
retval = BoolFalse;
}
}

return retval;

which waits until ez#her the bias maps are ready or all FEPs are powered off, and, in the latter case, passes the
EV_SM_ABORT_RUN signal to the task manager, which ends the science run, possibly truncating or eliminating
bias maps. Since the trickle-bias task is never activated, no change is necessary in the buscrash2 patch.

4. Controlled Sources

buscrash
Makefile Generate a stand-alone buscrash.bemd file
buscrash.C Source code for the Test BiasThief class
buscrash.mak Makefile script to generate flight patch
buscrash.pkg Script to describe patch release
eco-1051.doc Engineering change order describing the buscrash2 patch
spr151.pdf Originating software problem report
buscrash/testsuite
makebias Generate a timed exposure bias image

buscrash/testsuite/bug-hw

Makefile Run a test to demonstrate BEP bugs
runtest.tcl expect script to demonstrate a BEP bus crash without the buscrash patch
runtest2.tcl expect script to demonstrate anomaly with buscrash2 loaded and FEP power-down

buscrash/testsuite /fix-hw

Makefile Run a test with the buscrash patch
buscrash.bemd Stand-alone buscrash patch with modifications to detect all FEPs powered down
runtest.tcl expect script to demonstrate correct power-down behavior in timed exposure mode

ECO-1051 B

5. Testing

All tests are performed on the ACIS Engineering Unit using one FEPs and the L-RCTU interface. All tests
also use the image loader. After setting up a shim process to handle I/O between UNIX and the L-RCTTU, the
tests were controlled by scripts written in the expect dialect of TCL.

5.1. Test to reproduce a BEP bus crash

An expect procedure, “bug-hw/ runtest.tcl’, performs a timed-exposure science run with the optional #io,
printswhouse, and dearep/ patches. The following steps are performed:

1.
2.

2 &N & s

10.

11.

12.

A command pipe is spawned, through which ACIS commands will be sent to the EU.

A telemetry pipe is spawned, terminating in the “pse/ - -#” packet-monitoring filter, with expect
examining the standard output.

ACIS is cold-booted.

Software housekeeping and DEA replacement flight patches are applied.

ACIS is warm-booted.

FEP 0 is powered up.

A bias map containing the same value in each pixel of a given quadrant is written to the image loader.

A parameter block is sent to ACIS, calling for FEP_0 to be run in timed-exposure graded mode, with
3.3 second full-frame exposures.

A science run is started. Its telemetry is monitored by the expect script.

Once a FEP_STARTBIAS housekeeping pseudopacket is received, the script waits for 10 seconds and
then simulates an SCS107 command sequence by executing two stgpScience commands at 2-second
intervals, followed by a command to power down all FEPs and DEAs.

The script waits until one of three events occurs: (1) a bepStartupMessage packet is received, indicating
that the BEP has crashed; (2) a scienceReport packet is received, indicating that the run ended normally
without a crash; (3) neither packet has been received after 6 minutes.

The test is passed if case (1) occurs; otherwise, the test fails.

5.2. Test to reproduce failure to terminate science mode

An expect procedure, “bug-hw/ runtest2.1el’, performs a timed-exposure science run with the standard patches
from release I and the optional #wio, printswhouse, and dearepl patches. The following steps are performed:

1.
2.

o N kW

10.

A command pipe is spawned, through which ACIS commands will be sent to the EU.

A telemetry pipe is spawned, terminating in the “pse/ - -#” packet-monitoring filter, with expect
examining the standard output.

ACIS is cold-booted.

Standard level F, software housekeeping and DEA replacement flight patches are applied.

ACIS is warm-booted.

FEP 0 is powered up.

A bias map containing the same value in each pixel of a given quadrant is written to the image loader.

A parameter block is sent to ACIS, calling for FEP_0 to be run in timed-exposure graded mode, with
3.3 second full-frame exposures.

A science run is started. Its telemetry is monitored by the expect script.

Once a FEP_STARTBIAS housekeeping pseudopacket is received, the script waits for 10 seconds and
then simulates an SCS107 command sequence by executing two stgpScience commands at 2-second
intervals, followed by a command to power down all FEPs and DEAs.

11.

12.

ECO-1051 B

The script waits until one of three events occurs: (1) a bepStartupMessage packet is received, indicating
that the BEP has crashed; (2) a scienceReport packet is received, indicating that the run ended normally
without a crash; (3) neither packet has been received after 1 minute.

The test is passed if case (3) occurs; otherwise, the test fails.

5.3. Test to verify correct behavior of patch

An expect procedure, “fix-hw/ runtest2.1c/’, performs a timed-exposure science run with the standalone buscrash
patch and the optional #wio, printswhouse, and dearep/ patches. The following steps are performed:

1.
2.

o N AN -

10.

11.

12.

A command pipe is spawned, through which ACIS commands will be sent to the EU.

A telemetry pipe is spawned, terminating in the “pse/ -m -#” packet-monitoring filter, with expect
examining the standard output.

ACIS is cold-booted.

Standalone buscrash, software housekeeping and DEA replacement flight patches are applied.

ACIS is warm-booted.

FEP 0 is powered up.

A bias map containing the same value in each pixel of a given quadrant is written to the image loader.
A parameter block is sent to ACIS, calling for FEP_0 to be run in timed-exposure graded mode, with
3.3 second full-frame exposures.

A science run is started. Its telemetry is monitored by the expect script.

Once a FEP_STARTBIAS housekeeping pseudopacket is received, the script waits for 10 seconds and
then simulates an SCS107 command sequence by executing two stgpScience commands at 2-second
intervals, followed by a command to power down all FEPs and DEAs.

The script waits until one of three events occurs: (1) a bepStartupMessage packet is received, indicating
that the BEP has crashed; (2) a scienceReport packet is received, indicating that the run ended normally
without a crash; (3) neither packet has been received after 6 minutes.

The test is passed if case (2) occurs; otherwise, the test fails.

ECO-1051 B

Appendices

A. Example of expect script

This example shows that part of the “bug-hw/ runtest.tel” script after patches have been loaded and the BEP
warm-booted. The other scripts are identical except for the pass/fail criteria in the second expect statement.

—-——- Load Pblock for Faint Timed-Exposure Mode —----
send -i $cmd id "load 0 te 4 {
}

command echo 1 9 "load te”

——-—- Copy bias map into Image Loader —----
system make bias

---- Start the run ---—-

puts "\n# Starting test\n"

send -i $cmd id "start 0 te 4\n"
command_echo 1 14 "start science run

—--—-- Wait for bias calculation to start ----
expect {
-timeout 360
-re "SWSTAT FEP STARTBIAS.*\[\r\n]*" { }
timeout { fail "Bias Failure" }

}
sleep 10
—-—-—- Mimic an SCS107: stop science —--—-

puts "# stopScience"

send -i $cmd id "stop 0 science\n"
command_echo 1 19 "stop science run"
sleep 2

--—- Repeat the stop science ----
puts "# stopScience"

send -i $cmd id "stop 0 science\n"
command echo 1 19 "stop science run"
sleep 2

—--—- Power off all FEPs and video boards ----
puts "# powering boards off"
power off boards

--—- Inspect the result ----
expect {
-timeout 360
-re "bepStartupMessage.*\[\r\n]*" {
pass "Bus crash reproduced"
}
-re "scienceReport.*\[\r\n]*" ({
fail "Science run ends without bus crash"
}
timeout {
fail "No crash or stopScience"

}

—-—-—— Don’'t come here ----

ECO-1051 B

B. Glossary

BEP ACIS Back-End Processor — a component of the DPA

BiasThief BEP task (processing thread) to read FEP bias maps and write them to telemetry
bug-hw Directory containing tests designed to reproduce an ACIS hardware error
CCD Charge Coupled Device

DEA ACIS Detector Electronics Assembly comprising analog and interface boards
dearep! Patch to BEP software to initialize non-flight design DEA video boards

EU ACIS Engineering Unit — hardware simulator of the DEA and DPA

expect Interactive input/output scripting language based on TCL

FEP ACIS Front-End Processor — a component of the DPA

fepId BEP software variable denoting a FEP — 0 through 5

fixc-hw Directory containing tests designed to eliminate an ACIS hardware error

L-RCTU Jim Littlefield’s Remote Command and Telemetry Unit, interface to the DPA

OBSID Chandra observation ID

SCS107 Stored command sequence to protect the Chandra payload when entering safe mode
TCL Tool Command Language, a tiresome scripting language best avoided whenever possible

ECO No.
36-1052

ENGINEERING CHANGE ORDER

KAVLI INSTITUTE FOR ASTROPHYSICS AND SPACE RESEARCH
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DRAWING NO. | REVISION DRAWING TITLE

36-58030.34 A deabktrip patch to respond to anomalous DPA boar d temperatures

REASON FOR CHANGE:

Chandra’s thermal protection is aging. When the Sun illuminates the spacecraft at unfavorable pitch
angles, the temperatures of several critical components in the ACIS digital processor assembly
(DPA) are approaching their yellow alarm limits. Reducing the permitted range of pitch angles
would improve the situation, but at the expense of losing valuable science results. As an alternative,
the deahktrip patch will monitor the 12 DPA component temperatures and, should any exceed its
limits, optionally halt the observation, power down the video and front-end processor (FEP)
boards, and/or set the ACIS bilevel values to alert the spacecraft’s on-board computer (OBC) to
place ACIS in a safe mode.

DESCRIPTION OF CHANGE:

The ACIS back-end processor’s (BEP) flight software monitors DPA voltages and temperatures
from its DEA housekeeping task, calling Tf_Dea_Housekeeping Data::append_Entries() to
pack the ccdId, channelId and data values into telemetry packets for downlink. The deabktrip
patch replaces this routine with one that performs these same operations with additional code to
compare the component temperatures against a table of temperature limits. If any exceeds its limit,
a science run in progress can be halted and video and FEP boards powered down; also the 4-bit
ACIS software bilevel channels can be set to LED_BOOT_SPARE2 (i.c., ‘1110’b or 144¢) to instruct
the OBC to command ACIS to terminate the observation and to power down the boards.

SIGNATURE DATE |REMARKS
ORIGINATOR PGF 06/29/18 Signature on file
MECHANICAL
ELECTRICAL DA 06/29/18 Signature on file
SOFTWARE JEF 06/29/18 Signature on file
STRUCTURE
FABRICATION
SCIENCE
SYSTEMS ENG.
QUALITY RB 06/29/18 Signature on file
PROJ. ENGINEER RFG 06/29/18 Signatute on file
DrruTY PM

PROJ. MANAGER
APM RELEASE

ECO-1052 A

1. Reasons for the Patch

ECO-1052 A

Chandra’s thermal protection is aging, When the Sun illuminates the spacecraft at unfavorable pitch angles,
the temperatures of several critical components in the ACIS digital processor assembly (DPA) are
approaching their yellow alarm limits. Reducing the permitted range of pitch angles would improve the
situation, but at the expense of losing valuable science results. As an alternative, the deahkzrip patch will
monitor the 12 DPA component temperatures and, should any exceed its limits, optionally halt the
obsetrvation, power down the video and front-end processor (FEP) boards, and/or set the ACIS bilevel values
to alert the spacecraft’s on-board computer (OBC) to place ACIS in safe mode. Within the BEP, these
temperatures are measured by thermistors in seties with resistors, read by an A/D converter in unipolar
mode. The relationship between raw 12-bit DN values and temperatures in centigrade is as follows:

T (in C) = (1.074x107Q> + 2.372x10*Q + 1.4733x10)1 - 273.16

where Q = log. (5230 x R/(2048 — R)) and R = 1.14 x (DN — 2048)

All raw (DN) values below 2060 are considered “Hot” and those above 3880 “Cold”. The following table lists
the current yellow and red alert values for the 12 temperatures [see Appendix D, item 5].

Channel L. low alert limits high alert limits
Mnemonic Channel Description d 1 1 red

re yellow yellow e
1 BEP_PCB BEP-A PC Board 3313 (10 C) 2953 (6.5 C) 2342 (44.0 C) 2297 (49.0 C)
2 BEP_OSC BEP-A Oscillator 3313 (10 C) 2953 (6.5 C) 2362 (42.0 C) 2314 (47.0 C)
3 FEPO_MONG FEP_0 Mongoose 3313 (10 C) 3098 (0.0 C) 2306 (48.0 C) 2266 (53.1 C)
4 FEPO_PCB FEP_0 PC Board 3313 (10 C) 3098 (0.0 C) 2332 (45.0 C) 2289 (50.0 C)
5 FEPO_ACTEL FEP_0 ACTEL 3313 (10 C) 3098 (0.0 C) 2314 (47.0 C) 2274 (52.0 C)
6 FEPO_RAM FEP_0 RAM 3313 (10 C) 3098 (0.0 C) 2323 (46.0 C) 2281 (51.1 C)
7 FEPO_FB FEP_O Frame Buffer 3313 (-10C) 3098 (0.0 C) 2352 (43.0 C) 2306 (48.0 C)
8§ FEP1I_MONG FEP_1 Mongoose 3313 (10 C) 3098 (0.0 C) 2297 (49.0 C) 2259 (54.1 C)
9 FEP1_PCB FEP_1 PC Board 3313 (10 C) 3098 (0.0 C) 2323 (46.0 C) 2281 (51.1 C)
10 FEP1_ACTEL FEP_1 ACTEL 3313 (10 C) 3098 (0.0 C) 2306 (48.0 C) 2266 (53.1 C)
11 FEP1_RAM FEP_1 RAM 3313 (10 C) 3098 (0.0 C) 2306 (48.0 C) 2266 (53.1 C)
12 FEP1_FB FEP_1 Frame Buffer 3313 (-10C) 3098 (0.0 C) 2352 (43.0 C) 2306 (48.0 C)

2. Description of the Patch

The ACIS back-end processor’s (BEP) DEA housekeeping task monitors DPA voltages and temperatures,
calling Tf_Dea_ Housekeeping_Data::append_Entries() to pack the cedId, channelld and data values
into telemetry packets for subsequent downlink. The deabktrip patch replaces this routine with one that
performs the same operations with additional code to compate the component temperatures against a table

of temperature limits.

The replacement append_Entries() routine is controlled by the static ndhk structure, which begins with the
state word, whose 4 least-significant bits determine how the patch is to function. The following table
describes these four flags. The rightmost column shows whether append_Entries() alters the flag bit during
execution. If not, the flag, once initialized, will retain its value unless changed by a wrizeBep command.

All flags are initialized to zero, Ze., when a temperature channel goes outside its limits, no science run will be
halted, the boards won’t be powered down, but the software bilevels will be set to 14 (‘1110b’) for a period of
ndhk.delay seconds. Note that it is a/ways necessary to set NDHK_TEST=1 when testing deabktrip on the ACIS
Engineering Unit but #ever on the flight unit.

ECO-1052 A

Name Bit Value Description of Bit Field Altered?

0 Set when a channel value is found to be outside ndhk limits
NDHK_TRIP 0 Yes

Cleared ndhk.delay seconds after NDHK_TRIP first set

Don't halt a run or power-down video or FEP boatds

NDHK_HALT 1 No

Halt any science run in process and power down the boards

Set software bilevels to 14 (1110b) while NDHK_TRIP set

NDHK NBLV 2 No

Do not alter the bilevel values when a channel value is exceeded

Normal operation on ACIS flight unit

NDHK _TEST 3 Yes

O R, O, Ol

Used when testing on ACIS Engineering Unit

The C++ patch code (see below) defines a new public sub-class of the Tf_Dea_Housekeeping_Data class to
which the original method belongs. The ndhk structure defines the upper and lower limits, but the initial
values (see the top of Page 4) effectively ignore the upper DN values (i.e., the Jower temperatures). All ndhk
fields can be changed from the ground by means of writeBep commands.

After compilation and linking, the patch is converted to a series of addPatch commands for the bemd program,
with an additional addPatch to overwrite the start of the original append_Entries() routine with instructions
to make an unconditional jump to the start of the replacement routine. When a temperature value goes out of
limits, the NDHK_HALT and NDHK_NBLV flags determine the patch behavior. A bepReadReply packet containing
the ndhk structure will be written to telemetry and unless NDHK_NBLV=1, software bilevel values will be set to
LED_BOOT_SPARE2 for a period of ndhk.delay seconds after deahktrip has triggered. When NDHK_HALT=1,
append_entries() will also halt any science run and biasThief task already in process, and power down the
video and FEP boards.

#define NDHKT (12) // maximum number of channels checked
#define NDHK NERR (17) // science run error code
#define NDHK TRIP (1) // =1 if channel limit exceeded
#define NDHK HALT (2) // =1 to halt science run, power down boards
#define NDHK NBLV (4) // =1 to suppress report via bilevels
#define NDHK TEST (8) // =1 to force alarm (for EU testing)
typedef struct {
unsigned low; // low DN (high temperature) limit value
unsigned high; // high DN (low temperature) limit value
unsigned count; // count of consecutive trips
} NDHK_VAL;
typedef struct { // static channel limit table
unsigned state; // =0 until tripped, then =1
unsigned sample; // conditioning sample size
unsigned delay; // seconds before resuming testing
unsigned cmdid; // commandId for bepReadReply packet
unsigned size; // number of channels used in lim array
unsigned base; // index of lowest channel id
unsigned lowvalid; // lowest valid DN value (lower values are “Hot”)
unsigned highvalid; // highest valid DN value (higher values are “Cold”)
unsigned tickl; // bepTickCounter of first tripped packet
unsigned tick2; // bepTickCounter of second tripped packet
unsigned spare; // for debugging purposes
NDHK_VAL 1lim[NDHKT]; // lowest,highest,count channel limit values
} NHKD;
class Test Tf Dea Housekeeping Data : public Tf Dea Housekeeping Data {
public:
void append Entries(unsigned Ccd Id, unsigned Query Id, unsigned Value);
}i

ECO-1052 A

// A single static instance of the NDHK structure with all high-temperatures
// set to 9/18/17 red limits and low-temperature limits disabled (DN=4096)

NHKD ndhk = { 0, 2, 3600, 1010, 12, 1, 2060, 4096, 0, 0, O

{
{ 2297, 4096, 0 }, /* BEP_PCB */ { 2314, 4096, 0 }, /* BEP_0SC */
{ 2266, 4096, 0 }, /* FEPO MONG */ { 2289, 4096, 0 }, /* FEPO PCB */
{ 2274, 4096, 0 }, /* FEPO ACTEL */ { 2281, 4096, 0 }, /* FEPO RAM */
{ 2306, 4096, 0 }, /* FEPO FB */ { 2259, 4096, 0 }, /* FEP1 MONG */
{ 2281, 4096, 0 }, /* FEP1 PCB */ { 2266, 4096, 0 }, /* FEP1 ACTEL */
{ 2266, 4096, 0 }, /* FEP1 RAM */ { 2306, 4096, 0 }, /* FEPl FB */

}

i
void Test Tf Dea Housekeeping Data::append Entries(unsigned Ccd_Id,
unsigned Query Id, unsigned Value)
{
// Check that we’re not in a triggered state and the channel is Board 11/12
if ((ndhk.state & NDHK TRIP) == 0 && Ccd Id == 10 && ndhk.size > 0) {
int ii = QueryId - ndhk.base;
// Execute if this is a desired channel
if (ii >= 0 && ii < ndhk.size && ii < NDHKT) {
// Check if the value violates a limit
if (ndhk.state & NDHK TEST) {
ndhk.state |= NDHK TRIP;
} else if ((Value > ndhk.lowvalid && Value <= ndhk.lim[ii].low) ||
(Value < ndhk.highvalid && Value >= ndhk.lim[ii].high)) {
// Increment the counter and trip if over sample limit
if (++ndhk.lim[ii].count >= ndhk.sample) {

ndhk.state |= NDHK TRIP;
}
} else {
ndhk.lim[ii].count = 0;

}
}
// Check for triggered state
if (ndhk.state & NDHK TRIP) {
unsigned tick = (getBufPtr())[4]; // get bepTickCounter from TlmForm
if ((ndhk.state & NDHK NBLV) == 0) {
// Set the software bilevels
bepReg.showLeds (LED BOOT SPARE2);
}
if (ndhk.tickl == 0) {
// Execute once in same housekeeping packet as trigger
ndhk.tickl = tick;
ndhk.tick2 0;
// Stop science mode and biasThief, if running
if ((ndhk.state & NDHK HALT) && scienceManager.currentMode != 0) {
*(unsigned *)&scienceManager.currentMode->termReason = 17;
scienceManager.notify(ScienceMode: :EV_SM ABORT RUN) ;
}
if (ndhk.state & NDHK TEST) {
swHousekeeper.report (SWSTAT CMDECHO DROPPED, ndhk.cmdid);
ndhk.state &= ~NDHK TEST;
}
} else if (tick != ndhk.tickl && ndhk.tick2 == 0) {
// Excecute once in next housekeeping packet following trigger
ndhk.tick2 = tick;

ECO-1052 A

if (ndhk.state & NDHK HALT) {
// power down all FEP and video boards
sysConfigTable.changeEntry(SYSSET DEA POWER, 0);
sysConfigTable.changeEntry(SYSSET FEP POWER, 0);
}

// write the contents of the ndhk structure to telemetry

unsigned *a = (unsigned *)&ndhk;

unsigned w = sizeof (ndhk)/sizeof (unsigned);

CmdResult rc = memoryServer.readBep(ndhk.cmdid, a, w, TTAG READ BEP);

if (rc != CMDRESULT OK) {
swHousekeeper.report (SWSTAT CMDECHO DROPPED, ndhk.cmdid);

}

} else if (tick != ndhk.tickl && tick != ndhk.tick2 &&

tick > ndhk.tickl + ndhk.delay*Acis::TICKS_PER SECOND) {

// Execute once at least ndhk.delay seconds after trigger packet

ndhk.state &= ~NDHK TRIP;

ndhk.tickl = ndhk tick2 = 0;

// Clear the channel counters

for (int ii = 0; ii < NDHKT; ii++) {
ndhk.lim[ii].count = 0;

}
}

// ---- Continue with the code of the original append Entries() method ----

}

The first block of new code, executed when NDHK_TRIP is deasserted, confirms the validity of the ndhk
structure and checks the subroutine arguments (or NDHK_TEST when testing deabktrip on the ACIS EU) for an
alert, setting NDHK_TRIP if found and persisting for ndhk.sample consecutive DEA housekeeping samples.
The second block of code, executed while NDHK_TRIP remains asserted, sets the 4-bit software bilevel values
to LED_BOOT_SPARE2 (unless NDHK_NBLV=1) and then performs one of three actions depending on the values
of ndhk.tickl and ndhk.tick2.

1. If ndhk.tickl is zero, Ze., in the same call to append_Entries() as when the trip occurred, NDHK_TEST
is cleared, the BEP interrupt timer value is saved in ndhk.tickl, and, if NDHK_HALT is asserted and a
science run is in progress, the task manager is commanded to signal the scienceManager and biasthief tasks to
terminate immediately. Within the patch, the “interrupt timer value” is its value at the time that the
deaHousekeepingData packet was initialized, and is located in the 4th word of the packet. Retrieved via a call
to getBufPtr(), the patch can determine whether it is executing while filling the same packet as the trip,
or the next packet, or sometime later.

2. Otherwise, if ndhk.tickl, is non-zero but ndhk.tick2 is zero, zc., append_Entries() is being called to
update the next deaHousekeepingData packet after the packet in which the trip occurred, the patch sets
ndhk.trip2 to the interrupt timer value, tells the wemoryManager task to write a copy of the ndhk
structure to telemetry and, if NDHK_HALT is asserted, it instructs the configurationManager task to power
down all video and FEP boards.

3. Otherwise, when at least ndhk.delay seconds have elapsed since NDHK_TRIP was first asserted, the patch
deasserts it and clears ndhk.tick1, ndhk.tick2, and the channel counters.

This 3-step procedure, using ndhk.tickl and ndhk.tick2 to ensure that Step 1 and Step 2 occur while
constructing different deaHousekeepingData packets, forces a delay of several seconds between stopping the
scienceManager and powering down the boards, thereby avoiding a potential FEP-BEP bus crash.

ECO-1052 A

3. Controlled Sources

deahktrip
deabktrip.C Soutce code for the Test Tf Dea Housekeeping Data class
deabktrip.mak Makefile script to generate opr_deabktrip.bemd for a multi-patch release
deabktrip.plg Script to describe this patch and assist with release compilation and testing
eco-1052.doc Engineering change order describing the deabktrip patch, i.e., this document
standalone.mak Generate a stand-alone deabktrip.bemd file

deahktrip/testsuite
markebias.pl Perl script to define a bias map for the Image Loader
mafkeimage.pl Perl script to define an eventful frame for the Image Loader

deahktrip/testsuite/smoke

Makefile Run a test with the deabktrip patch
anx.tcl Additional expect procedures to define parameter blocks
opt_ deabktrip.bemd deabktrip patch in bemd format linked with standard G optional H patches
opt_ deabktrip.map Load map for the deabktrip.bemd patch linked with standard G optional H patches
runtest.tcl expect script to demonstrate correct deabktrip operation in telemetry format 2
runtest2.tcl expect script to demonstrate correct deabktrip operation in telemetry format 1

4. Testing

All tests were performed on the ACIS Engineering Unit using the L-RCTU interface. After setting up a 2-way
interface to the EU, the tests were controlled by a script written in the expect dialect of TCL. When the dearep/
patch is applied, the BEP’s requests for DPA component temperatures return DN values of zero, leaving
nothing on which deahktrip can trigger. For this reason, the patch will be triggered by asserting the NDHK_TEST
tlag via a writeBep command.

4.1. Test to verify correct behavior of the patch in Format 2

The interface is established by typing “make shim” in the “Zestsuite/ smoke” directory. Then typing “make
report”, an expect procedure, “runtest.tef’ (listed in Appendix A) performs a simple test of red-alert detection,
as enumerated below. Finally, the interface is removed by typing “make unshim”.

1. A command pipe is spawned, through which ACIS commands will be sent to the EU.

2. A telemetry pipe is spawned, terminating in the “psez -m -u -EacisEUbilevels.ttn/” packet-monitoring
filter, with expect examining the standard output. Note the “—E” option which, when combined with
“—n’, instructs psci to report ACIS bilevel values found in psendoEngineering packets.

3. 'The EU BEP is cold-booted.

4. 'The opt_deabhktrip tlight patch is applied, along with gpz_dearep/ to configure the BEP to take pixel data
from the Image Loader. No other patches are necessary when running a “stand alone” test.

5. 'The EU BEP is warm-booted.

A writeBep command is sent to the BEP to set the contents of the ndhk structure to those in the table
at the top of page 4.

7. A changeConfigSetting command powers up 6 FEPs and 6 video boards. The script waits 60 seconds for
this to complete.

8. A loadDeaBlock command is sent to the BEP calling for the 12 DPA component temperatures to be
reported in deaHousekeepingData packets, with a 10 second delay following each set of 12 readouts.

9. A startDea command is sent to begin reporting the DEA housekeeping packets.

ECO-1052 A

10. The ACIS pixel switch is commanded to send pixel streams to the FEPs from the Image Loader.
11. A suitable bias map is created by “Zestsuite/ makebias.p!” and wrtitten to the Image Loader.

12. loadleBlock and startScience commands are sent to control and start a timed-exposure science run that
is designed to generate a large number of events, so that deabktrip will be tested while the BEP output
buffer is saturated.

13. The script waits for the first datalelaint packet, after which it replaces the bias map in the Image
Loader with a frame generated by “Zestsuite/ makeimage.p!’ that contains multiple event candidates.

14. The script continues to monitor the telemetry packets. After receiving 4 more deaHousekeepingData
packets, a writeBep command sets ndhk.state to 10 decimal. This asserts NDHK_TEST, and

NDHK_HALT causing the patch to trip immediately, to halt the science run, and power down the
boards.

15. If the script encounters (a) a bepReadReply packet with a commandId value of 1010, and (b) an
engineeringPsendo packet with a software bilevel value of 14, and (c) a sczenceReport packet with a
terminationCode of 17, the test passes.

16. Otherwise, if expect times out after 3600 seconds or receives more than 100 deaHousekeepingData
packets, the test fails.

4.2. Test to verify correct behavior of the patch in Format 1

This test is controlled by “festsuite/ smoke/ runtest2.1el”. It is not one of the acceptance tests since it requires the
special shin500 interface. The user first types “make shim500” to set up the Format 1 interface, then “make
report N=2" to run the script, and finally “make unshim” to remove the interface. The steps are identical to
those in §4.1 above, except that the “runtest2.#c/” parameters differ from those in Appendix C as follows:

set cecd _list {10 0 1 2 3 7} ; # Use only 5 CCDs and FEPs

set datarate {20} ; # Measure of event rate

set delay {14400} ; # Delay in seconds until trip reset
set pmode {3} ; # bepPackingMode (Event Histogram)
set phist {1650} ; # histogramCount value for Format 1

Note that this patch commands the EU to run 5 video boards and FEPs in timed-exposure event histogram
mode and therefore uses the opt_eventhist and opt_smtimedlookup patches, along with a version of gpt_deabktrip
that has been linked with them. These patches must be built together in the “patches/ release/ options/ BUILD”
directory and “opt_deabktrip.bemd’ and “opt_deabktrip.map” must be copied to “deabktrip/ testsuite/ smoke” before
running “runtest2.te/” in this directory.

5. Makefile targets

“testsuite/ smoke/ Makefile’ defines the following targets for use within “runtest.te/” or from the user’s console:

all (default) Execute “runtest.tel” with output to stdout (or “runtest2.re/’ with “make N=2")
report Execute “runtest.ze/” with output to “deabktrip.date . time./og’

shim Start the Format 2 interface to the ACIS Engineering Unit

shim500 Start the Format 1 interface to the ACIS Engineering Unit

unshim Stop the interface to the ACIS Engineering Unit

loaderselect Command the Pixel Switch to send contents of the Image Loader to the FEPs
deaselect Command the Pixel Switch to send the output of the video boards to the FEPs
reload Set the contents of the ndhk structure to the default values

bias Send a bias map image frame to the Image Loader

image Send an image frame containing multiple events to the Image Loader

ECO-1052 A

Appendices

A. The runtest.tc/ test script

This expect script starts a timed-exposure science run using 6 FEPs with input from the ACIS Image Loader.
After receiving the first exposureleFaint packet, the bias image is replaced by a one containing many events.
The script then counts deaHousekeepingData packets and, after the fourth, it sets ndhk.state to $state,
asserting the NDHK_TRIP flag and causing the patched append_Entries() routine to trip. The script also
monitors for bepReadReply, scienceReport and engineeringPsendo packets.

#! /usr/bin/env expect

puts “Welcome to deahktrip/testsuite/patches/deahktrip”

—--—- Load options from command line ----

lassign $argv basedir tools patchdir

--—- Define execution parameters ----

set ccd _list {0 1 2 3 4 5} ; # CCDs to assign to FEP 0 .. FEP 5
set state {10} ; # Initial value of ndhk.state

set datarate {50} ; # Measure of event rate

set delay {3600} ; # Delay in seconds until trip reset
set timeout {300} ; # Default timeout in seconds

set cmdId {1010} ; # commandId for bepReadReply

set pmode {0} ; # bepPackingMode value

set phist {0} ; # histogramCount value (when pmode=3)
set ncmd {0} ; # commandId for commands sent to EU
set ndeahk {0} ; # bepReadReply packet counter

set nbilevel {0} ; # Bilevel alarm counter

set nscirep {0} ; # scienceReport packet counter

--—- Load expect commands library and pblock definitions ----

source “$basedir/$tools/lib/lib-exp/runtest_ support.tcl”

source “$basedir/$patchdir/aux.tcl”

—---—- Start the I/0 —----

spawn “$basedir/$tools/bin/cmdclient” $env(ACISSERVER)

set cmd_id $spawn_id

spawn “$basedir/$tools/bin/tlmclient” $env(ACISSERVER) -ESenv(ACISTTMFILE)

sleep 1

match_max 400

—--—- Save the hex address of the ndhk structure in $addr ----

lassign [exec grep {D ndhk} "$basedir/$patchdir/opt deahktrip.map"] addr
--—- Halt BEP, load patches, warm boot ----

cold boot

load patch list "$basedir/$tools/share/opt tlmio.bcmd\
$basedir/$tools/share/opt printswhouse.bcmd\
$basedir/$tools/share/opt_dearepl.bcmd\
$basedir/$patchdir/opt_deahktrip.bcmd"
warm_boot

--—- Upload the initial ndhk structure ----

set ndhk "0 2 $delay $cmdId 12 1 2060 4096 0 0 0"

foreach ii {2297 2314 2266 2289 2274 2281 2306 2259 2281 2266 2266 2306} {
append ndhk " $ii 4096 0"

}

send -i $cmd_id "write [incr ncmd] O0x$addr {\n$ndhk\n}\n"

command echo 1 192 {initialize ndhk}

--—- Power up FEPs and video boards ----

power on boards $ccd list

ECO-1052 A

expect -re "SWSTAT FEPMAN ENDLOAD: 5\[\r\n]+" {} timeout { fail timeout }

--—- Start DEA housekeeping ----

send -i $cmd_id "load [incr ncmd] dea 4 {[deaHkPblock 10]}\n"
command echo 1 13 {load dea pblock}

send -i $cmd id "start [incr ncmd] dea 4\n"

command echo 1 18 {start dea housekeeping}

--—- Prepare image loader and load a bias image ----
system make loaderselect bias

--—- Load and start TE science run ----

send -i $cmd_id "load 0 te 4 {[teImagePblock $ccd list $pmode $phist]}\n"
command echo 1 9 {load te pblock}

send -i $cmd id "start 0 te 4\n"

command echo 1 14 {start te science run}

—--—- Wait to create bias maps, then load event image ----

set timeout $delay

expect -re “SWSTAT FEP_STARTDATA[“\r\n]*\[\r\n]+” timeout {fail timeout }
system make image RATE=S$datarate

expect -re “dataTe["\r\n]*\[\r\n]+” timeout { fail timeout }

—--—- Examine the psci monitor output ----
expect {
-re "bepReadReply\["\r\n]*commandId=$cmdId\["“\r\n]*\
requestedAddress=0xSaddr\["\r\n]*\[\r\n]+" {
incr nbeprep ; exp continue

-re "scienceReport\[“\r\n]*terminationCode=17\[\r\n]+" {
incr nscirep ; exp continue

}
-re "engineeringPseudo\["\r\n]*bilevels=(\[0-91+)\[\r\n]+" {
if {$expect out(l,string) & 15) == 14} {
incr nbilevel
}
if {Snbilevel < 1 || Snbeprep != 1 || $nscirep != 1} {
exp continue
}
pass " $nbilevel bilevels, $nbeprep BEP reads, $nscirep sci reports "
}
-re "deaHousekeepingData\[\r\n]*\[\r\n]+" {
if {[incr ndeahk] == 4} {
send -i $cmd id "write [incr ncmd] 0x$addr {\n$state\n}\n"
}
if {$ndeahk < 100} { exp continue }
}
timeout { }
}
—--—- Fall through on timeout or 100+ housekeeping packets ----

fail “ timeout: $nbilevel bilevels, $nbeprep BEP reads, $nscirep sci reports “

ECO-1052 A

B. Timing

Using the results of the tests in {4, the following table lists the time delays from the moment a temperature
channel first exceeded its limit to (a) the time the alarm tripped, the bilevels were set, and the science run was
terminated, and (b) the FEP and video boards were powered down. The ndhk.sample value was 2. The
event rates and histogram counts were selected to cause the data packets to saturate the BEP’s output buffer.

Test Format Science Stopped Powered Down Reported
Timed Exposure Faint 3x3 2 20.0 57.2 190.5
Timed Exposure Event Histogram 2 17.0 35.0 112.6
Timed Exposure Faint 3x3 1 2434.6 2452.8 9302.3
Timed Exposure Event Histogram 1 5000.4 5017.4 11075.9

The delays in the “Science Stopped” column result from the time delay between deaHousekeepingData packets
which is required by the ndhk.sample=2 criterion. As soon as the science run is stopped, BEP buffer space
becomes available for a new deaHousekeepingData packet, during whose construction the FEPs and video
boards can be powered down. The “Reported” column then includes time for the remaining science packets
to be read out from the BEP.

C. Glossary

bemd Command to translate ASCII commands to binary; also the command format itself
BEP ACIS Back-End Processor — a component of the DPA

smoke Directory containing tests designed to reproduce the action of a software patch
CCD Charge Coupled Device

DEA ACIS Detector Electronics Assembly comprising analog and interface boards

DN Raw data value, Ze., not converted to C, volts, amps, etc.

DPA ACIS Digital Processor Electronics comprising front- and back-end processor boards
EU ACIS Engineering Unit — hardware simulator of the DEA and DPA

expect Interactive input/output scripting interpreter based on TCL

FEP ACIS Front-End Processor — a component of the DPA

L-RCTU Jim Littlefield’s Remote Command and Telemetry Unit, interface to the EU

OBC Chandra On-Board Computer

SCS106 Stored OBC command sequence to protect the ACIS payload from high temperatures
TCL Tool Command Language, a tiresome scripting language best avoided whenever possible

D. Applicable Documents
1. DPA/DEA Interface Control Document, MIT 36-02205, Revision C, March 10, 1995.

2. ACIS Science Instrument ACIS Software Instrumentation, Program and Command List, MIT
36-53204.0204, Revision N, March 15, 2001.

3. ACIS Science Instrument Software Detailed Design Specification (As Built), MIT 36-53200, Revision 01,
February 3, 2000.

4. Creating and Testing ACIS Flight Software Patches, MIT ACIS Report, Revision 1.0, June 6, 2016.
Proposed BEP and FEP Limits, Paul Plucinsky, e-mail, September 18, 2017.

07/13/18
08:47:25

Flight S/W Patches, Revision G-H-|
standard-release-G-opt-H.notes

TITLE: ACIS Flight Software Standard Patch Component Release Notes
DOCUMENT NUMBER:

ORIGINATOR:

QQHMEUOUQW o

SCO NO.

36-984

36-1006
36-1019
36-1035
36-1039
36-1042
36-1048
36-1053
36-1053

36-58010

REVISION: G

DESCRIPTION

Peter G. Ford <pgf@space.mit.edu>

Initial numeric release

Bug fixes,

Add new patches,
Add new patches,
Add new patches,

Update
Update
Update
Update

buscrash?2,
buscrash2,
buscrash,
buscrash

incorporate tests

retest
retest
retest
retest
remove biastim
retest

APPROVED

10/27/1998
05/11/1999
12/16/1999
08/09/2007
09/29/2009
01/06/2010
12/16/2013
06/29/2018

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Title: ACIS Patch Release Notes for Version G

Software Change Order: 36-1053

Build Date: Fri Jul 13 08:47:25 EDT 2018
Part Number: 36-58010

Version: G

CVS Tag: release-G

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

Load Size: 3828 bytes

Description:
This is the seventh letter release of the standard patch set and the
eighth letter release of the optional patches for the ACIS Flight Software.

The purpose of this release is to update the buscrash patch and add
the deahktrip patch.

This release consists of the following bug fix/system modification
patches, where * indicates the new or modified patches since the
previous release:

corruptblock - Fixes SPR 113
digestbiaserror - Fixes SPR 116
histogramvar - Fixes SPR 115

rquad - Fixes SPR 121
histogrammean - Fixes SPR 123
zaplexpo - Addresses SPR 122
condoclk - Addresses SPR 127
fepbiasparity2 - Addresses SPR 130
cornermean - Fixes SPR 128

tlmbusy - Fixes SPR 138
buscrash - Fixes SPR 140 and 151
badpix - Fixes SPR 141
buscrash2 - Fixes SPR 133, 142, 148, 150

For archival purposes, this document contains two attachments. The
first contains ASCII command inputs to the ACIS command generator,
"bemd", used to generate the binary patch commands corresponding to
this release. The second attachment contains the linker map listing
for the ACIS Flight Software, and the patches built by this release.

The following documentation identifies these patches, provides a brief
justification for each patch, and briefly describes the contents of
these patches and their command, telemetry and science impacts.

Addressed Problem Reports:
SPR-141
SPR-127
SPR-142
SPR-138
SPR-116
SPR-128
SPR-113

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

SPR-121
SPR-122
SPR-148
SPR-115
SPR-123
SPR-151
SPR-130

Included Patches:
digestbiaserror
badpix
cornermean
rquad
histogrammean
corruptblock
zaplexpo
tlmbusy
fepbiasparity?2
buscrash
histogramvar
buscrash?2
condoclk

Additional Release Level Tests:

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: digestbiaserror

Part Number: 36-58030.02

Version: A
SCO: 36-995
Description:

This patch fixes software problem SPR-116.

Symptom:

When a parity error is detected, the FEP produces a pair of bias
values with a flag indicating if one or both are corrupt.

The BEP mishandles this when telemetering the error.

If the error occurs at an odd column position, the BEP reports
the wrong column position of the error.

Symptom Impact:

This has the potential to degrade the science analysis by providing
ambiguous knowledge of which bias map values have been

corrupted.

Symptom Cause:

In PmEvent::digestBiasError, it assumes that only one of pair
of bias values is corrupt and that the FEP reported column
indicates which of the two is corrupt. This is WRONG.

Fix Description:

This inline patch provides a new representation of the bias error event
and modifies the telemetry format tag to indicate the new format.
Rather than telemeter the corrupt value (which is fairly useless),

the 12-bit value field is as follows, where bit 0 is the
least-significant bit:

Bits 0 - 3: The top 4 bits of the bias value at the column position
Bits 4 - 7: The top 4 bits of the bias value at column + 1
Bits 8 - 11: Unused

These bits contain the results of the hardware parity check
of the corresponding pixel bias wvalue.
The format of these 4 bits are as follows:

Bit 0 (H/W bit 12) - Always zero

Bit 1 (H/W bit 13) - H/W computed parity of bias map value

Bit 2 (H/W bit 14) - Parity bit stored in parity plane

Bit 3 (H/W bit 15) - Parity error bit (0 - no parity error, 1 - parity error)

The bit definition information is derived from the
"DPA Hardware Specification and System Description",
MIT 36-02104 Rev. C., Section 2.2.2.5.5 "Bias Map Parity Detection".

Applicable Reports/Requests:
SPR-116

Test Results:

Replaced Functions:

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Command Impact:
None

Telemetry Impact:
This patch affects the telemetry Pixel Bias Map Error records.
Without this patch, the error records will be incorrect if the
error occurs on an odd column.
With this patch installed, the instrument will telemetry bias
errors using a new telemetry format, TTAG SCI_ PATCHED BIAS ERROR,
defined by the "Patch Data Bias Error" format in the IP&CL Software
Structures Definitions, MIT 36-53204.0204 Rev. L.

Science Impact:
Without the patch installed, there is an ambiguity whether a bias
error 1s in the reported pixel, or in the adjacent, odd column.
Once the patch is installed, the ground can determine exactly which
pixel was upset.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: badpix

Part Number: 36-58030.21

Version: A
SCO: 36-1037
Description:

Reason:

This patch fixes software problem report SPR-141.

Symptom:

The known bad pixels and columns supplied to ACIS through its bad
pixel and column lists are not always being flagged in the correct
locations in the FEP bias maps. The symptom only appears when the
instrument is running in timed-exposure mode using sub-arrays whose
initial row number is greater than zero.

Symptom Impact:

In most timed-exposure sub-array runs, when the sub-array starts
after the first CCD row, bad pixel will be mis-located; the truly
bad pixels will be accepted as valid and good pixels will be
treated as bad. In practice, this will have little effect since
bad pixels will be recognized by the bias map creation algorithm.

Symptom Cause:

The BEP maintains a list of known bad pixels and columns in each CCD.
After a bias map is created, the BEP’s loadBadMaps procedure will set
the appropriate entries in the FEPs bias maps to 4095, telling the FEP
software to ignore the corresponding image pixel, i.e., treat it as if
it had zero value. This is in addition to any saturated pixels found
during bias map creation, which will also be assigned the bias wvalue
4095.

The code in SmTimedExposure::loadBadMaps () contains an error. It
assumes that sub-arrays will be processed in the same relative location
in a FEP’'s image and bias memory as on the CCD from which the pixels
originated. This is not so--the first row of a sub-array is always
written into row 0 of a FEP’s image map, and the corresponding bias
values are saved in row 0 of its bias map.

SmTimedExposure: : loadBadMaps () must be patched in two places, one to
correct bad pixels, the other bad columns. The bad pixel correction
is applied as follows:

while (badPixelMap.getPixel (index, ccd, row, col) == BoolTrue) {
if ((row >= start) && (row < end))
row /= sum;
col /= sum;
for (Fepld fep = FEP 0; fep < FEP COUNT; fep = FepId(fep+1l)) {
if (fepCcdlfep] == ccd) {
fepManager.loadBadPixel (fep, row, col);
}
}
}

index++;

}

and we want to change the "row /= sum" to "row = (row-start) / sum".
This can best be done by recognizing that "sum" has only two values,
1 or 2, and the MIPS takes 32 bytes of code to perform an unsigned
integer divide, but only 4 bytes to perform a logical right shift.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

The original assembler code

1774 2400A28F 1w $2,36 ($sp)
1778 00000000 divu $2,%2,%18
177C 1B005200
1780 02004016
1784 00000000
1788 0D000700
1798 2400A2AF sw $2,36 ($sp)

can simply be modified as follows:

1774 2400A28F 1w $2,36 ($sp)
1778 FFFF4326 addu $3,%18,-1
177c 23105600 subu $2,462,822
1780 06106200 srl $2,4$2,83

1784 00000000 nop
1788 00000000 nop
178C 00000000 nop
1790 00000000 nop
1794 00000000 nop
1798 2400A2AF sw $2,36 ($sp)

The second patch sets the starting value of the row loop to zero:
while (badTeColumnMap.getColumn (index, ccd, col) == BoolTrue) {

col /= sum;
for (Fepld fep = FEP 0; fep < FEP COUNT; fep = FepId(fep+1l)) {

if (fepCcdlfep] == ccd) {
for (unsigned row = start; row < end; row++)
fepManager.loadBadPixel (fep, row, col);
}
}
}
index++;

The existing assembler code is

SLM1578:
18cc 0000043C la $4,fepManager
18d0 00008424

18d4 21282002 move $5,$17

18d8 3000A78F 1w $7,48 ($sp)
18dc 00000000 nop

18e0 0000000C jal loadBadPixel
18e4 21300002 move $6,%16

18e8 01001026 addu $16,516,1
18ec 2B101402 sltu $2,$16,520
18f0 F6FF4014 bne $2,50,5L1578

and the patch replaces the row in the loadBadPixel (fepId, row, col)
call with row-start. (In the MIPS architecture, the instruction
after a branch or call is executed before the branch is taken).

18e4 23301602 subu $6,816,522

Applicable Reports/Requests:
SPR-141

Test Results:

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Replaced Functions:

Command Impact:
None.

Telemetry Impact:
None.

Science Impact:
Without this patch, the BEP’s bad pixel and bad column lists will be
applied incorrectly in timed-exposure sub-array mode when the sub-array
begins on any but the first row of the CCD. Since almost all science
runs are made in dithered mode, the impact once the patch is in place
will be slight.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: cornermean

Part Number: 36-58030.21

Version: A
SCO: 36-1017
Description:

Reason:

This patch fixes software problem report SPR-128.

Symptom:

In Timed Exposure Graded Telemetry mode, when some of
the corner pixels have a small negative corrected pulse
height, the system reports an incorrect, extremely large
negative value for the mean corrected pulse height of
the corner pixels. Additionally, the algorithm rounds
incorrectly when the mean pulse height is negative (not
mentioned in the SPR).

Symptom Impact:

Barring corrective ground analysis and action, the incorrectly
reported corner mean value may confuse the science analysis
process, and at worst, lead to incorrect conclusions about

the science, or the state of the instrument data processing.

Symptom Cause:

The flight software routine, Pixel3x3:computePhGrade() divides

a signed integer value, cornersum, with an unsigned integer value,
sumcount (see filesscience/pixel3x3.H). In "C" and "C++", this
division is performed as an unsigned divide, preventing any sign
extension, hence the "signedness" of the cornersum is lost.

The result is stored into a signed value, cornermean, which is

later converted to a signed 13-bit value for telemetry. When the
ground software extracts the 13-bit signed value, it will sign-extend
the value. The effect of losing the sign in the divide, sometimes
yields incorrect results, some of which appear as large negative values
when processed by the ground.

The rounding problem is due to incorrect coding of the integer
rounding for negative values:

mean = (sum + (count/2))/count
should be:
mean = (sum + (sign(sum) * int (count)/2))/int (count)

Fix Description:
This patch implements the fix to the loss of "signedness"
problem and the rounding using an inline assembler patch.

To fix the loss of "signedness" problem the patch replaces
the existing unsigned divide instruction (divu) with a signed
divide (div).

In order to fix the rounding problem, more work was needed.

The coded formula is:
mean = (sum + (count/2))/count

In practice, the MIPS assembler implements divides as an
embedded assembler macro which performs a divide by zero
check. In the case of Pixel3x3 it is as

follows:

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

0370
0374
0378
037c
0380

0384
0388

0398
039c

03a4

2000638E 1w $3,32($19)
00000000

42100300 srl $2,$3,1
2400648E 1w $4,36(3519)
00000000

Code we’re going to muck with ----
21104400 addu $2,82,%4
1B004300 divu $2,82,83
02006014

00000000

0D000700

End of code we’re going to muck with ----
12100000

00000000

00000000

280062AE sw $2,40(s$19)

Since the C++ code already has an earlier zero check on the
denominator, the patch re-codes this portion function as follows:

0370 2000638E 1w $3,32(519)
0374 00000000
0378 42100300 srl $2,$3,1
037c 2400648E lw $4,36(519)
0380 00000000
---- Start of change ----
0384 bgez $4 ,positive
0388 add $2,$2,34
038c sub $2,$2,83
positive:
0390 div $0,%2,$3
0394 nop
---- End of change ----
0398 12100000
039c 00000000

00000000
03a4 280062AE sw $2,40($19)

Applicable Reports/Requests:
SPR-128

Test Results:

Replaced

Functions:

Command Impact:

None.

Telemetry Impact:

None.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Science Impact:
Without this patch, the corner mean values in Graded Telemetry
mode may occasionally be invalid. There is a deterministic ground
algorithm which can detect and and correct for this effect, but
without the flight patch or the ground algorithm, the corner mean
values may be grossly incorrect in some cases.

Once the patch is in place, the corner mean values should be
within 1/2 an ADU of the true mean, regardless if sign, without
further action needed by the ground science software.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: rquad

Part Number: 36-58030.14

Version: A
SCO: 36-1000
Description:

Reason:

This patch fixes software problem report SPR-121.

Symptom:

If the center pixel of a 3x3 event is in the last

column of any but the right-most quadrant (i.e. in FULL mode,
quadrants A, B or C, but not D), the flight software will
inappropriately use the delta overclock and split threshold
for the center pixel’s quadrant on the pixels on the right
edge of the event. The instrument is supposed to use the
delta overclock and split thresholds for the next quadrant
on these pixels.

Symptom Impact:

This may lead to an incorrect estimate of the
event’s total pulse height and grade, possibly
leading to inappropriate pulse height and grade
filtering of these events, or, when using Graded
Event formats, incorrect pulse height and grade
code values.

Symptom Cause:
The flight software is fetching the gquadrant identifier
for the wrong column position for the right edge pixels:

guad = exposure->getQuadrant (col) ;
doclk[1] = exposure->getOverclockDelta (quad) ;
split[1] = exposure->getSplitThreshold (quad) ;

WRONG---> quad = exposure->getQuadrant (col) ;
doclk [2] = exposure->getOverclockDelta (quad) ;
split[2] = exposure->getSplitThreshold (quad) ;

computePhGrade (doclk, split);

This should be:

guad = exposure->getQuadrant (col);
doclk[1] = exposure->getOverclockDelta (quad);
split[1] = exposure->getSplitThreshold (quad) ;

CORRECT---> quad = exposure->getQuadrant (col+l);
doclk[2] = exposure->getOverclockDelta (quad) ;
split[2] = exposure->getSplitThreshold (quad) ;

computePhGrade (doclk, split);

Fix Description:

The patch increments the column register variable using
an "nop" slot of an earlier instruction following

the previous call to exposure->getQuadrant () and prior
to the last call to exposure->getQuadrant () .

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

This is the last time the register is used in the function,
so it won'’t corrupt subsequent code, and the "nop"

was inserted by the compiler after a "lw", which allows
for increments of registers unrelated to the "lw".

05cc 2CO0A2AF sw $2,44 ($sp)
$1M84 :
210:../filesscience/pixel3x3.C ****
211:../filesscience/pixel3x3.C ***x* quad = exposure->get
Quadrant (col) ;
05d0 5400028E 1w $2,84(s16)
"addu $18,$18,1" --->> 05d4 00000000
05d8 0800428C 1w $2,8(S82)
00000000
05e0 21200002 move $4,816
.set noreorder
.set nomacro
"col" is passed in 05e4 09F84000 jal $31,$2
a delay slot --->>05e8 21284002 move $5,%18
.set macro
.set reorder
05ec 21884000 move $17,82
SLM85:
../filesscience/pixel3x3.C ***xx* doclk[2] = exposure->get
OverclockDelta (quad) ;
05f0 5400028E 1w $2,84(316)
05f4 00000000
05f8 0400428C 1w $2,4(%2)
00000000
0600 21200002 move $4,816
.set noreorder
.set nomacro
0604 09F84000 jal $31,$2
0608 21282002 move $5,817
.set macro
.set reorder
060c 2000A2AF sw $2,32($sp)
SLM86 :
../filesscience/pixel3x3.C **** split[2] = exposure-s>get

SplitThreshold (quad) ;
.stabn 68,0,213,$LM86

0610 5400028E 1w $2,84(316)

0614 00000000

0618 0C00428C 1w $2,12(3%2)

00000000

0620 21200002 move $4,816
.set noreorder
.set nomacro

0624 09F84000 jal $31,%2

0628 21282002 move 85,817
.set macro
.set reorder

062c 3000A2AF sw $2,48($sp)

SLM87 :
../filesscience/pixel3x3.C ***xx*
../filesscience/pixel3x3.C **** computePhGrade (doclk, s

plit) ;
.stabn 68,0,215,$LM87
0630 1000828E 1w $2,16($20)
0634 00000000
0638 1C00428C 1w $2,28($2)

07/13/18 Flight S/W Patches, Revision G-H-|

08:47:25 standard-release-G-opt-H.notes
00000000
0640 21208002 move $4,820
0644 1800A527 addu $5,$sp, 24
.set noreorder
.set nomacro
0648 09F84000 jal $31,$2
064c 2800A627 addu $6,58p, 40
.set macro
.set reorder
SLBB29:
SLM88:
$LBB30:
$LBE30:
SLM89:
SLBE29:
SLM9SO0 :

../filesscience/pixel3x3.C ***xx*
../filesscience/pixel3x3.C **x* //
../filesscience/pixel3x3.C **** }

$SLBE26 :
0650 4COOBF8F lw $31,76(S$sp)
00000000
0658 4800B48F 1w $20,72($Ssp)
00000000
0660 4400B38F 1w $19,68(S$Ssp)
00000000
0668 4000B28F lw $18,64(S$sp)
00000000
0670 3CO0B18F 1w $17,60(Ssp)
00000000
0678 3800BO8F 1w $16,56(Ssp)
00000000
0680 5000BD27 addu $sp, $sp, 80
0684 0800E003 J $31
00000000
.end Pixel3x3::attachData (FEPeventRe
c3x3 const *, EventExposure ¥*)
$LM91:

Applicable Reports/Requests:
SPR-121

Test Results:

Replaced Functiomns:

Command Impact:
None

Telemetry Impact:
See SCIENCE IMPACT.

Science Impact:
Without this patch, all Timed Exposure and CC3x3 events on the left
edge of a quadrant boundary may have incorrect pulse heights and
grades, and events which impact at these positions may be inappropriately

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

filter out or telemetered if pulse height and grade filters are used.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: histogrammean

Part Number: 36-58030.15

Version: A

SCO: 36-996

Description:
Reason:

In raw TE histogram mode, the FEPs report the mean of each CCD
quadrant’s overclocks. This is done in two steps: first, the
overclocks of each quadrant of each frame are summed into fields
"oc.osum" in the FEPparm structure, and these are then averaged over
the separate "histogramCount" frames and reported to the BEP in
"omean" fields in FEPeventRecHist structures. The error is caused by
using the 16-bit "omean" fields as accumulators, as well as final
values, since, if the mean overclock value multiplied by
"histogramCount" exceeds 65535, overflow will occur.

Fix Description:

The patch adds 8 32-bit integer fields to the end of the D-cache stack
employed by the fepCtl function. Within FEPsciTimedHist, machine
instructions are altered to initialize these fields to zero, to use
them to accumulate the intermediate sums, and hence to form the means
which are stored into "omean".

(a) increase fepCtl stack length by an extra 32 bytes

.globl fepCtl 1st 0000_0000
.ent fepCtl 1st 0000 0000
fepCtl 1st 0000 0000:

0000 88FABD27 subu Ssp, $sp,1368+32
0004 5405BFAF

.end fepCtl lst 0000 _0000

(b) decrease fepCtl stack length by an extra 32 bytes

.globl fepCtl_1st_012c_0l2c
.ent fepCtl 1st 0l12c_Ol2c
fepCtl 1st 012c_0Ol2c:
0128 00000000
012c 7805BD27 addu Ssp, $sp,1368+32
0130 0800E003
.end fepCtl _1st_012c_0Ol2c

(c) set mean and variance sums to zero

.globl fepSciTimed 1st 1858 1864
.ent fepSciTimed 1lst 1858 1864
fepSciTimed 1st 1858 1864:
1854 80180B00

1858 21187000 addu $3,83,316
185c 480560AC sw $0,1368-16(%$3)
1860 580560AC sw $0,1368(53)
1864 140040A4 sh $0,20(s2)
1868 0C0044A4
.end fepSciTimed 1st 1858 1864

(d) increment mean sum

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

.globl fepSciTimed 1lst lacc_ ladc
.ent fepSciTimed 1lst lacc_ladc
fepSciTimed 1lst lacc ladc:
lab0 1B006A0O0

02004015

00000000

0D000700

12180000
lacc 34050925 addu $9,$8,1368-36
1lad0 4805028D lw $2,1368-16($8)
lad4 00000000 nop
lad8 21104300 addu $2,$2,83
ladc 480502AD sw $2,1368-16($8)

lae0 1BOOAAOl
lae4 02004015
lae8 00000000
laec 0D000700
laf0 12200000
.end fepSciTimed 1st lacc_ ladc

(e) save stack pointer in RO

.globl fepSciTimed 1lst 1c38 1c38
.ent fepSciTimed 1lst 1c38 1c38
fepSciTimed 1st 1c38 1c38:
1c34 1403028E
1c38 48050926 addu $9,516,1368-16
lcec 22004010
.end fepSciTimed 1st 1c38 1c38

(f) load overclock mean sum

.globl fepSciTimed 1lst 1c50 1c50
.ent fepSciTimed 1st 1c50 1c50
fepSciTimed 1st 1c50 1c50:
lcd4c 21187200
1c50 0000228D Iw $2,0(89)
1c54 00000000
.end fepSciTimed 1lst 1c50 1c50

(g) load overclock variance sum

.globl fepSciTimed 1st 1c84 1c84
.ent fepSciTimed 1lst 1c84 1c84
fepSciTimed 1lst 1c84 1c84:
1c80 21187200
1c84 1000228D lw $2,16(5%9)
1c88 00000000
.end fepSciTimed 1st 1c84 1c84

(h) increment R9

.globl fepSciTimed 1lst 1cb8 1cbs
.ent fepSciTimed 1lst 1cb8 1cbs8
fepSciTimed 1st 1cb8 1cb8:
lcb4 1403028E
lcb8 04002925 addu $9,%59,4
lcbc 2B106201
.end fepSciTimed 1st 1cb8 1cbs8

Applicable Reports/Requests:

07/13/18 Flight S/W Patches, Revision G-H-|

08:47:25 standard-release-G-opt-H.notes
SPR-123

Test Results:
Replaced Functions:

Command Impact:
None

Telemetry Impact:

None. It should be pointed out that an alternative approach to
fixing this problem is to add the following code to the downlink

raw histogram software, although this algorithm may fail for very
large values of "histogramCount".

if (fs->meanOverclock[node] < fs->minimumOverclock [node] ||
fs->meanOverclock [node] > fs->maximumOverclock [node]) {
unsigned hh = loadTeBlock histogramCount (param) ;
double dmlim = 8192.0*hh*loadTeBlock overclockPairsPerNode (param) ;

unsigned mm, mlim = (dmlim < Ox7fffffff) ? dmlim : Ox7fffffff;
for (mm = 0; mm < mlim; mm += 65536) {
unsigned nn = fs->meanOverclock [node]+ (mm+hh/2) /hh;
if (nn >= fs->minimumOverclock[node] &&
nn <= fs->maximumOverclock [node])
fs->meanOverclock [node] = nn;
break;

}
}
}

Science Impact:
None -- raw histogram mode is not necessary for science processing.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: corruptblock

Part Number: 36-58030.01

Version: A
36-994
Description:
Reason:

This patch fixes software problem report SPR-113.

Symptom:

If a parameter block is corrupt, the flight software
may use nonsense parameters, 1f just powered on, or run
the previous run mode’s parameter block.

Symptom Impact:

If the original parameter block was corrupt and if this was

the first run since the instrument was powered, the nonsense
parameters may cause the instrument to crash and reset, preventing
any science activity during that observation’s time period.

The system will recover, although without patches, at the onset

of the next observation. If there was an earlier run of

the same type, Timed Exposure or Continuous Clocking, the

previous run’s parameter will be used, which may or may not

be ideal.

Symptom Cause:

The flight software start run routine, ChStartSciRun::processCmd(),
declares an "alternate" parameter block variable, which is filled

in by the science mode’s checkBlock() routine if the original

parameter block is corrupt. processCmd () then erroneously passes

this "alternate", and a reference to the "alternate" back to

checkBlock() to verify that the alternate is not also corrupt.

The called checkBlock() initializes the 2nd reference to INVALID,

which ends up overwriting the desired alternate block id. This propagates
through to the run, preventing the mode from loading the parameter

block, and using, instead, what it had already staged from an earlier run.

Fix Description:

This inline patch modifies 2nd parameter to refer to a dummy
variable when checking the default backup block. This prevents
the id from being overridden and provides the proper default
parameter block selection behavior when the selected block

has been corrupted.

The original line from chstartscirun.C is:
if (mode.checkBlock (blockid, alternate) == BoolTrue)

{

result = CMDRESULT OK;

}

<<< else if (mode.checkBlock (alternate, alternate) == BoolTrue)

{

blockid = alternate;
usedAlternate = BoolTrue;

}

else

{

return CMDRESULT_ CORRUPT_IDLE;

}

The effect of the patch changes this to:

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

if (mode.checkBlock (blockid, alternate) == BoolTrue)

{

result = CMDRESULT OK;

}

>>> else 1f (mode.checkBlock (alternate, dummy) == BoolTrue)
{
blockid = alternate;
usedAlternate = BoolTrue;

}

else

{

return CMDRESULT_ CORRUPT_IDLE;

}

The stack frame of the modified patch will appear as follows, where
the offsets in the left-hand column are relative to the stack pointer
at the time the jump is made to the called subroutine mode.checkBlock (),
the symbols in the center column indicate the "conventional" locations
for various registers, and the right column indicates if the assembler
actually put anything into that stack slot. If "unassigned" then

the assembler didn’t explicitly store anything into that stack slot.
If blank, then the "convention"

(NOTE: In the MIPS processors, calls don’t explicitly push anything

on the stack. The return address is maintained in "ra" at the time of
the call and the caller is then required to save it i1f needed):

ChStartSciRun: :processCmd () - Stack Frame
Convention described in Section 2.3 of

MIPS programmers handbook, by Farquahar and Bunce

60 pad unassigned

56 ra ra ($31)

52 s3 s3 ($19)

48 s2 s2 (s$18)

44 sl sl (s17)

40 s0 s0 ($16)

36 £23 unassigned (patch uses as local "dummy")
32 f22 alternate (local variable)

28 f21 unassigned
24 £f20 unassigned
20 pad unassigned

* Ok ok Kk ok K ok K ok K ok K ok K ok Kk ok K * F F

16 arg biasonly argument (arg4) to scienceManager.startRun()
12 a3 unassigned
8 a2 unassigned
4 al unassigned
0 a0 unassigned

Applicable Reports/Requests:
SPR-113

Test Results:

Replaced Functions:

Command Impact:
Without this patch, corruptions (if any are actually ever encountered)
may cause an previous parameter block to be used for an observation, or
at worst, a reset of the instrument.
When the patch is installed, the instrument will use the appropriate

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

default parameter block (slot 0 or slot 1) instead of the corrupted

parameter block, or will skip the observation if the defaults are
also corrupt.

Telemetry Impact:
None.
Although, without this patch, the instrument may select
an inappropriate parameter block, the parameter blocks dumped

to telemetry at the start of a science run will always be the
the ones actually used for the run.

Science Impact:
None

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: zaplexpo

Part Number: 36-58030.16

Version: A

SCO: 36-997

Description:
Reason:

In event-finding mode, the FEP thresholds are adjusted using delta-overclock
values, which are calculated from difference between the average overclock
values from the preceding frame and the average overclock values from the
initial bias frame. The delta-overclocks for the initial data frame are set
to zero, i.e., it 1is assumed that the mean bias levels haven’t drifted

since the first exposure frame used to compute the bias map. This is

often a poor assumption, and can lead to a very large number of events

being reported within the first exposure.

Fix Description:

Inhibit the FEP from finding any threshold crossings within the first
examined exposure frame. This is performed at science run initialization
time within the "fepSciTimed.c":FEPsciTimedInit function (TE mode) and
the "fepSciCClk.c":FEPsciCClkInit function (CC mode) by storing 4095 in
the FEP threshold registers. Thus,

186:fepSciTimed.c **** for (iquad = 0; iquad < 4; iquad++) {

925 0290 21200000 move $4,$0

926 0294 0000053C la $5, stageThresh

926 0000A524

187:fepSciTimed.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];

929 029c 40100400 sll $2,%4,1

930 SL90:

931 02a0 21105000 addu $2,582,516

932 02a4 A0024394 1lhu $3,672($2)

933 02a8 00000000

934 02ac 10004324 sh $3,16(52)

188:fepSciTimed.c ***x* fp->ex.dOclk[iquad] = 0;

937 02b0 18004024 sh $0,24 ($2)

189:fepSciTimed.c **** FIOsetThresholdRegister (iquad, (short) (fp->tp.threshlig
uadl)) ;

944 02b4 80180400 sll $3,%4,2

945 02b8 21107000 addu $2,83,516

948 02bc 21186500 addu $3,33,$5

949 02c0 4C004284 1h $2,76($2)

950 02c4 00000000

951 02c8 000062AC sSwW $2,0(83)

958 02cc 01008424 addu S4,%4,1

959 02d0 0400822C sltu $2,%4,4

960 .set noreorder

961 .set nomacro

962 02d4 F2FF4014 bne $2,50,S8L90

963 02d8 40100400 sll $2,%4,1

964 .set macro

965 .set reorder

190:fepSciTimed.c **** }

becomes

186:fepSciTimed.c ***x* for (iquad = 0; iquad < 4; iquad++)
925 0290 21200000 move S4,80

926 0294 0000053C la $5, stageThresh

926 0000A524

07/13/18 Flight S/W Patches, Revision G-H-|

08:47:25 standard-release-G-opt-H.notes
187:fepSciTimed.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
929 029c 40100400 sll $2,%4,1
930 $1,90
931 02a0 21105000 addu $2,%2,516
932 02a4 A0024394 lhu $3,672($2)

933 02a8 00000000

934 02ac 10004324 sh $3,16($2)
188:fepSciTimed.c **** fp->ex.dOclk[iquad] = Oxfff;
937 02b0 FFOF0324 11 $3,0x00000fff
944 02b4 18004324 sh $3,24($2)
189:fepSciTimed.c **** FIOsetThresholdRegister (iquad, Oxfff);
945 02b8 80180400 sll $3,$4,2

948 02bc 21186500 addu $3,%$3,55

949 02c0 FFOF0224 11 $2,0x00000fff
950 02c4 00000000

951 02c8 000062AC sSw $2,0(83)

958 02cc 01008424 addu $4,%4,1

959 02d0 0400822C sltu $2,54,4

960 .set noreorder

961 .set nomacro

962 02d4 F2FF4014 bne $2,%$0,$L90

963 02d8 40100400 sll $2,%4,1

964 .set macro

965 .set reorder

190:fepSciTimed.c ***x* }
and

174:fepSciCClk.c **** for (igquad = 0; iquad < 4; iquad++) {

774 01fc 21200000 move $4,50

775 0200 0000053C la $5,stageThresh

775 0000A524

175:fepSciCClk.c ***x* fp->ex.bias0[iquad] = fp->br.bias0[iquad];

778 0208 40100400 sll $2,%4,1

779 SL83:

780 020c 21105000 addu $2,5$2,516

781 0210 A0024394 lhu $3,672($2)

782 0214 00000000

783 0218 10004374 sh $3,16(%2)

176 :fepSciCClk.c **** fp->ex.dOclk[iquad] = 0;

786 021c 180040A4 sh $0,24($2)

177:fepSciCClk.c ***xx* FIOsetThresholdRegister (iquad, (short) (fp->tp.threshlig
uad])) ;

793 0220 80180400 sll $3,%4,2

794 0224 21107000 addu $2,%3,%16

797 0228 21186500 addu $3,83,85

798 022c 4C004284 lh $2,76($2)

799 0230 00000000

800 0234 000062AC sw $2,0($3)

807 0238 01008424 addu S4,%4,1

808 023c 0400822C sltu $2,84,4

809 .set noreorder

810 .set nomacro

811 0240 F2FF4014 bne $2,$0,sL83

812 0244 40100400 sll $2,%4,1

813 .set macro

814 .set reorder

178:fepSciCClk.c ***%* }
becomes
174 :fepSciCClk.c **** for (iquad = 0; iquad < 4; iquad++)

774 01fc 21200000 move $4,80
775 0200 0000053C la $5,stageThresh

07/13/18
08:47:25

775 0000A524
175:fepSciCClk.c ***x*
778 0208 40100400

779 SL8
780 020c 21105000

781 0210 A0024394

782 0214 00000000

783 0218 100043274
176:fepSciCClk.c ***x*
786 021c FFOF0324

787 0220 180043A4
177:fepSciCClk.c ***xx*
793 0224 80180400

797 0228 21186500

798 022c FFOF0224

799 0230 00000000

800 0234 000062AC

807 0238 01008424

808 023c 0400822C

809

810

811 0240 F2FF4014

812 0244 40100400

813

814

178:fepSciCClk.c ***x*

Flight S/W Patches, Revision G-H-|
standard-release-G-opt-H.notes

fp->ex.bias0[iquad] = fp->br.bias0[iquad];
sll $2,84,1
3:
addu $2,82,816
lhu $3,672($2)

sh $3,16(52)
fp->ex.dOclk[iquad] = Oxfff;
1i $3,0x00000fff
sh $3,24(3%2)
FIOsetThresholdRegister (iquad, O0xfff);
sll $3,%4,2
addu $3,5$3,55
1i $2,0x00000fff

sw $2,0(83)
addu $4,84,1

sltu $2,%4,4
.set noreorder
.set nomacro
bne $2,30,31L83
sll $2,%4,1

.set macro
.set reorder

}

Applicable Reports/Requests:

SPR-122

Test Results:

Replaced Functions:

Command Impact:
None

Telemetry Impact:

No events will be generated for the first examined exposure, i.e.,

the frame with exposureNumber == 2 (unless the teignore or ccignore
patches are loaded, in which case it will be the frame with
exposureNumber == ignoreInitialFrames) .

To determine whether this patch was in effect during a particular
science run, telemetry processing software should examine the 4 values
in the deltaOverclocks array in exposure packets with exposureNumber
== (or with exposureNumber == ignoreInitialFrames i1f the relevant
teignore or ccignore patch is installed). If they are all equal to
4095, the patch was installed and this exposure frame should not be
included in the good time interval (GTI); if they are all zero, the

patch was omitted.

Science Impact:

With this patch installed, the frame with exposureNumber == (or with
exposureNumber == ignoreInitialFrames if the relevant teignore or
ccignore patch is installed) should not be included in the GTI maps.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: tlmbusy

Part Number: 36-58030.29
Version: A
SCO:

Description:
This standard patch prevents the BEP from writing anomalous telemetry
output when the TlmManager::post () method is called from one task while
it is still enqueuing a packet from another task.

The BEP will not drop the occasional packet (usually a housekeeping
packet), and will be prevented from writing garbage in its stead.
This will prevent the ground system from mis-processing science runs
in which the garbage consists of correctly formatted, but unexpected,
packets.

Applicable Reports/Requests:
SPR-138
SER-None

Test Results:

Replaced Functions:
TlmManager: :post

Command Impact:
None.

Telemetry Impact:
The occasional packet drop-out or garbling will no longer occur, so the
impact should be wholly favorable.

Science Impact:
None.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: fepbiasparity?2

Part Number: 36-58030.19

Version: A
SCO: 36-1015
Description:

In TE mode, this patch causes FEP_0 to bypass the upper half of each
image map (rows 512 through 1023) if the bias parity errors in any one
frame reported by the firmware exceed a threshold value (10). In
addition, the 10 bias wvalues, and their corresponding pixel wvalues,
are copied to a static location from which they can be dumped at a
later time. In CC mode, the patch copies the lower half of the FEP 0
bias map into the upper half whenever 10 or more bias errors have been
detected.

The patch has no effect on other FEPs.

Applicable Reports/Requests:
SPR-130

Test Results:

Replaced Functions:

Command Impact:
Once the patch is installed and FEP_0 powered up and running, it is
advisable to clear its static save area via the following command:

write ‘c’ fep 0 0x80000210 {
00000000000O0O0O0O0O0OO0O0GO 0O

}

Then, either on a regular basis, or when it is noticed that 10
parity errors have been reported from a single FEP_0 exposure frame,
the following command should be executed to dump the contents of the
static save area:

read ‘c’ fep 0 0x80000210 20

Telemetry Impact:
If 10 or more bias parity errors are detected in FEP 0 during a
timed-exposure science run, fepbiasparity2 will prevent more from
being reported in telemetry. Once the threshold is reached, no further
events will be reported from rows 512-1023. In 5x5 mode, a few
additional parity errors may be reported from row 512.

In continuous clocking mode, when 10 or more bias parity errors are
detected in FEP 0, fepbiasparity2 will copy the entire contents of the
lower half of the bias map, i.e., 512 rows x 1024 pixels, to the upper
half, thereby (hopefully) restoring the original contents. Occasional
parity errors will be corrected in the usual manner, i.e., by
searching through the bias map, starting at row 0, for a pair of
undamaged values.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Science Impact:
When this patch is triggered in timed-exposure modes, no further
parity errors will be reported from rows 513-1023 of the CCD attached
to FEP 0. In 3x3 mode, no events will be reported from rows 511-1023;
in 5x5 mode, none will be reported from 510-1023. Ground software must
be prepared to sense this condition, e.g., by examining the
biasParityErrors fields in exposure packets, or by recognizing the
absense of events above row 512, and updating the exposure maps
accordingly.

The patch should have less impact in continuous clocking mode. When
the 10-error threshold is triggered, FEP_0 may skip an exposure frame
while replacing the upper half of its bias map, but otherwise, event
processing will continue, taking advantage of the full area of the
CCD.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: buscrash

Part Number: 36-58030.30
Version: B
SCO:

Description:

Reason:

If ACIS is computing bias maps when commanded to power down its front-end
processors (FEPs), it is likely to crash the back-end processor (BEP)
interface bus, causing the BEP to reboot without flight software patches.
Normal operations must be restored via ground command. The cause of the
problem has been traced to a design flaw in the BEP flight software and
this ECO describes a small patch that will fix it.

Symptom:

During execution of SCS107, typically due to high background radiation,
ACIS is powered down. Science telemetry reports that the flight s/w
version number is 11, whereas typical values (depending in the patch
combination) are 30 or higher, indicating that the BEP rebooted itself.
Subsequent inspection of the recorded telemetry shows no scienceReport
packet from the last science run, but a bepStartupMessage packet with
lastFatalCode=7 and watchdogFlag=1.

Symptom Impact:

Since the observatory is usually in safe mode for several hours following
the SCS107, there is generally sufficient time to establish a realtime
contact, set the BEP’'s warm-boot flag, and restart it. However, this
takes time and manpower.

Symptom Cause:

The bus crash has been traced to a flaw in the FepManager::loadBadPixel ()
method. This routine is executed after the FEP bias maps have been
created and before they are (optionally) reported in telemetry. It

uses the memory-mapped interface between BEP and FEP to change those
locations in the FEP bias maps that correspond to "bad" pixels or whole
columns. However, unlike all other FepManager operations, loadBadPixel ()
does not confirm that a FEP is powered up before it writes to its map.
This causes the bus crash.

Fix Description:

Call the FepManager::isEnabled() method to check if the FEP is powered
up before writing to a FEP’s bias memory (and parity plane). Release A
of this fix interacted badly with the buscrash2 patch in a manner that
could prevent the science run from termination. This was corrected in

release B of buscrash.

Applicable Reports/Requests:
SPR-151

Test Results:

Replaced Functions:
FepManager: : loadBadPixel
FepManager: :pollBiasComplete

07/13/18
08:47:25

Command Impact:
None.

Telemetry Impact:

None.

Science Impact:
None.

Flight S/W Patches, Revision G-H-|
standard-release-G-opt-H.notes

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: histogramvar

Part Number: 36-58030.03

Version: A
SCO: 36-999
Description:

This patch fixes a software problem, SPR-115.

Symptom:
The Raw Histogram Mode occassionally produces anomalously large
values for the low word of the overclock variances.

Symptom Impact:

This slightly degrades the science analysis of histogram
mode data by very occassionally providing bad variance values
for the overclocks.

Symptom Cause:

The error is cause by an unsigned integer divide which should

have been a signed integer divide. If the low order word ends up negative
this produces an incorrectly high value for the variance.

Fix Description:
This inline patch modifies the FEP to use a signed divide instead
of unsigned divide.

Applicable Reports/Requests:
SPR-115

Test Results:

Replaced Functions:

Command Impact:
None

Telemetry Impact:
None

Science Impact:
This patch affects Histogram Mode Only.
Without this patch, the overclock variances in histogram mode may
occassionally be incorrect. Once this patch is installed, the
Flight Software correctly computes overclock variances.

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

Patch Name: buscrash2

Part Number: 36-58030.32
Version: C
SCO:

Description:

Reason:

If ACIS is copying bias maps to telemetry when commanded to power down its
front-end processors (FEPs), it is likely to crash the back-end processor
(BEP) interface bus, causing the BEP to reboot without flight software
patches. Normal operations must be restored via ground command. The cause
of the problem has been traced to a design flaw in the BEP flight software
and this ECO describes a patch that will fix it.

At the same time, the cause of trickle-bias anomalies has been found to be
related to the way the BEP task manager relays events to the bias thief task.
Code has been added to the buscrash2 patch to overcome this problem. Should it
recur, a test has been added to buscrash2 that will end bias trickling so that
the anomaly doesn’t cause T-plane latch-ups in FEPs.

Symptom:

During execution of SCS107, typically due to high background radiation,
ACIS is powered down. Science telemetry reports that the flight s/w
version number is 11, whereas typical values (depending in the patch
combination) are 30 or higher, indicating that the BEP rebooted itself.
Subsequent inspection of the recorded telemetry shows no scienceReport
packet from the last science run, but a bepStartupMessage packet with
lastFatalCode=7 and watchdogFlag=1.

In addition, the task manager will occasionally run the science and bias thief
tasks simultaneously, so that bias packets and exposure records will be
interleaved in ACIS telemetry. This situation is likely to cause the threshold
crossing planes of one or more FEPs to "latch-up". In this condition, they will
not correctly identify event candidates, thus preventing events from that CCD to
be reported.

Symptom Impact:

Since the observatory is usually in safe mode for several hours following
the SCS107, there is generally sufficient time to establish a realtime
contact, set the BEP’'s warm-boot flag, and restart it. However, this
takes time and manpower.

The trickle-bias anomaly is likely to block all events from one or more FEPs
for that science run and for all subsequent runs until the latched FEP is power-cyc
led.

Symptom Cause:

The bus crash has been traced to a flaw in the BiasThief::checkMonitor ()
method. This routine is executed after the FEP bias maps have been
created and it copies them to telemetry. It uses the memory-mapped
interface between BEP and FEP to access the maps but, unlike other
FepManager operations, it does not confirm that a FEP is powered up before
it reads the maps. This causes the bus crash.

The trickle-bias anomaly is most likely caused by the task manager failing to
merge a pair of events, EV_TASKQUERY and EV_START, sent to the bias thief task.

Fix Description:
To prevent a bus crash following an SCS107, call the FepManeger: :isEnabled()

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

method to check if the FEPs are powered up before reading from a FEP’s bias
memory. This is done by adding the following code to BiasThief::checkMonitor () :

// ---- Check whether the FEPs are powered up ----
for (unsigned fepid = 0; fepid < FEP_COUNT; fepid++) ({
if (fepInfolfepid] .base != 0 &&
fepManager.isEnabled (FepId (fepid)) == BoolFalse) ({
swHousekeeper.report (SWSTAT FEPREC POWEROFF, fepid);
retval = BoolFalse;

}

To prevent a trickle-bias anomaly from causing FEP T-plane latch-ups, add the
following code to BiasThief::checkMonitor () :

// ---- Check whether BiasThief and Science tasks running together
unsigned start = scienceManager.currentMode->startTimeData;
if (modetype == 0 && start != OxffEffffff) {

swHousekeeper .report (SWSTAT SCI_STARTRUN BUSY,
systemClock.currentTime ()) ;

memoryServer.readBep(l, (const unsigned int *)this,
sizeof (BiasThief) /sizeof (unsigned), TTAG READ BEP) ;
retval = BoolFalse;

}

To entirely eliminate the trickle-bias anomaly, the BiasThief::biasReady ()
method has been updated:

void Test BiasThief::biasReady ()

{

abortFlag = BoolFalse; // Resolve order conflict with abort ()
notify (EV_START) ; // Signal task to start bias

yield() ; // Start the bias thief

busyFlag = BoolTrue; // Bias Thief will be active soon

}

and the BiasThief::goTaskEntry () method has been rewritten:

void Test BiasThief::goTaskEntry ()

{

DebugProbe probe;

// ---- FOREVER ----
for (;;) {
// --- Wait for start/abort or query from task monitor ---
unsigned caught = waitForEvent (EV_START | EV_ABORT | EV_TASKQUERY) ;

// --- Consume but ignore EV_ABORT signal ---
// --- Respond to monitor queries ---

if (caught & EV_TASKQUERY)
taskMonitor.respond () ;
}

// --- Start bias dump ---
if ((caught & EV_START) && (abortFlag == BoolFalse))
// -- Ensure busyFlag is set

busyFlag = BoolTrue;

// -- Trickle bias for each FEP --
for (unsigned fepid = 0; fepid < FEP_COUNT; fepid++) {
if (fepInfolfepid].base == 0) {
continue; // Skip to next FEP

} else if (modetype == 0) { // Timed Exposure

07/13/18 Flight S/W Patches, Revision G-H-|

08:47:25 standard-release-G-opt-H.notes
if (trickleTeBias (FepId(fepid)) == BoolFalse) {
break;

} else { // Continuous Clocking

if (trickleCcBias (FepId(fepid)) == BoolFalse) {
break;
}
}
}
// --- No longer busy ---

busyFlag = BoolFalse;

} // END FOREVER

Note that this version of buscrash2 eliminates the need for the standard
biastiming patch and the optional untricklebias patch. Hooray!

Applicable Reports/Requests:
SPR-142
SPR-148

Test Results:

Replaced Functions:
BiasThief: :checkMonitor
BiasThief: :goTaskEntry
BiasThief: :biasReady

Command Impact:
None.

Telemetry Impact:
If an active FEP is found to be unpowered during bias copying, no more
bias packets will be produced and a SWSTAT_ FEPREC POWEROFF will be
reported in software housekeeping.

If the science task is found to have started event processing while

bias maps are being copied to telemetry, a SWSTAT SCI_ STARTRUN BUSY
condition will be noted in software housekeeping and no more bias

packets will be produced for the current run. In addition, a bepReadReply
packet will be generated with the contents of the "biasThief" object at
the time of the anomaly.

Science Impact:
Bias maps will be missing or truncated if either an active FEP is found
to be powered off during map copying, or if the science task is found to
have started event processing before the last bias map has been copied.

Flight S/W Patches, Revision G-H-|
standard-release-G-opt-H.notes

07/13/18
08:47:25

Patch Name: condoclk

Part Number: 36-58030.17

Version: A
SCO: 36-1012
Description:

Reason:

The first timed exposure frames received during OAC
SOP_61052 DARK CUR) showed sporadic increases in the overclock
averages, and anomalous dark patches within bias maps. Once raw frames
were examined (in SOP_61054 RAW DATA and SAP 61079 RAW BIAS), the
effect was seen to be caused by charged particle background "leaking"
into the overclocks.

(e.g.,

Fix Description:
Patch the FEP overclock processing function, fepOclkProc in
fep/fepCtl.c, to "condition" the overclock sum on a row-by-row
basis. The patch, which will not apply to OC RAW or OC_HIST modes,
will ignore the overclock sum of particular row and node if it exceeds
the previous sum by some suitable threshold. This entails replacing
the following fepOclkProc () code:

for (ioclk = 0; ioclk < fp->tp.noclk; ioclk++) {
unsigned p0 = *fp->oc.optr++;
unsigned pl = *fp->oc.optr++;
switch (fp->tp.quadcode)
case FEP QUAD AC:

fp->oc.osum[0] += PIXELO (p0O) & PIXEL MASK;
fp->oc.osum[1l] += PIXELO (pl) & PIXEL MASK;
break;

case FEP_QUAD BD:
fp->oc.osum[0] += PIXEL1 (p0) & PIXEL MASK;
fp->oc.osum[1] += PIXEL1(pl) & PIXEL MASK;
break;

default:
fp->oc.osum[0] += PIXELO (p0O) & PIXEL MASK;
fp->oc.osum[1] += PIXEL1 (p0O) & PIXEL MASK;
fp->oc.osum[2] += PIXELO(pl) & PIXEL MASK;
fp->oc.osum([3] += PIXEL1(pl) & PIXEL MASK;
break;

} /* end switch */

} /* end for ioclk */
with an inline patch that saves R9-R12:

condoclkCtl (fp) ;

subu $Ssp, $sp, 16
sw $9,0(Ssp)

sw $10,4 (S$Ssp)

sw $11,8(S$Ssp)

sw $12,12($sp)
jal condoclkCtl
move $4,816

lw $9,0(Ssp)

1w $10,4 (S$Ssp)

lw $11,8(3sp)

1w $12,12($Ssp)

j fepCtl+0x0£74
addu $Ssp, $sp, 16

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

and adding the condoclkCtl function:

void condoclkCtl (FEPparm *fp)

{
unsigned dsum = OCLK COND * fp->tp.noclk;
unsigned ioclk, iquad;

/* clear local accumulator */
for (igquad = 0; iquad < 4; iquad++) |
fp->oc.ossqgl [iquad] = 0;
/* clear saved row sum at start of frame */
if (fp-soc.osum[iquad] == 0) {
fp->oc.ossqghliquad] = 0;
}

} /* end for iquad */

/* accumulate the overclock sums */
for (ioclk = 0; ioclk < fp->tp.noclk; ioclk++) {
unsigned p0 = *fp->oc.optr++;
unsigned pl = *fp->oc.optr++;
switch (fp->tp.quadcode)
case FEP QUAD AC:
fp->oc.ossqgl [0] += PIXELO(p0) & PIXEL MASK;
fp->oc.ossqgl [1] += PIXELO(pl) & PIXEL MASK;
break;
case FEP_QUAD BD:
fp->oc.ossqgl[0] += PIXEL1l(pO) & PIXEL MASK;

fp->oc.ossql[1] += PIXEL1 (pl) & PIXEL MASK;
break;

default:
fp->oc.ossqgl [0] += PIXELO(p0) & PIXEL MASK;
fp->oc.ossqgl[1] += PIXEL1l(pO0) & PIXEL MASK;
fp->oc.ossql [2] += PIXELO (pl) & PIXEL MASK;
fp->oc.ossql [3] += PIXEL1 (pl) & PIXEL MASK;

break;
} /* end switch */
} /* end for ioclk */

/* condition the sums */
for (iquad = 0; iquad < 4; iquad++)
if (fp-soc.ossghliquad] == 0) {
/* always save first row sum */
fp->oc.ossqghliquad] = fp->oc.ossql[iquad];
} else if (fp->oc.osum[iquad] == fp->oc.ossghl[iquad] &&
fp->oc.ossgh[iquad] > fp->oc.ossgl[iquad] + dsum) {
/* if second row sum much less than first, replace the
total sum by twice the second sum */
fp->oc.osum[iquad] = fp->oc.ossghl[iquad] = fp->oc.ossqgl[iquad];
} else if (fp->oc.ossqglliquad] <= fp->oc.ossghliquad] + dsum) {
/* save row sum if not much greater than the saved sum */
fp->oc.ossghliquad] = fp->oc.ossqgl [iquad];
}
/* increment overclock accumulator */
fp->oc.osum[iquad] += fp->oc.ossgh[iquad];
} /* end for iquad */

}

The algorithm uses the oc.ossgl[4] and oc.ossgh[4] fields which would

not otherwise participate in OC _SUM mode, and whose prior contents may
be safely overwritten. The oc.ossqgl fields are used to accumulate the

overclocks of the current row, and the current "best" value of this

07/13/18 Flight S/W Patches, Revision G-H-I
08:47:25 standard-release-G-opt-H.notes

sum is saved from row to row in oc.ossgh. If the current row sum
exceeds the current best sum by a constant OCLK COND times the number
of overclocks in the row, the current best sum will be used in its
place; otherwise, the sum of the current row will replace the current
best. The first two rows of each frame receive special treatment: the
first row sum is used to initialize oc.ossgh -- the "best" sum -- and,
if the sum of the second row is anomalously LOWER than this, the best
row sum and the running total sum are corrected.

Applicable Reports/Requests:
SPR-127

Test Results:
Replaced Functions:

Command Impact:
None

Telemetry Impact:
None

Science Impact:
With this patch installed, the effect of background events on
overclock averages will be greatly reduced, directly reducing
systematic errors within bias maps and increasing the accuracy of
photon energy determination.

07/13/18
12:54:43

Flight S/W Patches, Revision G-H-|
options-release-G-opt-H.notes

TITLE: ACIS Flight Software Optional Patch Component Release Notes

DOCUMENT NUMBER:

36-58020 REVISION: H

ORIGINATOR: Peter G. Ford <pgfespace.mit.edus>

LETTER SCO NO.

DESCRIPTION

APPROVED

1 36-987
36-1007
36-1019
36-1022
36-1040
36-1042
36-1044
36-1048
36-1054
36-1053

T oD QHMEUOUQWo

Initial numeric release

Bug fixes, incorporate tests
Add new patches, retest

Add new patches, retest

Add new patches, retest

No new patches, retest

Add txings patch, retest
Remove untricklebias, retest
Add deahktrip, retest

Add deahktrip

11/12/1998
05/12/1999
12/16/1999
03/21/2003
09/29/2009
01/06/2010
03/02/2011
12/16/2013
06/29/2018

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Title: ACIS Optional Patch Release Notes for Version H

Software Change Order: 36-1053

Build Date: Fri Jul 13 12:54:43 EDT 2018
Part Number: 36-58020

Version: H

CVS Tag: release-G-opt-H

Std Number: 36-58010

Std Version: G

Std Tag: release-G

Std SCO: 36-1053

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

Description:
This is the eighth letter release of the optional patch set for the ACIS
Flight Software. The purpose of this release is to add the deahktrip
patch and test the optional patches with the Rev. G standard release.

Although the patches listed in this release have been tested in
combination with the standard patch release, they have NOT been tested
in various combinations with each other as part of this release. Each
needed combination will be provided a distinct part number, and will
be released invidually, based on the patches provided in this release.

This release consists of the following optional flight patches:

cc3x3 - Continuous Clocking 3x3 Event Mode

ccignore - Ignore Continuous Clocking data frames
compressall - Fixes SPR 134

ctireportl - Reports precursor charge

ctireport2 - Reports precursor charge

eventhist - Timed Exposure Event Histogram Mode
reportgradel - Addresses SPR 132

smtimedlookup - Supports eventhist and ctireport

teignore - Ignore Timed Exposure data frames

txings - Triggers bilevels on excess threshold crossings
deahktrip - Triggers when DPA temperatures exceed limits

This release also contains a set of informally controlled engineering
patches, used for ground testing, debugging and experimentation:

hybrid - Prototype of a hybrid clocking mode

squeegy - Prototype of a squeegee clocking mode
fepbiasparityl - Prototype of the fepbiasparity2 patch
forcebiastrickle - Patch to set trickleBias flag

tlmio - Telemetry Standard I/0 Utility Routines
printswhouse - Print S/W Housekeeping reports in realtime

deaeng - Detect/configure for DEA Engineering video boards
dearepl - Stubs for use when a DEA is not attached
fepthrottle - Reduces FEP event candidates

Addressed Problem Reports:
SPR-124

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

SPR-134
SPR-126
SPR-120
SPR-132

Included Patches:
cc3x3 (4636 bytes)
ccignore (36 bytes)
compressall (2368 bytes)
ctireportl (5452 bytes, depends on smtimedlookup)
ctireport2 (2784 bytes, depends on smtimedlookup)
deaeng (2604 bytes, depends on tlmio, conflicts with dearepl)
deahktrip (1940 bytes)
dearepl (556 bytes, conflicts with deaeng)
eventhist (5908 bytes, depends on smtimedlookup)
printswhouse (7240 bytes, depends on tlmio)
reportgradel (816 bytes)
smtimedlookup (3712 bytes)
teignore (36 bytes)
tlmio (10312 bytes)
txings (3176 bytes)

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Patch Name: tlmio

Part Number: 36-58030.07
Version: 02

SCO: 36-1010
Environment: flight

Conflicts:

Depends On:

Size: 10312 bytes
Bcmd File: opt tlmio.bcmd
Pkts File: opt tlmio.pkts
Description:

This patch provides basic standard I/O0 functions
which emit TTAG USER telemetry packets containing
data written via calls to write().

This patch stubs the functions open(), close() and
read (), and implements the function write(), used
by higher level I/0 library functions, such as printf ().

The patch maintains a 1024 word telemetry buffer just
at the end of bulk memory. write() appends data

to this buffer until either the buffer fills, or
until a newline is written. Once write() fills the
buffer or a newline is encountered, the telemetry buffer
is sent as follows:

1. Interrupts are disabled

2. The hardware is polled until the current packet

is finished.

3. The packet buffer header is filled in, and the
first data word is set to 0 (a hook used to support
different subtypes of TTAG USER) .

4. Transfer the packet

5. Wait for the transfer to complete

6. If no transfer was in progress prior to the
interrupt disable, clear the pending interrupt

caused by the TTAG USER packet transfer

7. Reset the the buffer contents

8. Reenable interrupts

Applicable Reports/Requests:
TOOL-PENDING

Test Results:

Replaced Functions:

Command Impact:
None

Telemetry Impact:
If this patch is used by client code (this patch itself doesn’t

07/13/18

12:54:43

Flight S/W Patches, Revision G-H-|
options-release-G-opt-H.notes

initiate any messages), it will emit telemetry packets consisting

of the tag TTAG USER. The format of these packets consist of the
standard telemetry header, followed by 1 32-bit word containing a zero,
followed by the number of data words indicated by the packet length.

If the clients of the patch issue "printf" calls, the data will consist
of a single null-terminated ascii string.

Word
Word
Word
Word
Word

0
1:
1:
2
3

SYNC (0x736f4166)
[0..9] Length (3 + "n"/4)
[10..31] TTAG USER
0

. .Length: Data

Science Impact:
Since this patch "plays" with the hardware and telemetry software,
the use of this patch may interfere with the smooth operation of

science runs.

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Patch Name: eventhist

Part Number: 36-58030.05
Version: B

SCO: 36-1025
Environment: flight

Conflicts:

Depends On: smtimedlookup
Size: 5908 bytes

Bcmd File: opt_eventhist.bcmd
Pkts File: opt_ eventhist.pkts
Description:

This patch implements the Event Histogram Mode. In this mode, the
instrument performs the standard timed exposure clocking, and event
detection and filtering, but rather than send the events to telemetry,
the instrument builds CCD quadrant specific histograms of the summed
corrected pulse heights of the accepted events. These histograms
contain bins 0 through 4095. Events with a pulse height above 4095 are
counted in bin 4095 and events with a negative value are counted in
bin 0. All histogram bin values consist of a 26-bit count, followed by
5-bit of Hamming error detection/correction code, and 1 spare bit. The
code is capable of detecting and correcting 1l-bit errors in the count
and hamming code bits.

Important: This version of the eventhist patch will only run correctly
if the smtimedlookup patch is also loaded.

Applicable Reports/Requests:

Test Results:

Replaced Functions:
smTimedLookup3x3 [3]
smTimedLookup5x5 [3]

Command Impact:
As in normal Raw Histogram Mode, Event Histogram mode can only be used
for Timed Exposure Science runs, and not in Continuous Clocking runs.

This mode is invoked by using the FEP_TE MODE EV3x3 or
FEP_TE MODE EV5x5 for the fepMode field of the Timed Exposure
Parameter Block, in conjunction with the new BEP_TE MODE EVHIST (3)
for the bepPackingMode field.

Refer to the ACIS Software IP&CL Structure Definitions, Rev. M for
details.

Telemetry Impact:
This mode defines new telemetry formats, TTAG SCI_TE REC EV _HIST for
exposure records, and TTAG SCI TE DAT EV HIST for histogram data
packets. This new mode now places the count of error corrections
performed on the gquadrant’s histogram bins within the previously

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

unused "Variance Overclock High" of the exposure record,
TTAG _SCI_TE REC EV_HIST. The Rev. M version of IP&CL renames this
field accordingly.

The size of these packets are the same as those for
TTAG SCI_TE REC HIST and TTAG SCI TE DAT HIST respectively.

This mode always requires 10 telemetry buffers for each quadrant it
accumulates (9 data buffers + 1 exposure record buffer per histogram) .
When accumulating histograms from all 4 quadrants on all 6 CCDs, the
system requires 216 data buffers, and once the histograms are
complete, i1t requires an additional 24 exposure record buffers. ACIS
is configured for 400 science telemetry buffers, and as such, has
enough buffering to accumulate only 1 complete set of histograms at a
time. This will cause time gaps between sets of histograms when no
events are accumulated. These gaps will consist of complete exposures,
so partial exposures will not be accumulated in the histograms. As the
previous buffers are telemetered and released back to the telemetry
pool, eventually enough buffers (to be exact, 56) will be available to
hold the 2nd set of histograms. At 24Kbps (format 2), this results in
a time gap on the order of half a minute to a minute, and, at 500bps
(format 1), a gap on the order of a half an hour to 45 minutes.

The total transmission time for a set of histograms at 24Kbps is about
3 minutes, whereas at 500bps, it starts approaching 2 hours.

If only 5 CCDs are used, ACIS can double-buffer the histograms,
eliminating this gap, assuming that the histogram count times the
frame time (exposure time + overhead) is large enough to accommodate
the transmission time of the histograms. The total transmission time
for 5 CCDs at 24Kbps is about 2 minutes, and at 500bps, the
transmission time approaches 1.5 hours.

Details of these formats are described in the ACIS Software IP&CL
Structure Definitions, Rev. M.

Science Impact:
This mode produces a new type of data product, histograms of the
corrected and summed pulse heights from filtered events.

07/13/18
12:54:43

Patch Name:

Part Number:

compressall

36-58030.27

Flight S/W Patches, Revision G-H-|
options-release-G-opt-H.notes

Version: A

SCO: 36-1027

Environment: flight

Conflicts:

Depends On:

Size: 2368 bytes

Bcmd File: opt compressall.bcmd
Pkts File: opt_ compressall.pkts
Description:

This patch ensures that all raw mode packets are written to the
telemetry stream without data loss. It eliminates the prior behavior
in which, if a compressed pixel row was too long to fit into an output
packet, the entire row was skipped and a zero-data-length was
telemetered.

In the new version, rows that are too long when compressed are written
uncompressed, with the telemetry packet header fields rewritten to
indicate that that particular packet is uncompressed.

Applicable Reports/Requests:
SPR-134

SER-none

Test Results:

Replaced Functions:
PmTeRaw: :digestRawRecord
PmCcRaw: :digestRawRecord

Command Impact:
None.

Telemetry Impact:
Ground software must examine the compressionTableSlotIndex and
compressionTableIdentifier fields of all dataCcRaw and dataTeRaw
packets. If their values are 255 and 0, respectively, the pixel
array should not be decompressed.

Science Impact:
None. Raw mode is intended for diagnostic purposes only.

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Patch Name: ctireportl

Part Number: 36-58030.25
Version: A

SCO: 36-1026
Environment: flight

Conflicts:

Depends On: smtimedlookup

Size: 5452 bytes

Bcmd File: opt ctireportl.bcmd
Pkts File: opt ctireportl.pkts
Description:

This patch implements a variant of timed-exposure 3x3 faint event mode
in which the presence of precursor charge in each of the three columns
that can contribute to each event is encoded in the 16 "outlying" pixels
of Teb5x5 mode.

FEP patches are loaded after the default code by two additional calls

to fepManager.loadRunProgram from Test2 SmTimedExposure::setupCtilFep.
Once loaded, the FEPs are marked as having been reset, thereby causing
the following run to reload their default code.

Within the FEP, additional stack space is reserved for the ctilstk
structure that holds the row indices and bias-subtracted pixel values
of the most recently located precursor charge in each CCD column.

The new FEPtestCtil routine is called from an inline patch within
FEPsciTimedEvent in advance of the FEPtestOddPixel or FEPtestEvenPixel
routines. When a threshold crossing is detected, FEPtestCtil clears
the ctilstk array (if this is a new frame), calls FEPtestOddPixel or
FEPtestEvenPixel, and then pushes the pixel value and row index onto
ctilstk. If ctilstk is full, the most distant (by row) wvalue is
dropped.

FEPappendCtil is called by the patched FEP code in place of the
original FEPappend5x5 routine. It determines the maximum bias-
subtracted pixel value in each column, then inspects the ctilstk
stacks for those columns, and packs up to 15 precursor charge values
(adu and row) into elements 1 through 15 of the pel] array:

pel[i]l = STORE PIX(pixel - bias - delta overclock, row_index)

pe[0] contains three 4-bit fields, the number of successive pel[]
precursor values corresponding to col-1, col, and col+l of the event.

Applicable Reports/Requests:

Test Results:

Replaced Functions:
smTimedLookupMode [4]
smTimedSetupFep [4]

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

smTimedTerminate [4]

Command Impact:
This patch requires that the smtimedlookup patch must also be loaded.
Once loaded, it is invoked by setting fepMode = FEP_TE MODE_CTI1l in a
loadTeBlock packet, writing that packet to a parameter block slot, and
then starting a timed-exposure science run from that slot. The uplink
format is defined in the ACIS IP&CL document 36-53204.0204 Rev. N.

Telemetry Impact:
The downlinked exposure and event data packets are identical in format
to exposureTeFaint and dataTeVeryFaint except that their formatTag
fields contain TTAG SCI_TE REC CTI1 and TTAG SCI TE DAT CTI1,
respectively. When a TTAG SCI TE DAT CTI1 is received, precursor
charge data will be located in the dataTeVeryFaint.pulseHeights array,
as follows:

pulseHeights [0] - three 4-bit counters
pulseHeights[1..5,9,10,14,15,19..24] - precursor ADU and row

The sub-fields of pulseHeights[0] determine the contents of the
other 15 fields:

ncol [0] = (pulseHeights[0] >> 8) & 15 -
ncol [1] (pulseHeights [0] >> 4) & 15 -
ncol [2] pulseHeights & 15 -

The fields from icol-1, if any, are written starting at pulseHeights[1],
followed by those from icol, and finally those from icol+l. The ADU
values are stored in the 7 most significant bits of pulseHeights[] and
the row indices in the least significant 5 bits, and should be extracted
as follows:

adu pulseHeights[i] & 0xfeO;
row = (pulseheights[i] & 0x01f) << 5;

Unused pulseHeights[] will be filled with zeroces.

Science Impact:
This patch is intended for on-orbit diagnostic use only.

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Patch Name: dearepl

Part Number: 36-58030.12
Version: 02

SCO: 36-1010
Environment: engineering

Conflicts: deaeng

Depends On:

Size: 556 bytes

Bcmd File: opt_dearepl.bcmd
Pkts File: opt dearepl.pkts
Description:

This patch provides the basic capability to fake
the existence of a DEA. This patch is used when
no DEA box is available, or one wants to test
without actually talking to the DEA.

Applicable Reports/Requests:
TOOL-PENDING

Test Results:

Replaced Functions:
DeaManager: : checkLoads
DeaDevice: :sendCmd
DeaCcdController: :updateRegister
DeaDevice: :isCmdPortReady
DeaDevice: :readReply
DeaDevice: :isReplyReady
DeaManager: :writeData

Command Impact:
This "fakes" the existence of the DEAs. Commands
which read and write PRAM, SRAM or DEA hardware
will not crash, but won’t work either.

Telemetry Impact:
This will produce true fiction from the DEAs.

Science Impact:
Can’t do any, since the patch replaces the
interface to the real DEAs.

07/13/18
12:54:43

Flight S/W Patches, Revision G-H-|
options-release-G-opt-H.notes

Patch Name:

Part Number:
Version:
SCO:
Environment :

Conflicts:
Depends On:

Size:

Bcmd File:
Pkts File:

Description:

cc3x3

36-58030.06
B

36-1018
flight

4636 bytes

opt_ cc3x3.bcmd
opt cc3x3.pkts

This patch implements the Continuous Clocking 3x3

Event Mode.

In this mode,

the instrument performs the

standard continuous clocking manipulation of the CCDs,

but rather than accept and telemetry 1x3 events,

processes 3x3 event islands,

the mode

improving the spectral performance
of the mode and reducing the problems associated with vertically
split events.

Because the Continuous Clocking parameter block only provides

4 bits for defining the grade selection for the mode
4 bits were necessary),

(in 1x3, only

this patch provides table which maps

the 4-bit code into a set of pre-built 256-bit grade selection

masks.

In this release,

the grade selection map is populated with

masks provided by Fred Baganoff. Refer to grade table.html for

a description of the grade families.

the selections:

Code
Code
Code
Code
Code
Code
Code
Code
Code
Code
Code
Code
Code
Code
Code
Code

W JO0 Ul WDNEHE O

o)

NOTE:

Reject
Reject
Reject
Reject
Undefined
Undefined
Undefined
Reject ACIS
Reject ACIS
Reject ACIS
Reject ACIS
Reject ACIS
Reject ACIS
Reject ASCA
Reject ACIS
Accept

with any grade code.

all grades
ASCA grades 1,2,3,4,5,6,7
ASCA grades 1,5,6,7

ASCA grades 1,5,7
(currently rejects
(currently rejects
(currently rejects

flight
flight
flight
flight
flight
flight

grade 7

grades
grades
grades
grades
grades
grades

The following table summarizes

all grades)

all grades)

all grades)
24,66,107,127,214,223,248,251,254,255
24,107,127,214,223,248,251,254,255
24,66,107,214,248,255
24,66,107,214,255

24,107,214,248,255

24,107,214,255

flight grade 255

all grades

Applicable Reports/Requests:

SPR-124
SPR-126
SPR-120

CC3x3 Codes 0 and 15 have the same effect
as their numerical equivalents in CC1x3,
will reject all events,

where 0

and 15 will accept events

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Test Results:

Replaced Functions:
SmContClocking: :terminate
SmContClocking: : setupProcess
SmContClocking: :setupFepBlock

Command Impact:
This version of CC3x3 uses different grade sets than the
previous version. This may have an impact on the grade selection
field of CC Parameter Block command packets already built
built for CC3x3 observations.

This mode is invoked by using the FEP_CC MODE EV3x3 (2) in the
fepMode field of the Continuous Clocking Parameter block, in
conjunction with any of the BEP_CC event processing modes for
the bepPackingMode field. This restricts the use of this mode
to CC Faint and CC Graded modes. This patch does NOT support
other Timed Exposure derived modes, such as Faint with Bias,
5x5, nor any of the exisiting nor patched histogram modes.

At the onset of a CC3x3 science run, the run will force two
resets and reloads of the FEP software, the first to ensure
that the boot-strap code is in the FEPs, and the second to

load the patch code into the FEPs. This will always add up

to 14 seconds per FEP to the start-up time of the run, compared
to runs where the FEPs were already loaded and running.

To ensure that the patch is not present at the start of the
next run, which may or may not be a CC3x3 run, a CC3x3 science
run will always force the FEPs into a reset state at the end
of the run. This will add another 7 seconds per FEP to the
start up time of the run following a CC3x3 run, relative to
the normal start up time, where the FEPs were already loaded
and running.

These resets will also impact the power consumption of ACIS,
where the system will draw up to 16 watts less than normal (with
all 6 on and running) while the FEPs are held a reset state.

Refer to the ACIS Software IP&CL Structure Definitions, Rev. L
or later for details.

Telemetry Impact:
This mode defines 4 new telemetry packet types.

When configured for FEP_CC MODE EV3x3 and BEP_CC_MODE_ FAINT,
the patch produces TTAG _SCI_CC_REC_FAINT3x3 exposure records
and TAG_SCI_CC_DAT FAINT3x3 event data packets.

When configured for FEP_CC MODE EV3x3 and BEP_CC_MODE GRADED,
it produces TTAG SCI CC REC_GRADED3x3 exposure records and
TTAG_SCI_CC_DAT GRADED3x3 event data packets.

The size of and overhead of these packets are the same as
their Timed Exposure counterparts, TTAG_SCI_TE_REC_ FAINT3x3,
TTAG SCI_TE DAT FAINT3x3, TTAG SCI TE REC GRADED3x3 and
TTAG_SCI_TE DAT GRADED3x3.

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

When used, a CC3x3 science run will produce additional
Software Housekeeping counts to the FEP write and execute
statistics, reflecting the additional resets and reloads

of the FEPs. Runs immediately following a CC3x3 run will also
produce additional FEP related counts, as they load and run
the reset FEPs.

Refer to the ACIS Software IP&CL Structure Definitions, Rev. L
or later for details

Science Impact:
This version of CC3x3 uses different grade sets than the
previous version. The ground data analysis software may have
to be aware of which version of CC3x3 is installed for a given
set of CC3x3 data. Please refer to the ACIS command generation
system for the set of ACIS Software Version identifiers
(telemetered in the BEP Startup Message and in each Software
Housekeeping telemetry packet) corresponding to the different
installed CC3x3 versions.

This mode produces a new type of data product, consisting

of 3x3 islands around accepted events in Continuous Clocking
mode. This is intended to provide better spectral resolution
and event detection performance when in Continuous Clocking
mode.

This mode will not report events on row 0 and row 511,
leaving a 2-row timing gap with a period of 512 rows.

As in other Continuous Clocking modes, no bias errors will
be reported when in this mode, since the bias map is
extremely redundant (there’s 512 copies of the bias value
for any given column) .

07/13/18
12:54:43

Patch Name:

Part Number:

deaeng

36-58030.11

Version: 02

SCO: 36-1010
Environment: engineering
Conflicts: dearepl
Depends On: tlmio

Size: 2604 bytes

Flight S/W Patches, Revision G-H-|
options-release-G-opt-H.notes

Bcmd File: opt deaeng.bcmd
Pkts File: opt deaeng.pkts
Description:

This patch provides the basic capability to detect
and communicate with the engineering version of the
DEA CCD controller boards. For historical reasons,
these boards have a different interface than

the flight CCD controllers.
This patch relies on printf () being installed
(see tlmio) .

Applicable Reports/Requests:
TOOL-PENDING

Test Results:

Replaced Functions:
DeaCcdController: :updateRegister
DeaCcdController: :powerOn
DeaCcdController: :writeData

Command Impact:
This patch will determine the type of video boards
installed in the system. Due to the interface differences
between boards, high-speed tap commands will not work
on engineering video boards, but will continue to work
on "flight-like" wvideo boards.

Telemetry Impact:
Since this patch calls printf (),
in TTAG USER telemetry packets.

it will result

Science Impact:
N/A

07/13/18 Flight S/W Patches, Revision G-H-|

12

:54:43 options-release-G-opt-H.notes

Patch Name: reportgradel

Part Number: 36-58030.22
Version: A

SCO:

36-1021

Environment: flight

Conflicts:

Depends On:

Size: 816 bytes

Bcmd File: opt reportgradel.bcmd
Pkts File: opt_reportgradel.pkts
Description:

This patch reports per-FEP event filtering statistics via software
housekeeping. The SwHousekeeper constructor is patched in order to
add an extra 54 housekeeping codes, 9 per FEP, as follows:

SW_FILT NONE, /* events unfiltered */

SW_FILT ENERGY, /* events filtered by energy */

SW_FILT GRADEl, /* events filtered by SW _GRADE CODEl */
SW_FILT GRADE2, /* events filtered by SW _GRADE CODE2 */
SW FILT GRADE3, /* events filtered by SW _GRADE CODE3 */
SW_FILT GRADE4, /* events filtered by SW_GRADE CODE4 */
SW_FILT GRADE5, /* events filtered by SW_GRADE CODES5 */
SW_FILT_OTHER, /* events filtered by other grade */
SW_FILT WIN, /* events filtered by window */

These SwStatistic codes begin at a value of SWSTAT FILTER BASE. They
are defined in "acis _h/interface.h", along with the 5 special grade
codes:

SW_GRADE CODE1 = 24,
SW_GRADE CODE2 = 66,
SW_GRADE _CODE3 = 107,
SW_GRADE CODE4 = 214,
SW_GRADE CODE5 = 255

Thus, the number of grade 214 events rejected by FEP 3 during the
current housekeeping interval will be reported in swHousekeeping

packets with a "statistics|[] .swStatisticId" wvalue of
SWSTAT FILTER BASE+SW FILT GRADE4+ (9*FEP_3). The corresponding
"statistics|[] .count" field will contain the number of events in this

particular class from this particular FEP during the current 764 sec
housekeeping interval. As an aide to synchronizing housekeeping data
and event packets, the "statistics|[].value" field will contain the

most recent exposure number read from this FEP during this interval.

Applicable Reports/Requests:

SPR-132

Test Results:

Replaced Functions:

PmEvent::filterEvent

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Command Impact:
None.

Telemetry Impact:
No reduction of telemetry throughput is anticipated. To identify the
new housekeeping fields, ground software must recognize the new
SwStatistic codes. Refer to the ACIS Software IP&CL Release Notes,
Rev. L or later, for details

Science Impact:
None.

07/13/18 Flight S/W Patches, Revision G-H-|

12

:54:43 options-release-G-opt-H.notes

Patch Name: txings

Part Number: 36-58030.33
Version: A

SCO:

none

Environment: flight

Conflicts:

Depends On:

Size: 3176 bytes

Bcmd File: opt_ txings.bcmd
Pkts File: opt txings.pkts
Description:

With the continuing degradation of Chandra’s EPHIN radiation monitor,
an alternative is needed to permit the observatory to take the actions
necessary to preserve its instruments during times of high solar
activity. A recent analysis [Grant et al., 2010] has shown that, in
some circumstances, the signature of solar events can be detected
within the counts of CCD threshold crossings that are included in
downlinked telemetry.

The txings patch monitors threshold crossings and uses ACIS bi-levels
to communicate an alarm to the Chandra On-Board Computer (OBC). Event
records are read from the FEP-BEP ring buffers by the processRecord()
methods of the PmEvent, PmHist, and PmRaw classes. Each calls
EventExposure: :copyExpEnd () to parse the FEPexpEndRec records that
contain thresholds, the count of threshold crossings, and expnum, the
exposure number, but this routine doesn’t have access to the ccdId that
labels the record and which is needed to accumulate the crossings from
that particular CCD.

The MIPS CPU architecture makes it relatively easy to make inline
patches that permit additional arguments to be passed to subroutines.
In the current case, we patch the routines that call copyExpEnd() in
order to pass an extra argument. When processRecord() is called with a
PmEvent object, this argument will be the address of the object, but
for other callers, i.e., PmHist or PmRaw, the argument will be null to
show that these modes don’t count threshold crossings. Since PmEvent is
a subclass of ProcessMode, the ccdId value can then be determined by a
call to getCcdId(). A replacement for copyExpEnd() is called with

an object of class EventExposure, and it calls saveTXings() with a
static TXings object named txings in which the threshold crossing
accumulators are stored.

The saveTXings () method is called once for each event-mode exposure
frame. The first time that it is called in a science run, it
determines the number of read-out rows, the maximum anticipated number
of non-pathological threshold crossings per frame, and the frame
exposure time in units of the FEP pixel clock (i.e., 10 us), and it
increments the tx.threshold accum and tx.exposure accum accumulators.
Integration times of less than 2000 seconds are guaranteed not to
overflow either accumulator. Since the number of rows per frame and the
frame exposure time are constant in continuous clocking mode, they are
initialized in the TX structure, but in timed-exposure mode, the frame
time depends on the dutyCycle, primaryExposure, and secondaryExposure
parameters. These are extracted from the external pramTe object, where
they were copied from the science run parameter block when the run
started.

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

The radiation triggering algorithm is run in the triggerRadmon ()
routine It is called every 64 seconds whether or not a science run is
in progress. If it isn’t, tx.count is set to zero until a subsequent
call to saveTXings () from copyExpEnd() reloads the TX parameter
structure from TXnext.

After the TXings patch has been uploaded and the BEP warm-booted, the
tx.count field will be initialized to zero by the patch loader. The
first time an event-mode science run reads a FEPexpEndRec record from
the FEP-BEP ring buffer, it will call saveTXings(), which will
reinitialize the radiation filter parameters from the TXnext structure.
This makes it easy to change the filter parameters for subsequent
science runs. When a trigger occurs, triggerRadmon () sets tx.triggered
to BoolTrue and commands the memory manager thread to send a
bepReadReply packet to telemetry, reporting the values of the txings
parameters and variables. Then Test Leds::show() sets the software
bi-level channels to LED BOOT_ SPARE1l, which persists for the remainder
of the science run. After the science run ends, the next call to
Leds::show() calls triggerRadmon () which sets tx.count to zero and
tx.triggered to BoolFalse, canceling the special bilevel value and
preventing threshold crossing triggers until the next science task
starts, calls saveTXings(), and reloads the TX structure.

Once it is included in a patch load, and the BEP is warm-booted, the
txings patch will be active during all subsequent science runs. When
triggered by high and increasing threshold crossings, it sets the ACIS
software bilevel values to LED BOOT SPARE1l until the science run ends,
or until the tx.triggered field is explicitly cleared by a writeBep
command. This guarantees that it will appear in Chandra major frame
readouts (once per 32.4 seconds). The OBC should be patched to examine
the ACIS bi-levels. It should safe the instruments if (a) RADMON is
enabled, and (b) the bi-level channels (1STAT3ST-1STATOST) have the
LED BOOT_SPAREl values (1, 1, 0, 1).

Applicable Reports/Requests:
Test Results:

Replaced Functions:
EventExposure: : copyExpEnd
Leds: :show

Command Impact:
The default filter parameters can be overridden by sending single
writeBep command to ACIS to change the contents of the TXinit
structure, whose address will depend on the ACIS flight software patch
level (e.g., 0x8003dc30 in the current level E-F-G version). The
command

write 0 0x8003dc30
0
}
will, for instance, suspend the threshold crossing filter, and

write 0 0x8003dc30
5

}

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

will turn it on again with an integration time of 5 minutes.

After a trigger, the bi-levels are not reset until Leds::show() is
called when a science run is not in process. In the unlikely event that
there is less than 64 seconds between the end of the triggering run and
the start of the next, the bi-levels will continue to report

LED BOOT SPAREl. This can be prevented by issuing a writeBep command to
clear the counters:

write 0 0x8003dc90
00

}

prior to the second startScience.

In normal operation, most science runs can be conducted with txings
enabled, but exceptionally bright targets observed by few CCDs may lead
to false triggers. It might be best to disable txings for short runs
where the risk of radiation damage is small, or turn on additional CCDs
for longer runs to reduce the likelihood of a false trigger. To change
the trigger parameters for the next science run only, a writeBep
command should update the fields in TXnext rather than TXinit, and this
must be done before the science run has started to report events. In
the current level E-F-G version, TXnext is located at 0x8003dc50.

Telemetry Impact:
When a threshold crossing trigger occurs, triggerRadmon () commands the
BEPs memory manager to write a bepReadReply packet to telemetry,
reporting the contents of the TX and tx structures. If this action is
blocked for any reason, a SWSTAT_CMDECHO DROPPED event will be reported
in software housekeeping.

The current version of the patch reports bepReadReply packets with a
formatTag of TTAG READ BEP. If this causes confusion, a new
TlmFormatTag value could be defined, but the CXC Data System would need
to be reconfigured to handle it. Similarly, if SWSTAT CMDECHO_DROPPED
is confusing, a new SwStatistic value could be defined.

Science Impact:
None

07/13/18
12:54:43

Flight S/W Patches, Revision G-H-|
options-release-G-opt-H.notes

Patch Name:

Part Number:

Version:
SCO:

Environment :

Conflicts:
Depends On:
Size:

Bcmd File:
Pkts File:

Description:

ccignore

36-58030.10
A

36-1004
flight

36 bytes

opt ccignore
opt ccignore

This patch causes the
frames of data at the

.bcmd
.pkts

FEP to ignore "ignoreInitialFrames"
onset of Continuous Clocking data processing.

Applicable Reports/Requests:
SER-PENDING

Test Results:

Replaced Functiomns:

Command Impact:
This patch will cause the start up time of a Continuous
Clocking run to increase by "ignoreInitialFrames" times

the frame rate configured for the run.
is less than 2,

the 2

Telemetry Impact:

When "ignoreInitialFrames"

If "ignoreInitialFrames"
frames will be skipped.

is greater than 2,

the first telemetered Continous Clocking exposure number

will be "ignoreInitialFrames",

Science Impact:
This may reduce the amount of noise in the early
telemetered frames of the Continuous Clocking run by
running the CCDs longer before processing and sending the data.

rather than "2".

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Patch Name: teignore

Part Number: 36-58030.09
Version: A

SCO: 36-1003
Environment: flight

Conflicts:

Depends On:

Size: 36 bytes

Bcmd File: opt teignore.bcmd
Pkts File: opt teignore.pkts
Description:

This patch causes the FEP to ignore "ignoreInitialFrames"
frames of data at the onset of Timed Exposure data processing.

Applicable Reports/Requests:
SER-PENDING

Test Results:

Replaced Functions:

Command Impact:
This patch will cause the start up time of a Timed Exposure
run to increase by "ignoreInitialFrames" times the frame
rate configured for the run. If "ignoreInitialFrames"
is less than 2, the 2 frames will be skipped.

Telemetry Impact:
When "ignoreInitialFrames" is greater than 2,
the first telemetered exposure number will be
"ignoreInitialFrames", rather than "2".

Science Impact:
This may reduce the amount of noise in the early
telemetered frames of the Timed Exposure run by running
the CCDs longer before processing and sending the data.

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Patch Name: printswhouse

Part Number: 36-58030.08
Version: 01

SCO: 36-986
Environment: flight

Conflicts:

Depends On: tlmio

Size: 7240 bytes

Bcmd File: opt printswhouse.bcmd
Pkts File: opt printswhouse.pkts
Description:

This patch provides a diagnotic which prints software
housekeeping reports to telemetry in real-time,
using the tlmio package.

Applicable Reports/Requests:
TOOL-PENDING

Test Results:

Replaced Functions:
SwHousekeeper: :report

Command Impact:
None

Telemetry Impact:
This patch will cause the system to emit TTAG USER
packets containing a null terminated string, which describes
the software housekeeping element currently being reported.
See a description of the tlmio patch, MIT 36-58030.07.

Science Impact:
See the tlmio patch, 36-58030.07

07/13/18
12:54:43

Flight S/W Patches, Revision G-H-|
options-release-G-opt-H.notes

Patch Name: deahktrip

Part Number:
Version:
SCO:
Environment :

Conflicts:
Depends On:

Size:

Bcmd File:
Pkts File:

Description:

36-58030.34
A

none

flight

1940 bytes

opt_ deahktrip.bcmd
opt deahktrip.pkts

Applicable Reports/Requests:

Test Results

Replaced Functions:
Tf Dea Housekeeping Data::append Entries

Command Impact:
To update the ’'ndhk’ block that defines the limits of each of the DEA
housekeeping channels that this patch puts under surveillance, upload
the following command packet. The values shown are the defaults.

write ‘n’ 0x8003dd20

2

2
3600
1010
12

2060

2289
2289
2289
2289
2289
2289
2289
2289
2289
2289
2289
2289

}

4096

4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

[eNelNeoNeoNeolNolNoNolNolNolNolNo]

The starting address of the block, 0x8003dd20, may vary with the patch

release.

This value is appropriate for release GHI.

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

The patch replaces Tf Dea Housekeeping Data::append Entries() which is
called to handle each DEA housekeeping value that has been requested by
the housekeeping task. It defines a new class:

class Test Tf Dea Housekeeping Data : public Tf Dea Housekeeping Data {
public:
Test Tf Dea Housekeeping Data() : Tf Dea Housekeeping Data() {};
virtual void append Entries(unsigned Ccd Id, unsigned Query Id, unsigned Value) ;

}i

and a static ‘ndhk’ structure:

typedef struct {

unsigned low; // low DN limit value
unsigned high; // high DN limit value
unsigned count; // count of consecutive trips

} NDHK VAL;

struct { // static channel limit table
unsigned state; // NDHK {TRIP,HALT,NBLV,TEST}
unsigned size; // number of channels used in lim array
unsigned min; // index of lowest channel id
unsigned lowvalid; // lowest valid DN value (red high)
unsigned highvalid; // highest valid DN value (red low)
unsigned tickl; // bepTickCounter of first tripped packet
unsigned tick2; // bepTickCounter of second tripped packet
unsigned spare; // for debugging purposes
NDHK_ VAL 1lim [NDHKT] ; // red-high, red-low values

} ndhk; // see above for initial ‘ndhk’ values

Note that the higher the DN wvalue, the colder the physical temperature.
The patch inserts the following code into append Entries():

// Check that we’re not in a triggered state and channel is Board 11/12
if ((ndhk.state & NDHK TRIP) == 0 && Ccd_Id == 10 && ndhk.size > 0) {
int ii = Query Id-ndhk.base;
// Execute if this is a desired channel
if (41 >= 0 && ii < ndhk.size && ii < NDHKT) {
// Check if the value violates a limit
if (ndhk.state & NDHK TEST) ({
ndhk.state |= NDHK TRIP;
} else if ((Value > ndhk.lowvalid && Value <= ndhk.lim([i i].low) ||
(Value < ndhk.highvalid && Value >= ndhk.lim[ii] .high)) {
// Increment the counter and trip if over sample limit
if (++ndhk.lim[ii] .count >= ndhk.sample)
ndhk.state |= NDHK TRIP;

} else {
ndhk.lim[ii] .count = 0;
}
}
}

Once the algorithm has "tripped", it compares the value of the BEP
interrupt timer (in units of 70.1 seconds) against the values of
ndhk.tickl and ndhk.tick2 to select three times:

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

1. When the alert is first triggered. If NDHK HALT is set, any science
run in progress is immediately halted along with the biasthief task,
if running.

2. While filling the next deaHousekeepingData packet after the one
in which the alert is first triggered. It writes the 47-word ndhk
block into a bepReadReply packet. If NDHK HALT is set, all FEPs and
video boards are powered down.

3. While filling the deaHousekeepingData packet that is more that
ndhk.delay seconds after the alert is first triggered. Up until this
time, the software bilevels ‘1STAT3ST’ through ‘1STATOST’ will be set
to ’1110’ (14) unless NDHK BLVL is set. After this time, NDHK TRIP
will be cleared and tickl and tick2 zeroed.

Since ACIS bilevels are also rewritten at 64-second intervals by the
SoftwareHousekeeper task, they will switch between the trigger wvalues
and the usual values (0-12 and 15). If the ‘txings’ patch is also active
and triggered, it will reset the bilevels to 13 every 64 seconds, so if
‘deahktrip’ is also triggered, the bilevels will switch between 13 and
14. We leave it to the OBC to figure out what to do in this circumstance.

Telemetry Impact:
If any of the binary values of the selected housekeeping channels
lies within the range the minimum and maximum valid channel values and
outside the range of the minimum and maximum non-trip values, the patch
can terminate the current science run with a terminationCode of 17,
power down the FEPs and video boards, and set the 4-bit software bilevel
field to ‘LED_BOOT SPARE2’ (14). it also writes the 47-word ‘ndhk’ block
to a bepReadReply packet with a commandId of ndhk.cmdid (default 1010).

Science Impact:
If the NDHK HALT flag is set, the component temperature alert will cause
the remainder of the science run to be lost. However, if the algorithm has
been ’'reset’ after ndhk.delay, and the OBC hasn’t reacted by halting the
stored science commands, the following observation should run as normal.

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Patch Name: smtimedlookup

Part Number: 36-58030.24
Version: A

SCO: 36-1025
Environment: flight

Conflicts:

Depends On:

Size: 3712 bytes

Bcmd File: opt smtimedlookup.bcmd
Pkts File: opt smtimedlookup.pkts
Description:

This patch replaces several "switch" statements in SmTimedExposure
class methods with a set of lookup tables indexed by the value of

the BepMode and FepMode fields from the current TE parameter block.
If a table slot is empty, the corresponding mode will be treated as
unimplemented. With this patch, it is therefore possible to add more
than one new TE mode via optional patches without the need to deliver
a version of each patch for every possible combination of the other
patches. The following methods, tables, and indices are used:

e T T mmmmm oo R T T +
| Method | lookup table | index

oo Hmmmm oo e +
SmTimedExposure::setupProcess	smTimedLookupMode	FepMode
	smTimedLookup3x3	BepPackingMode
	smTimedLookup5x5	BepPackingMode
e e R T T +		
SmTimedExposure: :setupFepBlock	smTimedSetupFep	FepMode
oo Hmmmm oo e +		
SmTimedExposure::terminate	smTimedTerminate	FepMode
e it Fmmmmmm oo Fmmmmmm oo +

These tables may be patched by an extension of the "func" directive
in the *.pkg file used to describe an ACIS patch. Hence, the line

func smTimedLookupMode [4] Test2 SmTimedExposure::setupCtil
instructs the linker to insert the address of the setupCtil() method of

the Test2 SmTimedExposure class into slot 4 of the smTimedLookupMode
table, so that setupCtil() will be called when FepMode == 4.

Applicable Reports/Requests:

Test Results:

Replaced Functions:
SmTimedExposure: : setupFepBlock
SmTimedExposure: :terminate
SmTimedExposure: : setupProcess

Command Impact:
None.

07/13/18
12:54:43

Telemetry Impact:

None.

Science Impact:
None.

Flight S/W Patches, Revision G-H-|
options-release-G-opt-H.notes

07/13/18 Flight S/W Patches, Revision G-H-|

12

:54:43 options-release-G-opt-H.notes

Patch Name: ctireport2

Part Number: 36-58030.26
Version: A

SCO:

36-1026

Environment: flight

Conflicts:

Depends On: smtimedlookup

Size: 2784 bytes

Bcmd File: opt ctireport2.bcmd
Pkts File: opt ctireport2.pkts
Description:

This patch implements a variant of timed-exposure 3x3 faint event mode
in which the presence of precursor charge in each of the three columns
that can contribute to each event is encoded in the low-order bits of
three of the corner pixels.

FEP patches are loaded after the default code by two additional calls

to fepManager.loadRunProgram from Test3 SmTimedExposure::setupCtilFep.
Once loaded, the FEPs are marked as having been reset, thereby causing
the following run to reload their default code.

Within the FEP, additional stack space is reserved for the cti2stk
structure that holds the row indices of the most recently located
precursor charge in each CCD column.

The new FEPtestCti2 routine is called from an inline patch within
FEPsciTimedEvent in advance of the FEPtestOddPixel or FEPtestEvenPixel
routines. When a threshold crossing is detected, FEPtestCti2 clears
the cti2stk array (if this is a new frame), calls FEPtestOddPixel or
FEPtestEvenPixel, and then updates cti2stk to indicate that this
column contains charge.

FEPappendCti2 is called by the patched FEP code instead of the
original FEPappend5x5. It finds the maximum of the 4 corner pixels
of the event that is being reported. Then it determines whether
any of the three contributing columns contained precursor charge.
Finally, it encodes this information in the low order bytes of

the three smallest corner pixels. (Since the low-order bit of

each corner pixel may be replaced, only the 11 high-order bits

are compared when determining the maximum value) .

Applicable Reports/Requests:

Test Results:

Replaced Functions:

smTimedSetupFep [5]
smTimedTerminate [5]
smTimedLookupMode [5]

Command Impact:

The uplink format is defined in the ACIS IP&CL document 36-53204.0204

07/13/18 Flight S/W Patches, Revision G-H-I
12:54:43 options-release-G-opt-H.notes

Rev. N. The fepMode field in the loadTeBlock command packet must be
set equal to FEP TE MODE CTI2. Unless the smtimedlookup patch has
also be loaded, this wvalue will cause a subsequent startScience
command that references this parameter block to fail.

Telemetry Impact:
The downlinked exposure and event data packets are identical in format
to exposureTeFaint and dataTeFaint. To process the precursor charge
information, ground software must first inspect the loadTeBlock
reported in the dumpedTeBlock packet that started the run. If the
fepMode field is equal to FEP_TE MODE CTI2, subsequent dataTeFaint
packets should be inspected. The following code fills ee[i] with
one (zero) according to whether column (ccdColumn+i-1) did (did not)
contain precursor charge:

unsigned nn, mm, ii, eel[3];

for (mm = 0, nn = 2; nn < 9; nn++) {
if ((nn & 1) == 0 && nn != 4) {
if ((pulseHeights[nn] & O0xffe) > (pulseHeights[mm] & 0xffe))
mm = nn;
}
}
for (nn = ii = 0; nn < 9; nn++) {
if ((nn & 1) == 0 & nn != 4 && nn != mm) {
ee[ii++] = pulseHeights[nn] & 1;

}
}

Science Impact:
This patch is intended for on-orbit diagnostic use only.

03/17/16 Flight S/W Patches, Revision G-H-|
15:18:23 buscrash/buscrash.C

$$Source: /nfs/acis/h3/acisfs/configcntl/patches/buscrash/buscrash.C,v $$
Patch Name: Bus Crash Prevention

Description:
This defines a C++ replacement function to FepManager: :loadBadPixel ()

References:
Refer to the 1.5 release of filesprotocols/fepmanager.C

$$Log: buscrash.C,v $

SRevigion 1.6 2016/03/17 19:18:23 pgf

SForce BoolFalse return from pollBiasComplete() when all FEPs powered off
$

$Revision 1.5 2016/03/11 20:36:36 pgf

SReplace pollBiasComplete() to abort science run if all FEPs powered down
$

$Revision 1.4 2007/08/14 16:09:36 pgf

SAdd friend statement

$

$Revision 1.3 2007/07/14 22:48:29 pgf

$Change method from static to virtual

$

SRevision 1.2 2007/04/18 21:10:57 pgf

$Call fepManager.isEnabled to prevent bus crash.

$

$Revision 1.1 2007/04/17 18:52:35 pgf

$Initial version.

$S

k% ok Kk ok Kk ok ok %k ok k ok k ok K ok K ok K ok Kk ok K F F * ok * ok * o

*

#include <stdio.h>

#include "acis h/interface.h"

#include "filesprotocols/fepmanager.H"
#include "filesswhouse/swhousekeeper.H"
#define protected public

#include "filesscience/sciencemode.H"
#undef protected

class Test FepManager

{

public:
void loadBadPixel (FepId fepid, unsigned row, unsigned col);
Boolean pollBiasComplete() ;
friend class Test2 FepManager;

bi

void Test FepManager::loadBadPixel (FepId fepid, unsigned row, unsigned col)

{

DebugProbe probe;

if (fepManager.isEnabled(fepid) == BoolTrue) {
fepIo[fepid] ->writeBiasValue (row, col, PIXEL BAD) ;

}

Boolean Test FepManager::pollBiasComplete ()

{

DebugProbe probe;

Boolean retval = BoolFalse; // Assume not ready

03/17/16 Flight S/W Patches, Revision G-H-|
15:18:23 buscrash/buscrash.C

retval = fepManager.pollOperationComplete () ;

if (retval == BoolTrue && fepManager.anyEnabled() == BoolFalse)
Task * curTask = taskManager.queryCurrentTask() ;
if (curTask != 0) f{

curTask->notify(ScienceMode: :EV_SM ABORT RUN) ;
retval = BoolFalse;

}
}

// ---- Return BoolTrue if bias ready, else BoolFalse ----
return retval;

HHHFHHFHHFHFHFHAFHFHFEHFHFHFHAFHFEHFEHFHFHFFTEFEFEFHFHFHFFEFEFEHFHAFEFEFEHFHFHFEFEFFEFHFEHFHFHFEFEFEFHFEHFHFEFEFEHFEHFHFEFEEFEHFHFHHFH

06/29/18 Flight S/W Patches, Revision G-H-|
15:48:19 buscrash/buscrash.pkg

$$Source: /nfs/acis/h3/acisfs/configcntl/patches/buscrash/buscrash.pkg,v 3
Bias Timing Patch Specification File

Version:
The part number and version of this release are
described below under the "partnumber" and
"version" keywords.

Description:
This is a Patch Specification File. The detailed
documentation for this file is provided after the
NOTES: keyword below.

Format:
This is a line-oriented file.

Comments are indicated by a leading '#’.
Blank lines are ignored.

Keyword pairs are assigned as "keyword = value",

where:

ident - The CVS/RCS identification string
partnumber - The partnumber of the patch
version - The release version of the patch
environment - Either "flight", or "engineering"

Lists of information consist of the list name

followed by the next item to be placed into the

list. The lists are:

source <name> <partext> - This specifies a source file

which should be reviewed when
the package is released. At this time,
these entries are only used for documentation
purposes and aren’t used to build run-time
products. The run-time products are produced
by the .mak file. <partext> refers to the part
number extension of the file relative to the
base part number of the patch.

object <names> - This specifies an object file
which must be built and linked for
the patch, where <name> is the name
of the file to be built and linked with.

func <oldname> <newname> -
This specifies a function
which must be overridden for the
patch to work. <oldname> is the
old subroutine name, and <newnames
is the new subroutine which replaces
the old.

bcmd <name> - This specifies a literal bcmd input
file which must be built and included
in the load for the patch. These typically
hold independent specially built patches
which do not have to be linked with the
reset of the system in order to work, such
as inline patches.

spr <numbers> - This identifies a Software Problem Report

HHHFHHFHHFHFHFHAFHFHFEHFHFHFHAFHFEHFEHFHFHFFTEFEFEFHFHFHFFEFEFEHFHAFEFEFEHFHFHFEFEFFEFHFEHFHFHFEFEFEFHFEHFHFEFEFEHFEHFHFEFEEFEHFHFHHFH

06/29/18 Flight S/W Patches, Revision G-H-I
15:48:19 buscrash/buscrash.pkg
which is addressed by this patch.

ser <numbers> - This identifies a Software Enhancement Request
which is addressed by this patch.

tool <numbers> - This identifies a Software Diagnostic Tool
which is addressed by this patch.

test <name> <subdir> <command line> -
This specifies a test to run on the package.
<name> indicates the test name, <subdir> is
the subdirectory of the package that the test
should be run in, and <command line> is the command
to execute to run the test. All tests shall
print either "PASS" or "FAIL", depending on the
result of the tests. Incomplete tests should always
print "FAIL".

At the end of the file, the ’'NOTES:’ keyword

delimits the notes section of the file. All lines

following this keyword line are treated as the

release notes for this patch. These notes should be

included in all patch releases and option suite documentation.

The notes sections are delimited by section keywords. Any text
from the start of the NOTES section until the first keyword is
treated as a general description of the patch.

COMMAND IMPACT: - This section describes the impact of the patch
on commanding of the instrument.

TELEMETRY IMPACT: - This section describes the impact of the patch
on the telemetry produced by the instrument.

SCIENCE IMPACT: - This sections describes the impact of the patch
on the science data produced by the instrument.

:END - Delimits the end of the notes section

Version Log:

$$Log: buscrash.pkg,v $

SRevision 1.11 2018/06/29 19:48:19 pgf
SUpdate with date changes

$

SRevision 1.10 2018/06/29 18:56:44 pgf
SDocument release B

$

SRevision 1.9 2016/04/02 16:26:05 pgf
SFix typo

$

SRevision 1.8 2016/03/18 17:02:48 pgf
SAdd second test to reproduce bug in standard patch F
$

SRevision 1.7 2016/03/11 21:08:05 pgf
SReplace pollBiasComplete() to abort science run if all FEPs powered down
$

SRevision 1.6 2010/01/14 18:57:36 pgf
SFix typo.

$

$Revision 1.5 2007/08/14 16:57:39 pgf
SReleased as part of Standard Patch C

$

SRevision 1.4 2007/08/14 16:54:28 pgf
Sremove bcmd from package

06/29/18 Flight S/W Patches, Revision G-H-|

15:48:19 buscrash/buscrash.pkg
S
$Revision 1.3 2007/07/16 19:18:27 pgf
SAdd buscrash.bcmd to list of buildables.
3
SRevision 1.2 2007/07/11 15:42:05 pgf
SReview versions.
S
S$Revision 1.1 2007/04/17 18:52:36 pgf
$Initial version.
$S
__

Identification Information
ident = $$Id: buscrash.pkg,v 1.11 2018/06/29 19:48:19 pgf Exp $$

partnumber = 36-58030.30

version = B

environment = flight

eco = 36-1051

reason = Cleanup comments, release tests

Release history information
approval A 36-1034 PGF 08/09/2007 Released
approval B 36-1051 RFG 06/29/2018 Released

Product and source file information

object buscrash.o

func FepManager: :loadBadPixel Test FepManager::loadBadPixel

func FepManager: :pollBiasComplete Test FepManager::pollBiasComplete
source buscrash.pkg 01

source buscrash.mak 02

source buscrash.C 03

docref eco-1051.pdf

Test information

test reproduce testsuite/bug-hw make ACISSERVER=S (ACISSERVER) TOOLS=$ (TOOLS) PATCHDIR=$
(PATCHDIR)

test reproduce2 testsuite/bug-hw make SCRIPT=runtest2 ACISSERVER=5 (ACISSERVER) TOOLS
=$ (TOOLS) PATCHDIR=S (PATCHDIR)

test fix testsuite/fix-hw make ACISSERVER=$ (ACISSERVER) TOOLS=$ (TOOLS) PATCHDIR=$ (PATCH
DIR)

Initiating action information

spr 151

B o o o o o .

NOTES

Reason:

If ACIS is computing bias maps when commanded to power down its front-end
processors (FEPs), it is likely to crash the back-end processor (BEP)

interface bus, causing the BEP to reboot without flight software patches.
Normal operations must be restored via ground command. The cause of the
problem has been traced to a design flaw in the BEP flight software and
this ECO describes a small patch that will fix it.

Symptom:

During execution of SCS107, typically due to high background radiation,
ACIS is powered down. Science telemetry reports that the flight s/w
version number is 11, whereas typical values (depending in the patch
combination) are 30 or higher, indicating that the BEP rebooted itself.
Subsequent inspection of the recorded telemetry shows no scienceReport
packet from the last science run, but a bepStartupMessage packet with
lastFatalCode=7 and watchdogFlag=1.

06/29/18 Flight S/W Patches, Revision G-H-|
15:48:19 buscrash/buscrash.pkg

Symptom Impact:

Since the observatory is usually in safe mode for several hours following
the SCS107, there is generally sufficient time to establish a realtime
contact, set the BEP’'s warm-boot flag, and restart it. However, this
takes time and manpower.

Symptom Cause:

The bus crash has been traced to a flaw in the FepManager::loadBadPixel ()
method. This routine is executed after the FEP bias maps have been
created and before they are (optionally) reported in telemetry. It

uses the memory-mapped interface between BEP and FEP to change those
locations in the FEP bias maps that correspond to "bad" pixels or whole
columns. However, unlike all other FepManager operations, loadBadPixel ()
does not confirm that a FEP is powered up before it writes to its map.
This causes the bus crash.

Fix Description:

Call the FepManager::isEnabled() method to check if the FEP is powered
up before writing to a FEP’s bias memory (and parity plane). Release A
of this fix interacted badly with the buscrash2 patch in a manner that
could prevent the science run from termination. This was corrected in

release B of buscrash.

COMMAND IMPACT:
None.

TELEMETRY IMPACT:
None.

SCIENCE IMPACT:
None.

04/17/07 Flight S/W Patches, Revision G-H-|

10:56:15 buscrash/testsuite/makebias
#! /bin/sh
genObjectImage -e $* <<!
Rows = 1024
Columns = 256
Mode = ABCD
Overclocks = 16
Seed = 12345678
Noop = 4 before Oclks
Noop = 0 before HSYNC
Noop = 8 after HSYNC
Noop = 4104 before VSYNC
Noop = 3 after VSYNC
Begin Node = A
Bias = 210
dBias =0
OverClock = 200
dOverClock =0
End Node = A
Begin Node = B
Bias = 310
dBias =0
OverClock = 300
dOverClock =0
End Node =B
Begin Node = C
Bias = 410
dBias =0
OverClock = 400
dOverClock =0
End Node = C
Begin Node = D
Bias = 510
dBias =0
OverClock = 500
dOverClock =0

End Node =D

03/18/16 Flight S/W Patches, Revision G-H-I
10:22:38 buscrash/testsuite/bug-hw/runtest2.tcl

#! /bin/env expect
puts "Welcome to buscrash/testsuite/bug-hw/runtest2.tcl"

---- Split off the command arguments ----
lassign Sargv basedir tools patchdir

---- Launch the command and telemetry server processes ----
set first fep O ; # first FEP under test

set last fep 0 ; # last FEP under test

set quad mode {0 # QUAD ABCD} ; # desired outputRegisterMode

set ccd_list {0 10 10 10 10 10} ; # desired fepCcdSelect

---- Embed procedure library ----
source S$basedir/S$tools/lib/lib-exp/runtest support.tcl

---- Sleep while reporting packets ----
proc gotosleep { secs } {
expect { -timeout $secs timeout { } }

---- Start command pipe ----
spawn S$basedir/$tools/bin/cmdclient $env (ACISSERVER)
set cmd_id $spawn_id

---- Start telemetry pipe ----
spawn S$basedir/S$tools/bin/tlmclient S$env (ACISSERVER)
gotosleep 1

---- Select Input from Image Loader ----
system make loaderselect

---- Apply patches ----

cold boot

load _patch list "Sbasedir/Stools/share/opt tlmio.bcmd\
$basedir/stools/share/opt printswhouse.bcmd\
$basedir/s$tools/share/opt dearepl.bcmd\
standardF .bcmd"

warm_boot

---- Power on FEPs and CCDs ----
power on boards "$ccd list"

---- Wait for FEPs to finish powering ----

expect {
-re ".*SWSTAT FEPMAN ENDLOAD: S$last fep\[\r\nl=*" { }
timeout { fail "Power-up Failure" }

}

---- Load Pblock for Faint Timed-Exposure Mode ----

send -i $cmd id "load 0 te 4
parameterBlockId = 0x00000014
fepCcdSelect = Sccd list
fepMode = 2 # FEP_TE MODE EV3x3
bepPackingMode = 2 # BEP_TE MODE_GRADED
onChip2x2Summing =
ignoreBadPixelMap =
ignoreBadColumnMap =
recomputeBias =
trickleBias =
subarrayStartRow =
subarrayRowCount =
overclockPairsPerNode =
outputRegisterMode = S$quad_mode

023

o ORrKE OOO

03/18/16 Flight S/W Patches, Revision G-H-|

10:22:38 buscrash/testsuite/bug-hw/runtest2.tcl
ccdVideoResponse = 0 0 0 0 0 0
primaryExposure = 33
secondaryExposure =0
dutyCycle =0
fepOEventThreshold = 100 100 100 100
feplEventThreshold = 100 100 100 100
fep2EventThreshold = 100 100 100 100
fep3EventThreshold = 100 100 100 100
fep4EventThreshold = 100 100 100 100
fep5EventThreshold = 100 100 100 100
fep0SplitThreshold = 50 50 50 50
feplSplitThreshold = 50 50 50 50
fep2SplitThreshold = 50 50 50 50
fep3SplitThreshold = 50 50 50 50
fep5SplitThreshold = 50 50 50 50
fep4SplitThreshold = 50 50 50 50
fep5SplitThreshold = 50 50 50 50
lowerEventAmplitude =0
eventAmplitudeRange = 65535
gradeSelections = Oxffffffff Oxffffffff Oxffffffff OxEfffffff

OxEEffEffff OxfEfffffff OxEfffffff OxELfffffff
windowSlotIndex = 65535
histogramCount =0
biasCompressionSlotIndex = 3 3 1 1 1 1
rawCompressionSlotIndex =0
ignoreInitialFrames = 2
biasAlgorithmId = 1 1 1 1 1 1
biasArg0 = 9 9 9 9 9 1
biasArgl = 25 25 25 25 25 25
biasArg2 = 20 20 20 20 20 20
biasArg3 = 26 26 50 50 50 50
biasArg4 = 20 20 20 20 20 20
fepOvideoOffset = 65 65 65 65
feplvideoOffset = 65 65 65 65
fep2videoOffset = 65 65 65 65
fep3videoOffset = 65 65 65 65
fep4videoOffset = 65 65 65 65
fep5vVideoOffset = 65 65 65 65
deaLoadOverride =0
fepLoadOverride =0

}

command_echo 1 9 "load te"
puts "\n# Starting test\n"

send -1 $cmd _id "start 0 te 4\n"
command _echo 1 14 "start science run"
system make bias

expect {
-timeout 360
-re "SWSTAT FEP STARTBIAS.*\[\r\nl=*" { }
timeout { fail "Bias Failure" }

gotosleep 10

puts "# stopScience"

send -1 $cmd_id "stop 0 sciencel\n"
command _echo 1 19 "stop science run"
gotosleep 2

puts "# stopScience"
send -1 $cmd_id "stop 0 science\n"

03/18/16 Flight S/W Patches, Revision G-H-I
10:22:38 buscrash/testsuite/bug-hw/runtest2.tcl

command _echo 1 19 "stop science run"
gotosleep 2

puts "# powering boards off"
power off boards
expect {
-timeout 60
-re "bepStartupMessage.*\ [\r\n]*" {
fail "Bus crash reproduced"
}
-re "scienceReport.*\ [\r\n]*" {
fail "Science run ends without bus crash"
}
timeout {
pass "No crash or stopScience"

}
}

puts "Done"

03/18/16 Flight S/W Patches, Revision G-H-I
10:01:52 buscrash/testsuite/bug-hw/runtest.tcl

#! /bin/env expect
puts "Welcome to buscrash/testsuite/bug-hw/runtest.tcl"

---- Split off the command arguments ----
lassign Sargv basedir tools patchdir

---- Launch the command and telemetry server processes ----
set first fep O ; # first FEP under test

set last fep 0 ; # last FEP under test

set quad mode "O \# QUAD ABCD" ; # desired outputRegisterMode
set ccd list "0 10 10 10 10 10" ; # desired fepCcdSelect

---- Embed procedure library ----

source S$basedir/S$tools/lib/lib-exp/runtest support.tcl

---- Sleep while reporting packets ----
proc gotosleep { secs } {
expect { -timeout $secs timeout { } }

---- Start command pipe ----
spawn S$basedir/$tools/bin/cmdclient $env (ACISSERVER)
set cmd_id $spawn_id

---- Start telemetry pipe ----
spawn S$basedir/S$tools/bin/tlmclient S$env (ACISSERVER)
gotosleep 1

---- Select Input from Image Loader ----
system make loaderselect

---- Apply patches ----

cold boot

load _patch list "Sbasedir/Stools/share/opt tlmio.bcmd\
$basedir/stools/share/opt printswhouse.bcmd\
$basedir/stools/share/opt dearepl.bcmd"

warm_boot

---- Power on FEPs and CCDs ----
power on boards "$ccd list"

---- Wait for FEPs to finish powering ----

expect {
-re ".*SWSTAT FEPMAN ENDLOAD: $last fep\[\r\nl=*" { }
timeout { fail "Power-up Failure" }

}

---- Load Pblock for Faint Timed-Exposure Mode ----
send -i $cmd _id "load 0 te 4
parameterBlockId = 0x00000014
fepCcdSelect = $ccd list
fepMode = 2 # FEP_TE MODE EV3x3
bepPackingMode = 2 # BEP_TE_MODE_GRADED
onChip2x2Summing =0
ignoreBadPixelMap =0
ignoreBadColumnMap =0
recomputeBias =1
trickleBias =1
subarrayStartRow =0
subarrayRowCount = 1023
overclockPairsPerNode = 8
outputRegisterMode = $quad_mode

ccdvVideoResponse = 0 0 0 0 0

03/18/16 Flight S/W Patches, Revision G-H-|

10:01:52 buscrash/testsuite/bug-hw/runtest.tcl
primaryExposure = 33
secondaryExposure =0
dutyCycle =0
fepOEventThreshold = 100 100 100 100
feplEventThreshold = 100 100 100 100
fep2EventThreshold = 100 100 100 100
fep3EventThreshold = 100 100 100 100
fep4EventThreshold = 100 100 100 100
fep5EventThreshold = 100 100 100 100
fep0SplitThreshold = 50 50 50 50
feplSplitThreshold = 50 50 50 50
fep2SplitThreshold = 50 50 50 50
fep3SplitThreshold = 50 50 50 50
fep5SplitThreshold = 50 50 50 50
fep4SplitThreshold = 50 50 50 50
fep5SplitThreshold = 50 50 50 50
lowerEventAmplitude =0
eventAmplitudeRange = 65535
gradeSelections = Oxffffffff Oxffffffff Oxffffffff OxEfffffff

OxfEffEffff Oxffffffff OxEfffffff OxEffffffff

windowSlotIndex = 65535
histogramCount =0
biasCompressionSlotIndex = 3 3 1 1 1 1
rawCompressionSlotIndex =0
ignoreInitialFrames = 2
biasAlgorithmId = 1 1 1 1 1 1
biasArg0 = 9 9 9 9 9 1
biasArgl = 25 25 25 25 25 25
biasArg2 = 20 20 20 20 20 20
biasArg3 = 26 26 50 50 50 50
biasArg4 = 20 20 20 20 20 20
fepOvVideoOffset = 65 65 65 65
feplvideoOffset = 65 65 65 65
fep2videoOffset = 65 65 65 65
fep3videoOffset = 65 65 65 65
fep4videoOffset = 65 65 65 65
fep5vVideoOffset = 65 65 65 65
dealoadOverride =0
fepLoadOverride =0

}

command_echo 1 9 "load te"
system make bias

puts "\n# Starting test\n"

send -1 $cmd _id "start 0 te 4\n"
command _echo 1 14 "start science run"

expect {
-timeout 360
-re "SWSTAT FEP STARTBIAS.*\[\r\nl=*" { }
timeout { fail "Bias Failure" }

gotosleep 10

puts "# stopScience"

send -1 $cmd_id "stop 0 science\n"
command echo 1 19 "stop science run"
gotosleep 2

puts "# stopScience"
send -1 $cmd _id "stop 0 science\n"
command echo 1 19 "stop science run"

03/18/16 Flight S/W Patches, Revision G-H-I
10:01:52 buscrash/testsuite/bug-hw/runtest.tcl

gotosleep 2

puts "# powering boards off"
power off boards
expect {
-timeout 360
-re "bepStartupMessage.*\ [\r\n]*" {
pass "Bus crash reproduced"
}
-re "scienceReport.*\ [\r\n]*" {
fail "Science run ends without bus crash"
}
timeout {
fail "No crash or stopScience"

}
}

puts "Done"

03/18/16 Flight S/W Patches, Revision G-H-|
14:13:59 buscrash/testsuite/fix-hw/runtest.tcl

#! /bin/env expect
puts "Welcome to buscrash/testsuite/fix-hw/runtest.tcl"

---- Split off the command arguments ----
lassign Sargv basedir tools patchdir

---- Launch the command and telemetry server processes ----
set first fep 3 ; # first FEP under test

set last fep 3 ; # last FEP under test

set quad mode {0 # QUAD ABCD} ; # desired outputRegisterMode

set ccd_list {10 10 10 1 10 10} ; # desired fepCcdSelect

---- Embed procedure library ----
source S$basedir/S$tools/lib/lib-exp/runtest support.tcl

---- Sleep while reporting packets ----
proc gotosleep { secs } {
expect { -timeout $secs timeout { } }

---- Start command pipe ----
spawn S$basedir/$tools/bin/cmdclient $env (ACISSERVER)
set cmd_id $spawn_id

---- Start telemetry pipe ----
spawn S$basedir/S$tools/bin/tlmclient S$env (ACISSERVER)
gotosleep 1

---- Select Input from Image Loader ----
system make loaderselect

---- Apply patches ----

cold boot

load _patch list "Sbasedir/Stools/share/opt tlmio.bcmd\
$basedir/stools/share/opt printswhouse.bcmd\
$basedir/s$tools/share/opt dearepl.bcmd\
. /buscrash.bcmd"

warm_boot

---- Power on FEPs and CCDs ----
power on boards "$ccd list"

---- Wait for FEPs to finish powering ----

expect {
-re ".*SWSTAT FEPMAN ENDLOAD: S$last fep\[\r\nl=*" { }
timeout { fail "Power-up Failure" }

}

---- Load Pblock for Faint Timed-Exposure Mode ----

send -i $cmd id "load 0 te 4
parameterBlockId = 0x00000014
fepCcdSelect = Sccd list
fepMode = 2 # FEP_TE MODE EV3x3
bepPackingMode = 2 # BEP_TE MODE_GRADED
onChip2x2Summing =
ignoreBadPixelMap =
ignoreBadColumnMap =
recomputeBias =
trickleBias =
subarrayStartRow =
subarrayRowCount =
overclockPairsPerNode =
outputRegisterMode = S$quad_mode

023

o ORrKE OOO

03/18/16 Flight S/W Patches, Revision G-H-|

14:13:59 buscrash/testsuite/fix-hw/runtest.tcl
ccdVideoResponse = 0 0 0 0 0 0
primaryExposure = 33
secondaryExposure =0
dutyCycle =0
fepOEventThreshold = 100 100 100 100
feplEventThreshold = 100 100 100 100
fep2EventThreshold = 100 100 100 100
fep3EventThreshold = 100 100 100 100
fep4EventThreshold = 100 100 100 100
fep5EventThreshold = 100 100 100 100
fep0SplitThreshold = 50 50 50 50
feplSplitThreshold = 50 50 50 50
fep2SplitThreshold = 50 50 50 50
fep3SplitThreshold = 50 50 50 50
fep5SplitThreshold = 50 50 50 50
fep4SplitThreshold = 50 50 50 50
fep5SplitThreshold = 50 50 50 50
lowerEventAmplitude =0
eventAmplitudeRange = 65535
gradeSelections = Oxffffffff Oxffffffff Oxffffffff OxEfffffff

OxEEffEffff OxfEfffffff OxEfffffff OxELfffffff
windowSlotIndex = 65535
histogramCount =0
biasCompressionSlotIndex = 3 3 1 1 1 1
rawCompressionSlotIndex =0
ignoreInitialFrames = 2
biasAlgorithmId = 1 1 1 1 1 1
biasArg0 = 9 9 9 9 9 1
biasArgl = 25 25 25 25 25 25
biasArg2 = 20 20 20 20 20 20
biasArg3 = 26 26 50 50 50 50
biasArg4 = 20 20 20 20 20 20
fepOvideoOffset = 65 65 65 65
feplvideoOffset = 65 65 65 65
fep2videoOffset = 65 65 65 65
fep3videoOffset = 65 65 65 65
fep4videoOffset = 65 65 65 65
fep5vVideoOffset = 65 65 65 65
deaLoadOverride =0
fepLoadOverride =0

}

command_echo 1 9 "load te"
system make bias

puts "\n# Starting test\n"

send -1 $cmd _id "start 0 te 4\n"
command_echo 1 14 "start science run"
expect {
-timeout 360
-re "SWSTAT FEP STARTBIAS.*\[\r\nl=*" { }
timeout { fail "Bias Failure" }

gotosleep 10

puts "# stopScience"

send -1 $cmd_id "stop 0 science\n"
command echo 1 19 "stop science run"
gotosleep 2

puts "# stopScience"
send -1 $cmd _id "stop 0 science\n"
command echo 1 19 "stop science run"

03/18/16 Flight S/W Patches, Revision G-H-|
14:13:59 buscrash/testsuite/fix-hw/runtest.tcl

gotosleep 2

puts "# powering boards off"
power off boards
expect {
-timeout 360
-re "bepStartupMessage.*\ [\r\n]*" {
fail "Bus crash"
}
-re "scienceReport.*\ [\r\n]*" {
pass "Science run ends without bus crash"
}
timeout {
fail "No crash or stopScience"

}
}

puts "Done"

07/12/18 Flight S/W Patches, Revision G-H-|
14:37:07 deahktrip/deahktrip.C

/* ___
*
* Source: $Source: /nfs/acis/h3/acisfs/configentl/patches/deahktrip/deahktrip.C,v $
*
* Name: deahktrip
*
* Author: Peter G. Ford <pgf@space.mit.edu>
*
* Description:
* Monitor the DPA thermal component readouts from Board 11/12. If any
* exceed specified thresholds, set the ACIS bilevels to LED BOOT SPARE2
*

to signal to the OBC that ACIS should be safed.

* The patch replaces Tf Dea Housekeeping Data::append Entries() with
* a copy that tests the calling arguments and checks the values of

* DPA thermal channels, calling bepReg.showLeds (LED BOOT SPARE2) when
* a channel is out of limits.

*

* References:

* Refer to deahktrip.pages

*

* Log: $Log: deahktrip.C,v $

* Log: Revision 1.5 2018/07/12 18:37:07 pgf

* Log: Update with correct red alarm limits

* Log:

* Log: Revision 1.4 2018/05/14 19:20:44 pgf

* Log: Remove ’‘virtual’ attribute

* Log:

* Log: Revision 1.3 2018/05/09 17:45:43 pgf

* Log: Add swHouseKeeping packet when first tripped with NDHK TEST
* Log:

* Log: Revision 1.2 2018/05/02 20:45:22 pgf

* Log: Add option to abort science run and power down FEP and video boards
* Log:
S */

#ifndef Test Tf Dea Housekeeping Data H
#define Test Tf Dea Housekeeping Data H 1
#define private public

#define protected public

#include "filesscience/sciencemode.H"
#include "filesscience/sciencemanager.H"
#include "filessysconfig/sysconfigtable.H"
#include "filesswhouse/swhousekeeper.H"
#include "filesmemserver/memoryserver.H"
#undef private

#undef protected

#define NDHKT (12) // maximum number of channels checked
#define NDHK NERR (17) // science run error code
#define NDHK TRIP (1) // channel alarm tripped
#define NDHK HALT (2) // halt science run, power down boards
#define NDHK NBLV (4) // suppress report via bilevels
#define NDHK TEST (8) // force alarm
typedef struct {
unsigned low; // low DN limit value
unsigned high; // high DN limit value
unsigned count; // count of consecutive trips
} NDHK VAL;
struct { // static channel limit table
unsigned state; // state flags
unsigned sample; // conditioning sample size

unsigned delay; // seconds before resuming testing

07/12/18 Flight S/W Patches, Revision G-H-|

14:37:07 deahktrip/deahktrip.C
unsigned cmdid; // commandId for bepReadReply packet
unsigned size; // number of channels used in lim array
unsigned base; // index of lowest channel id
unsigned lowvalid; // lowest valid DN value (red high)
unsigned highvalid; // highest valid DN value (red low)
unsigned tickil; // bepTickCounter of first tripped packet
unsigned tick2; // bepTickCounter of second tripped packet
unsigned spare; // for debugging purposes
NDHK VAL 1lim[NDHKT] ; // lowest,highest,count channel limit values

} ndhk = { o, 2, 3600, 1010, 12, 1, 2060, 4096, 0, 0, O,

{ 2297, 4096, 0}, /* BEP_PCB */ { 2314, 4096, 0}, /* BEP_0OSC */

{ 2266, 4096, 0 }, /* FEPO _MONG */ { 2289, 4096, 0 }, /* FEPO_PCB */

{ 2274, 4096, 0 }, /* FEPO_ACTEL */ { 2281, 4096, 0 }, /* FEPO _RAM */

{ 2306, 4096, 0}, /* FEPO FB */ { 2259, 4096, 0}, /* FEP1 MONG */
{ 2281, 4096, 0}, /* FEP1 PCB */ { 2266, 4096, 0}, /* FEP1 ACTEL */
{ 2266, 4096, 0}, /* FEP1 RAM */ { 2306, 4096, 0}, /* FEPL1 FB */

}
bi

// Temperatures vs DN values
// Cold>=3880, -10C=3313, 0C=3098, 6.5C=2953, 45C=2332, 50C=2289, Hot<=2060

T T
// Class Test Tf Dea Housekeeping Data, friend of Tf Dea Housekeeping Data

T

class Test Tf Dea Housekeeping Data : public Tf Dea Housekeeping Data

{
public:

void append Entries(unsigned Ccd Id, unsigned Query Id, unsigned Value) ;
}i
R REEEE
// Test Tf Dea Housekeeping Data -- where all the work is done
T S CCCCEEEEEEEEEE

void Test Tf Dea Housekeeping Data::append Entries (unsigned Ccd_ Id,
unsigned Query Id, unsigned Value)
{

DebugProbe probe;

// Check that we’re not in a triggered state and channel is Board 11/12
if ((ndhk.state & NDHK TRIP) == 0 && Ccd Id == 10 && ndhk.size > 0) {
int ii = Query Id-ndhk.base;
// Execute i1f this is a desired channel
if (41 »>= 0 && ii < ndhk.size && ii < NDHKT) {
// Check if the value violates a limit
if (ndhk.state & NDHK TEST) {
ndhk.state |= NDHK TRIP;
} else if ((Value > ndhk.lowvalid && Value <= ndhk.lim[ii].low) ||
(Value < ndhk.highvalid && Value >= ndhk.lim[ii] .high))
// Increment the counter and trip if over sample limit
if (++ndhk.lim[ii].count »>= ndhk.sample)
ndhk.state |= NDHK TRIP;

} else {
ndhk.lim[ii] .count = 0;
}

}

// Check for trigger
if (ndhk.state & NDHK TRIP) ({

07/12/18 Flight S/W Patches, Revision G-H-|

14:37:07 deahktrip/deahktrip.C
unsigned tick = (getBufPtr()) [4]; // get bepTickCounter from TlmForm
if ((ndhk.state & NDHK NBLV) == 0) {

// set the software bilevels
bepReg.showLeds (LED_BOOT SPARE2) ;

if (ndhk.tickl == 0) {
// execute once in same housekeeping packet as trigger
ndhk.tickl = tick;
ndhk.tick2 = 0;

ndhk.spare = (unsigned)scienceManager.currentMode;
// 1f science mode running, stop it and any associated BiasThief
if ((ndhk.state & NDHK HALT) && scienceManager.currentMode != 0) {

* (unsigned *)&scienceManager.currentMode->termReason = NDHK NERR;
scienceManager.notify (ScienceMode: :EV_SM ABORT RUN) ;

}

if (ndhk.state & NDHK TEST) ({
swHousekeeper.report (SWSTAT CMDECHO DROPPED, ndhk.cmdid) ;
ndhk.state &= "NDHK TEST;

}

} else if (tick != ndhk.tickl && ndhk.tick2 == 0) ({

// execute once in next housekeeping packet following trigger

ndhk.tick2 = tick;

if (ndhk.state & NDHK HALT)
// Power down the boards
sysConfigTable.changeEntry (SYSSET DEA POWER, 0) ;
sysConfigTable.changeEntry (SYSSET FEP POWER, 0);

}

// Report the power-down

unsigned *a = (unsigned *)é&ndhk;

unsigned w = sizeof (ndhk) /sizeof (unsigned) ;

CmdResult rc = memoryServer.readBep (ndhk.cmdid, a, w, TTAG READ BEP);

if (rc != CMDRESULT OK) ({
swHousekeeper.report (SWSTAT CMDECHO DROPPED, ndhk.cmdid) ;

}

} else if (tick != ndhk.tickl && tick != ndhk.tick2 &&
tick > ndhk.tickl+ndhk.delay*Acis::TICKS PER SECOND) {
// execute once at least ndhk.delay seconds after trigger packet
ndhk.state &= “NDHK TRIP;
ndhk.tickl = ndhk.tick2 = 0;
// Clear the channel counters
for (int ii = 0; ii < NDHKT; ii++) {

ndhk.lim[ii] .count = 0;
}
}
}
// ---- Range check index argument ----
ASSERT (isFull () == BoolFalse) ;
/] ----- Value range checks ----

ASSERT (Ccd_Id <= 10);

// ---- Ccd_Id :: Offset = 160, Width = 8 ----
appendField (Ccd Id, 160, 8, 0x0ff, appended, 32);

/) ----- Value range checks ----
ASSERT(Query_Id <= 255);

// ---- Query Id :: Offset = 168, Width = 8 ----
appendField (Query Id, 168, 8, 0x0ff, appended, 32);

/] ----- Value range checks ----
ASSERT (Value <= 65535) ;

Flight S/W Patches, Revision G-H-|

07/12/18
14:37:07 deahktrip/deahktrip.C
// ---- Value :: Offset = 176, Width = 16 ----

appendField (Value, 176, 16, O0x0ffff, appended, 32);

_appended++;

return;
}i
e T EEEEEE R
// End of deahktrip patch
/] === oo

#endif /* Test Tf Dea Housekeeping Data H */

HHHFHHFHHFHFHFHAFHFHFEHFHFHFHAFHFEHFEHFHFHFFTEFEFEFHFHFHFFEFEFEHFHAFEFEFEHFHFHFEFEFFEFHFEHFHFHFEFEFEFHFEHFHFEFEFEHFEHFHFEFEEFEHFHFHHFH

06/29/18 Flight S/W Patches, Revision G-H-|
15:47:45 deahktrip/deahktrip.pkg

$Source: /nfs/acis/h3/acisfs/configentl/patches/deahktrip/deahktrip.pkg,v $

Version:
The part number and version of this release are
described below under the "partnumber" and
"version" keywords.

Description:
This is a Patch Specification File. The detailed
documentation for this file is provided after the
NOTES: keyword below.

Format:
This is a line-oriented file.

Comments are indicated by a leading '#’'.
Blank lines are ignored.

Keyword pairs are assigned as "keyword = value",

where:
ident - The CVS/RCS identification string
partnumber - The partnumber of the patch
version - The release version of the patch
environment - Either "flight", or "engineering"
sco - The software change order of the released patch
reason - Short reason for this version

Lists of information consist of the list name
followed by the next item to be placed into the
list. The lists are:

source <name> <partext> - This specifies a source file
which should be reviewed when
the package is released. At this time,
these entries are only used for documentation
purposes and aren’t used to build run-time
products. The run-time products are produced
by the .mak file. <partext> refers to the part
number extension of the file relative to the
base part number of the patch.

object <namex> - This specifies an object file
which must be built and linked for
the patch, where <name> is the name
of the file to be built and linked with.

func <oldname> <newname> -
This specifies a function
which must be overridden for the
patch to work. <oldnames> is the
old subroutine name, and <newnames
is the new subroutine which replaces
the old.

bcmd <name> - This specifies a literal bcmd input
file which must be built and included
in the load for the patch. These typically
hold independent specially built patches
which do not have to be linked with the
reset of the system in order to work, such
as inline patches.

06/29/18 Flight S/W Patches, Revision G-H-|
15:47:45 deahktrip/deahktrip.pkg

spr <number> - This identifies a Software Problem Report
which is addressed by this patch.

ser <numbers> - This identifies a Software Enhancement Request
which is addressed by this patch.

tool <numbers> - This identifies a Software Diagnostic Tool
which is addressed by this patch.

docref <number> - This identifies an existing design or
requirements reference which is pertinent
to the patch.

approval <rev> <Sco> <signer> <date> <texts>
- Sign-off on a previous release

At the end of the file, the 'NOTES:’ keyword

delimits the notes section of the file. All lines

following this keyword line are treated as the

release notes for this patch. These notes should be

included in all patch releases and option suite documentation.

The notes sections are delimited by section keywords. Any text
from the start of the NOTES section until the first keyword is
treated as a general description of the patch.

COMMAND IMPACT: - This section describes the impact of the patch
on commanding of the instrument.

TELEMETRY IMPACT: - This section describes the impact of the patch
on the telemetry produced by the instrument.

SCIENCE IMPACT: - This sections describes the impact of the patch
on the science data produced by the instrument.

: END - Delimits the end of the notes section

Version Log:

SLog: deahktrip.pkg,v $

Revision 1.4 2018/06/29 19:47:45 pgf
Documentation for release A

Revision 1.3 2018/05/14 19:23:01 pgf
Update patch description and impact

Revision 1.2 2018/05/02 20:45:22 pgf
Add option to abort science run and power down FEP and video boards

Revision 1.1 2018/04/02 17:33:12 pgf
Initial version

HHEHFHHFHHFHFHFHAFTHEHFEHFHFHFHAFTHFEHFEHFHFHFHFEFEHFHFHAFTFEFEHFEHFHFEFEFFEHFEHFHFFEFEHFEHFEHFEFEFEHFHFHHFH

Identification Information
ident = $Id: deahktrip.pkg,v 1.4 2018/06/29 19:47:45 pgf Exp $

partnumber = 36-58030.34
version = A
environment = flight

sco = none

reason = New Patch

Release history information
approval A 36-1052 RFG 06/29/18 Initial letter release

06/29/18 Flight S/W Patches, Revision G-H-|
15:47:45 deahktrip/deahktrip.pkg

Product and source file information

object deahktrip.o

func Tf Dea Housekeeping Data::append Entries Test Tf Dea Housekeeping Data::append Ent
ries

source deahktrip.pkg 01

source deahktrip.mak 02

source standalone.mak 03

source deahktrip.C 04

docref eco-1052.pdf

Test information
test smoke testsuite/smoke make ACISSERVER=$ (ACISSERVER) TOOLS=$ (TOOLS) PATCHDIR=$ (PATC
HDIR) ACISTOOLSDIR=/nfs/acis/h4/tools ACISTTMFILE=acisEUbilevels.ttm

Initiating action information
ser None
spr None

COMMAND IMPACT:

To update the ’'ndhk’ block that defines the limits of each of the DEA
housekeeping channels that this patch puts under surveillance, upload
the following command packet. The values shown are the defaults.

write ‘n’ 0x8003dd20 {
2 # state flags: =1 tripped, =2 halt science,

=4 don’'t change bilevels, =8 test with EU
2 # sample size
3600 # reset alarm after delay in seconds
1010 # commandId for error messages
12 # number of channels to be tested
1 # starting channellId wvalue
2060 4096 # minimum and maximum valid channel values
0 0 # BEP timer for alarm and power-down
0 # spare for testing
2289 4096 0 # BEP_PCB minimum, maximum, samples non-trip values
2289 4096 0 # BEP_OSC minimum, maximum, samples non-trip wvalues
2289 4096 0 # FEPO_MONG minimum, maximum, samples non-trip values
2289 4096 0 # FEPO_PCB minimum, maximum, samples non-trip values
2289 4096 0 # FEPO_ACTEL minimum, maximum, samples non-trip values
2289 4096 0 # FEPO_RAM minimum, maximum, samples non-trip values
2289 4096 0 # FEPO_FB minimum, maximum, samples non-trip values
2289 4096 0 # FEP1 MONG minimum, maximum, samples non-trip values
2289 4096 0 # FEP1 PCB minimum, maximum, samples non-trip values
2289 4096 0 # FEP1 ACTEL minimum, maximum, samples non-trip values
2289 4096 0 # FEP1 RAM minimum, maximum, samples non-trip values
2289 4096 0 # FEP1 FB minimum, maximum, samples non-trip values

}

The starting address of the block, 0x8003dd20, may vary with the patch
release. This value is appropriate for release GHI.

The patch replaces Tf Dea Housekeeping Data::append Entries() which is
called to handle each DEA housekeeping value that has been requested by
the housekeeping task. It defines a new class:

class Test Tf Dea Housekeeping Data : public Tf Dea Housekeeping Data {
public:
Test Tf Dea Housekeeping Data() : Tf Dea Housekeeping Data() {};
virtual void append Entries(unsigned Ccd Id, unsigned Query Id, unsigned Value) ;

06/29/18 Flight S/W Patches, Revision G-H-|
15:47:45 deahktrip/deahktrip.pkg

bi

and a static ‘ndhk’ structure:

#define NDHKT 12 // maximum number of channels to check
#define NDHK NERR 17 // science run error code
#define NDHK TRIP 1 // channel alarm tripped
#define NDHK HALT 2 // halt science run, power down boards
#define NDHK NBLV 4 // suppress report via bilevels
#define NDHK TEST 8 // force alarm
typedef struct
unsigned low; // low DN limit value
unsigned high; // high DN limit value
unsigned count; // count of consecutive trips
} NDHK VAL;
struct // static channel limit table
unsigned state; // NDHK_ {TRIP,HALT,NBLV,TEST}
unsigned size; // number of channels used in lim array
unsigned min; // index of lowest channel id
unsigned lowvalid; // lowest valid DN value (red high)
unsigned highvalid; // highest valid DN value (red low)
unsigned tickil; // bepTickCounter of first tripped packet
unsigned tick2; // bepTickCounter of second tripped packet
unsigned spare; // for debugging purposes
NDHK VAL 1lim[NDHKT] ; // red-high, red-low values
} ndhk; // see above for initial ‘ndhk’ values

Note that the higher the DN value, the colder the physical temperature.
The patch inserts the following code into append Entries():

// Check that we’re not in a triggered state and channel is Board 11/12
if ((ndhk.state & NDHK TRIP) == 0 && Ccd Id == 10 && ndhk.size > 0)
int ii = Query Id-ndhk.base;
// Execute if this is a desired channel
if (i1 >= 0 && ii < ndhk.size && ii < NDHKT) {
// Check if the value violates a limit
if (ndhk.state & NDHK TEST) ({
ndhk.state |= NDHK TRIP;
} else if ((Value > ndhk.lowvalid && Value <= ndhk.lim[i i].low) ||
(Value < ndhk.highvalid && Value >= ndhk.lim[ii] .high))
// Increment the counter and trip if over sample limit
if (++ndhk.lim[ii].count >= ndhk.sample)
ndhk.state |= NDHK TRIP;

} else {
ndhk.lim[ii] .count = 0;
}
}
}

Once the algorithm has "tripped", it compares the value of the BEP
interrupt timer (in units of 70.1 seconds) against the values of
ndhk.tickl and ndhk.tick2 to select three times:

1. When the alert is first triggered. If NDHK HALT is set, any science
run in progress is immediately halted along with the biasthief task,
if running.

2. While filling the next deaHousekeepingData packet after the one
in which the alert is first triggered. It writes the 47-word ndhk
block into a bepReadReply packet. If NDHK HALT is set, all FEPs and
video boards are powered down.

{

06/29/18 Flight S/W Patches, Revision G-H-|
15:47:45 deahktrip/deahktrip.pkg

3. While filling the deaHousekeepingData packet that is more that
ndhk.delay seconds after the alert is first triggered. Up until this
time, the software bilevels ‘1STAT3ST’ through ‘'1STATOST’ will be set
to ’1110’ (14) unless NDHK BLVL is set. After this time, NDHK TRIP
will be cleared and tickl and tick2 zeroed.

Since ACIS bilevels are also rewritten at 64-second intervals by the
SoftwareHousekeeper task, they will switch between the trigger wvalues
and the usual values (0-12 and 15). If the ‘txings’ patch is also active
and triggered, it will reset the bilevels to 13 every 64 seconds, so if
‘deahktrip’ is also triggered, the bilevels will switch between 13 and
14. We leave it to the OBC to figure out what to do in this circumstance.

TELEMETRY IMPACT:

If any of the binary values of the selected housekeeping channels

lies within the range the minimum and maximum valid channel values and
outside the range of the minimum and maximum non-trip values, the patch
can terminate the current science run with a terminationCode of 17,
power down the FEPs and video boards, and set the 4-bit software bilevel
field to ‘LED BOOT_SPARE2’ (14). it also writes the 47-word ‘ndhk’ block
to a bepReadReply packet with a commandId of ndhk.cmdid (default 1010).

SCIENCE IMPACT:

If the NDHK HALT flag is set, the component temperature alert will cause
the remainder of the science run to be lost. However, if the algorithm has
been ’'reset’ after ndhk.delay, and the OBC hasn’t reacted by halting the
stored science commands, the following observation should run as normal.

:END

05/02/18 Flight S/W Patches, Revision G-H-|

16:48:00 deahktrip/testsuite/makebias.pl

#! /usr/bin/env perl

#

$Source: /nfs/acis/h3/acisfs/configcntl/patches/deahktrip/testsuite/makebias.pl,v $
#

SARGV[0] ? SARGVI[0] : 1024;
SARGV[1] ne '’ ? SARGVI[1] : 33743;

Srows
Snoop

print <<EOF;

Rows = Srows
Columns = 256
Mode = ABCD
Overclocks = 16
Seed = 12345678
Noop = 4 before Oclks
Noop = 0 before HSYNC
Noop = 8 after HSYNC
Noop = $noop before VSYNC
Noop = 3 after VSYNC
Begin Node = A

Bias = 210

dBias =0

OverClock = 200

dOverClock =0
End Node = A
Begin Node = B

Bias = 310

dBias =0

OverClock = 300

dOverClock =0
End Node =B
Begin Node = C

Bias = 410

dBias =0

OverClock = 400

dOverClock =0
End Node = C
Begin Node = D

Bias = 510

dBias =0

OverClock = 500

dOverClock =0
End Node =D

EOF

exit O;

05/02/18
16:48:00

Flight S/W Patches, Revision G-H-|
deahktrip/testsuite/makeimage.pl

#! /usr/bin/env perl
#
$Source: /nfs/acis/h3/acisfs/configcntl/patches/deahktrip/testsuite/makeimage.pl,v $
#
$rows = SARGV[0] ? S$ARGV[0] 1024 ;
Snoop = SARGV[1l] ne '’ ? $ARGV[1] 34626;
Sincr = SARGV[2] ? SARGVI[2] 100;
$dim = SARGVI[3] ? S$Sargv[3] 1;
print <<EOF;
Rows = Srows
Columns = 256
Mode = ABCD
Overclocks = 16
Seed = 12345678
Noop = 4 before Oclks
Noop = 0 before HSYNC
Noop = 8 after HSYNC
Noop = $noop before VSYNC
Noop = 3 after VSYNC
Begin Node = A
Bias = 220
dBias =0
OverClock = 201
dOverClock =0
End Node = A
Begin Node = B
Bias = 320
dBias =0
OverClock = 302
dOverClock =0
End Node = B
Begin Node = C
Bias = 420
dBias =0
OverClock = 403
dOverClock =0
End Node = C
Begin Node = D
Bias = 520
dBias =0
OverClock = 504
dOverClock =0
End Node =D
EOF
Srl = 2 * S$dim + 1;
scl = 2 * sdim + 1;
$n = 1;
for (Sr = Srows - $rl - 1; Sr > Srl; $r -= S$incr) {
for (Sc = $cl; $c < Srows - S$cl; $c += $incr) {
local (Sv) = '';
for $r2 (-$dim..$dim)
for $c2 (-$dim..$dim)
$v .= ($r2 || $c2) 2 " 1v "osn";
}

}

print <<EOE;

05/02/18 Flight S/W Patches, Revision G-H-|

16:48:00 deahktrip/testsuite/makeimage.pl
Begin Event = event $n
Rows = sril
Columns = scil
Value =Sv
End Event = event $n

event $n $r Sc
EOE
Sn = (Sn < 4093) ? Sn+l : 1;

07/10/18 Flight S/W Patches, Revision G-H-|

14:40:54 deahktrip/testsuite/smoke/runtest.tcl
#! /usr/bin/env expect
#
$Source: /nfs/acis/h3/acisfs/configcntl/patches/deahktrip/testsuite/smoke/runtest.tcl
VS
#
Test of deahktrip patch
#

send user "Welcome to deahktrip/testsuite/smoke/runtest.tcl\n"

---- Launch the command and telemetry server processes ----
lassign Sargv basedir tools patchdir

---- Run Parameters ----

set ccd list {01234 5} ; # CCDs to assign to FEPs
set state 10 ; # Starting ndhk.state value

set datarate 50 ; # Measure of event rate

set delay 3600 ; # Delay in seconds until trip reset
set timeout 300 ; # Default timeout

set cmdId 1010 ; # commandId for bepReadReply

set pmode 0 ; # te faint 3x3 mode

set phist 0 ; # exposures per histogram (unused)
set ncmd 0 ; # commandId for send commands

set ndeahk 0 ; # deaHousekeepingData counter

set nbeprep 0 ; # bepReadReply counter

set nbilevel 0 ; # Bilevel alarm counter

set nscirep 0 ; # scienceReport counter

---- Embed the Procedure Library ----

source S$basedir/$tools/lib/lib-exp/runtest support.tcl
source ./aux.tcl

---- Start the Command Pipe ----
cmdspawn Sbasedir/sStools/bin/cmdclient Senv (ACISSERVER)
set cmd_id $spawn_id

---- Start the Telemetry Pipe, passing -E. option to psci ----
spawn S$basedir/S$tools/bin/tlmclient S$env (ACISSERVER) -ES$Senv (ACISTTMFILE)
sleep 1

match max 400

---- Locate address of ndhk strucure ----
lassign [exec grep {D ndhk} "./opt deahktrip.map"] addr

---- Load Patches ----

cold boot

load _patch list "Sbasedir/sStools/share/opt printswhouse.bcmd\
$basedir/stools/share/opt tlmio.bcmd\
$basedir/$tools/share/opt dearepl.bcmd\
./opt_deahktrip.bcmd"

warm_boot

---- Upload initial ndhk structure with red limits of 9/18/2017 ----

set ndhk "0 2 $delay $cmdId 12 1 2060 4096 0 0 O"

foreach ii {2297 2314 2266 2289 2274 2281 2306 2259 2281 2266 2266 2306} {
append ndhk " $ii 4096 0"

send -i $cmd id "write [incr nemd] 0x$addr {\n$ndhk\n}\n"
command_echo 1 192 {initialize ndhk}

---- Power up FEPs and video boards ----

power on boards $ccd list

set timeout 300

expect -re "SWSTAT FEPMAN ENDLOAD: 5\ [\r\nl+" {} timeout { fail timeout }

07/10/18 Flight S/W Patches, Revision G-H-|
14:40:54 deahktrip/testsuite/smoke/runtest.tcl

---- Start DEA Housekeeping ----

send -i $cmd id "load [incr ncmd] dea 4 {[deaHkPblock 10] }\n"
command_echo 1 13 "load dea"

send -1 $cmd_id "start [incr ncmd] dea 4\n"

command_echo 1 18 "start dea housekeeping"

---- Prepare image loader and load a bias image
system make loaderselect bias

---- Load and start TE science run ----

send -i $cmd _id "load [incr ncmd] te 4 { [teImagePblock Sccd _list S$pmode $phist] }\n"
command_echo 1 9 "load te"

send -1 $cmd _id "start [incr ncmd] te 4\n"

command _echo 1 14 "start te science run"

---- Wait for data packets, then send image with events to image loader ----
set timeout $delay

expect -re "SWSTAT FEP STARTDATA\ ["\r\n]+*\[\r\n]+" {} timeout { fail timeout }
system make image RATE=S$datarate

expect -re "dataTe\["\r\n]l*\[\r\nl+" {} timeout { fail timeout }

---- Examine the remaining packets ----
expect {
-re "bepReadReply\ [*\r\n] *commandId=$cmdId\ [“\r\n]*\
requestedAddress=0x$addr\ ["\r\n] *\ [\r\n]+" {
incr nbeprep ; exp continue
}
-re "scienceReport\ [*\r\n]*\
terminationCode=17\ [\r\n]+"
incr nscirep ; exp continue
}
-re "engineeringPseudo\ ["\r\n] *\
bilevels\=(\[0-9]+)\ [\r\n]+" {
if {[expr ($expect out(1l,string) & 15) == 14]} {
incr nbilevel
}

if {$nbilevel < 1 || S$nbeprep != 1 || S$nscirep != 1} {
exp _continue
}

pass " $nbilevel bilevels, $nbeprep BEP reads, S$nscirep sci reports "

}

-re "deaHousekeepingData\ [*\r\n]*\[\r\n]+" {
if {[incr ndeahk] == 4}
send -i $cmd id "write [incr ncemd] 0x$addr {\n$state\n}\n"

if {$ndeahk < 100} { exp continue }

}

timeout { }

}

---- Fall through on timeout or 100+ housekeeping packets ----
fail " $nbilevel bilevels, S$nbeprep BEP reads, S$nscirep sci reports "

05/07/18 Flight S/W Patches, Revision G-H-|
11:05:01 deahktrip/testsuite/smoke/aux.tcl

---- Return standard Board 11 DEA Housekeeping Block ----
proc deaHkPblock {rate} {
set str "\ndeaBlockId = 0x0000abcd\nsampleRate = 10\n"
for {set id 0} {$id <= 40} {incr id} {
if {$id != 13 && $id != 14 && ($id < 21 || $id > 24)} {
append str " queries = {\n\tccdId = 10\n\tqueryId = $id\n }\n"
}
}
return S$str

}

---- Return TE faint with image loader parameter block ----

proc teImagePblock {ccds pmode phist} {
return "
parameterBlockId = 0x00000000
fepCcdSelect = Sccds
fepMode = 2 # FEP_TE MODE EV3x3
bepPackingMode = S$pmode
onChip2x2Summing =0
ignoreBadPixelMap =0
ignoreBadColumnMap =0
recomputeBias =1
trickleBias =0
subarrayStartRow =0
subarrayRowCount = 1023
overclockPairsPerNode = 8
outputRegisterMode = 0 # QUAD FULL
ccdvVideoResponse = 000000
primaryExposure = 32
secondaryExposure =0
dutyCycle =0
fepOEventThreshold = 100 100 100 100
feplEventThreshold = 100 100 100 100
fep2EventThreshold = 100 100 100 100
fep3EventThreshold = 100 100 100 100
fep4EventThreshold = 100 100 100 100
fep5EventThreshold = 100 100 100 100
fepOSplitThreshold = 50 50 50 50
feplSplitThreshold = 50 50 50 50
fep2SplitThreshold = 50 50 50 50
fep3SplitThreshold = 50 50 50 50
fep4SplitThreshold = 50 50 50 50
fep5SplitThreshold = 50 50 50 50
lowerEventAmplitude =0
eventAmplitudeRange = 3750
gradeSelections = OxFffffffff OxEfffffff OxfFfEfFffFfff OxEEfEfFFF\

OxEEffEfff OxEfEfEffffff OxELfffffff OxELfffffff

windowSlotIndex = 65535
histogramCount = S$phist
biasCompressionSlotIndex =111113
rawCompressionSlotIndex = 2
ignoreInitialFrames = 2
biasAlgorithmId =111111
biasArg0 =111111
biasArgl =2 22222
biasArg2 = 000000
biasArg3 = 000000
biasArg4d = 000000
fepOVideoOffset = 92 33 33 33
feplvideoOffset = 43 33 43 23
fep2videoOffset = 33 33 33 33
fep3videoOffset = 33 33 33 33
fep4videoOffset = 33 33 33 33

fep5vVideoOffset = 33 33 33 33

05/07/18 Flight S/W Patches, Revision G-H-|

11:05:01 deahktrip/testsuite/smoke/aux.tcl
deaLoadOverride =0
fepLoadOverride =0

}

---- Return TE with DEA parameter block ----

proc teDeaPblock {ccds del} {

foreach ii [list \

{ o0 {21 14 16 14} {121 34 37 37} 1 } \
{ 1 {10 10 12 10} { 51 29 51 21} 1 } \
{ 2 {10 10 10 10} { 40 31 50 50} 1 } \
{ 3 {13 13 14 13} { 34 38 38 37} 1 } \
{ 4 {14 15 14 13} { 41 30 50 42} 1 } \
{ 5 {14 14 14 13} { 40 35 43 34} 3 } \
{ 6 {10 10 11 10} { 32 48 38 32} 1 } \
{ 7 {14 14 15 13} { 35 41 44 40} 3 } \
{ 8 {910 9 9} { 21 42 14 34} 1 } \
{ 9 {12 12 12 11} { 35 36 35 35} 1 } \
{to { o o o o}{ o 0o 0 0} 0} \
{

lassign $ii n
lassign $ii m thr($n) vid(sSn) cmp(Sn)

}

set fep O
foreach n $ccds
append ft "\n feps${fep}EventThreshold = $thr(sn)"

append fv "\n fep${fep}videoOffset =";
foreach ii $vid($n) {
append fv " [expr $ii + $del]™

append bc " Scmp($n)"
incr fep

}

return "
parameterBlockId = 0x00fffo024
fepCcdSelect = $Sccds
fepMode = 2 # FEP_TE MODE EV3x3
bepPackingMode = 0 # BEP_TE_MODE FAINT
onChip2x2Summing =
ignoreBadPixelMap =
ignoreBadColumnMap =
recomputeBias =
trickleBias =
subarrayStartRow =
subarrayRowCount =
overclockPairsPerNode =
outputRegisterMode =
ccdVideoResponse =
primaryExposure =
secondaryExposure =
dutyCycle = 0Sft
fepOSplitThreshold = 5
feplSplitThreshold = 5
fep2SplitThreshold = 5
fep3SplitThreshold = 8
8
5

023

QUAD FULL
00000

OwWooowHrookr oo o

fep4SplitThreshold =
fep5SplitThreshold =
lowerEventAmplitude =5
eventAmplitudeRange = 50
gradeSelections = OxXffffffff OxEffffffff OxEffffffff OxELff£ffEff\
OxEfEfffffff OxEfffffff OxELfffffff Ox7EELfffff

U1 00 © Ul U1 Ll
U1 00 © Ul U1 Ll
U1 00 © Ul U1 Ll

05/07/18 Flight S/W Patches, Revision G-H-|

11:05:01 deahktrip/testsuite/smoke/aux.tcl
windowSlotIndex = 65535
histogramCount =0
biasCompressionSlotIndex = $bc
rawCompressionSlotIndex = 2
ignoreInitialFrames =5
biasAlgorithmId = 1 1 1 1 1 1
biasArgo = 1 1 1 1 1 1
biasArgl = 3 3 3 3 3 3
biasArg2 = 20 20 20 20 20 20
biasArg3 = 0 0 0 0 0 0
biasArg4 = 20 20 20 20 20 20Sfv
dealLoadOverride =0
fepLoadOverride =0
}
---- Construct TE block from a CCD list ----
proc teDeaPblock2 {ccds del} {
---- Ccdld, EventThresholds, VideoOffsets ----

CcdId 0, 1, 2, 3, 5, 7 calibrated
foreach ii [list \

{o{7 7 7 7} {803333233} 1501} \
{1 {4 4 4 4} {43 33 43 23 } 150 } \
{2{4 4 4 4} { 33333333} 1501} \
{3{6 6 6 6} { 333333331} 1501} \
{4{4 4 4 4} {333333331} 150} \
{s {7 7 7 7} {33332332331} 326} \
{6 {4 4 4 4} { 333333233} 1501} \
{7{7 7 7 7} {33 3333233} 3261} \
{8 {4 4 4 4} {33333333} 1501} \
{9{4 4 4 4} { 333333331} 1501} \
{to {o o o o}{ o o 0o 0}o0o 07} N\
{

1

assign $ii nn thr($nn) off (Snn) bc($nn) ba3 (Snn)

foreach ii {0 1 2 3 4 5} {
set cc [lindex Sccds $iil]

append thl "\n fep${ii}EventThreshold =$thr (Scc) "
append th2 "\n fep${ii}SplitThreshold =4 4 4 4
append vid "\n feps${ii}VvideoOffset =$off (Scc) "

append bcomp " $bc($cc)"

append barg3 " S$ba3 ($Scc)"
}
return "
parameterBlockId = 0x00000001
fepCcdSelect = Sccds
fepMode = 2 # FEP_TE MODE EV3x3
bepPackingMode = 0 # BEP_TE_MODE_ FAINT
onChip2x2Summing =
ignoreBadPixelMap =
ignoreBadColumnMap =
recomputeBias =
trickleBias =
subarrayStartRow =
subarrayRowCount =
overclockPairsPerNode =
outputRegisterMode =
ccdvVideoResponse =
primaryExposure =
secondaryExposure =
dutyCycle = 0 $thl $th2
lowerEventAmplitude =0
eventAmplitudeRange = 3750
gradeSelections = Oxfeffffff OxEfffffff Oxfffffffb OxEEfEff7ff\

023

QUAD FULL
000O0O
2

oOwoooworokrr ooo

05/07/18 Flight S/W Patches, Revision G-H-|

11:05:01 deahktrip/testsuite/smoke/aux.tcl
Oxffffffff OxEffffffff Oxffbfffff Ox7Efffffff

windowSlotIndex = 65535

histogramCount =0

biasCompressionSlotIndex =Sbcomp

rawCompressionSlotIndex = 2

ignoreInitialFrames = 100

biasAlgorithmId =1 1 1 1 1 1

biasArg0 =2 2 2 2 2 2

biasArgl =5 5 5 5 5 5

biasArg2 =0 0 0 0 0 O

biasArg3 =$barg3

biasArg4 = 20 20 20 20 20 20 s$vid

deaLoadOverride =0

fepLoadOverride =0

}

proc report {id} {
global ndeahk nbilevel nbeprep nscirep
puts "---- $id $ndeahk hk $nbilevel blv $nbeprep bep $nscirep sci ----"

}

ECO No.
36-1054

ENGINEERING CHANGE ORDER

KAVLI INSTITUTE FOR ASTROPHYSICS AND SPACE RESEARCH
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DRAWING NO. | REVISION DRAWING TITLE

36-58021.04 I Flight Software Patch Release G-H-I Certification

REASON FOR CHANGE:

Certification of standard patch release G, which includes the updated buscrash patch, along
with the optional patch deahktrip.

DESCRIPTION OF CHANGE:

Two optional patch combinations are certified as release G-H-I: the first is smtimedlookup,
eventhist, cc3x3, compressall and txings, which includes the updated buscrash patch; the
second comprises smtimedlookup, eventhist, cc3x3, compressall, txings and deahktrip, also
with the new buscrash. The certification tests are made with this combination of optional
release H patches, along with the full set of standard patches, release F.

SIGNATURE DATE |REMARKS
ORIGINATOR PGF 06/29/18 Signatute on file
MECHANICAL
ELECTRICAL DA 06/29/18 Signature on file
SOFTWARE JEF 06/29/18 Signature on file
STRUCTURE
FABRICATION
SCIENCE
SYSTEMS ENG.
QUALITY RB 06/29/18 Signatute on file
PROJ. ENGINEER RFG 06/29/18 Signature on file
DEprPUTY PM

PROJ. MANAGER
APM RELEASE

07/02/18 Flight S/W Patches, Revision G-H-|
17:45:42 cc3x3+eventhist+compressall+txings.notes

TITLE: ACIS cc3x3, eventhist, txings, compressall, smtimedlookup Patch Certification Re
lease Notes

DOCUMENT NUMBER: 36-58021.03 REVISION: I

ORIGINATOR: Peter G. Ford <pgfe@space.mit.edus>

LETTER SCO NO. DESCRIPTION APPROVED DATE

G 36-1046 Certify Rev-E-Opt-F patches RFG 03/02/2011
H 36-1049 Certify Rev-F-Opt-G patches RFG 12/16/2013
I 36-1054 Certify Rev-G-Opt-H patches RFG 06/29/2018
I 36-1054 Certify Rev-G-Opt-H patches

07/02/18 Flight S/W Patches, Revision G-H-|
17:45:42 cc3x3+eventhist+compressall+txings.notes

Title: ACIS cc3x3, eventhist, txings, compressall, smtimedlookup Patch Certification Re
lease Notes for Version I

Software Change Order: 36-1054

Build Date: Mon Jul 2 17:45:42 EDT 2018
Part Number: 36-58021.03

Version: I

CVS Tag: cc3x3+eventhist+compressall +txings-G-H-I
Std Number: 36-58010

Std Version: G

Std Tag: review-release-G

Std SCO: 36-1048

Opt Number: 36-58020

Opt Version: H

Opt Tag: review-release-G-opt-H

Opt SCO: 36-1048

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

Description:
This certification verifies the operation of the Continuous Clocking
3x3, Event Histogram, Compress All, Science Mode Timed Lookup, and
Threshold Crossing Trigger Patches.

The certification consists of six tests, copied from the original test
run during the Options Release. The tests have been modified to load
all four optional patches, rather than just one at a time, and to clean
up some false failures due to timing/pattern matching issues in the
tests.

The tests verify that the patch modes run as they did during the
original test when they are both installed into the system.

The Continuous Clocking 3x3 (cc3x3) test consists of two parts. The
first launches a CC3x3 run, whereas the second runs CClx3. This suite
performs CClx3 tests to verify that the modifications to the existing
BEP Continuous Clocking functions do not break the existing CC1x3
functionality. Since the FEP software only contains CC3x3 code during
CC3x3 runs (this is verified by the CC1lx3 run), and no BEP functions
used by Timed Exposure are modified by the patch, the Timed Exposure
modes do not need to be re-tested as part of this certification.

Each test sends a series of events on the right side of each quadrant
(the original test was derived from the test for the rquad bug fix),
and verifies that the mode runs nominally, and produces the expected
event list. Since the "stop" critereon for the test is a little fuzzy,
the runs tend to produce additional exposures that aren’t in the file
used to check the run’s event output. "diff" used in the test produces
mismatches on the additional exposures produced by the test run. Manual
check of the run data shows that the event lists are replicated
correctly by the run. Later, a "wrapping" comparison may be developed
to eliminate this manual step.

The Event Histogram test uses a similar strategy to the CC3x3 test. It
starts an Event Histogram run, and sends in a series of standard

07/02/18 Flight S/W Patches, Revision G-H-|
17:45:42 cc3x3+eventhist+compressall+txings.notes

events. It then compares the resulting quadrant histograms with an
example file to verify the results.

One caveat that arose during the review of the Optional patches is
that, when the standard patch "zaplexpo" is present, which it should
always be, the first exposure of event histogram mode will not contain
any events. This will cause the first histogram from each FEP quadrant
to appear to have been integrated for 1 less frame time than subsequent
quadrant histograms. This is different than Raw Histogram mode, which
is not affected by the "zaplexpo" patch. The histogram example file
used for this certification assumes that no events are sent during
exposure 2 (the first "real" exposure of the run).

The smTimedExposure patch is tested by merely running a timed-exposure
faint run, verifying that the bias and event detection phases have been
invoked, and then stopping the run.

The Compress All patch is tested by copying an image to the image
loader that contains several very "noisy" rows that are known to be
incompressible by the Huffman tables. A timed-exposure raw-mode run is
executed and the pixelCount field of the dataTeRaw packets of a couple
of raw frames is monitored. The test fails if pixelCount is ever zero.

The Threshold Crossing Trigger patch, txings, conducts a series of
science runs -- timed exposure 3x3, event histogram, and raw, and
continuously clocked 3x3, 1x3, and raw, increasing the threshold
crossing rate and monitoring the ACIS bi-levels for the trigger signal,
accompanied by the appropriate bepReadReply packet.

Included Patches:
cc3x3
eventhist
txings
compressall
smtimedlookup

Test Support Patches:
tlmio
dearepl
printswhouse

Test Results:
smtimedlookup --> PASS
cc3x3 --> PASS
eventhist --> PASS
eventhist2 --> PASS
compressall --> PASS
txings --> PASS

Regression Results:
corruptblock --> PASS

digestbiaserror --> PASS
histogramvar --> PASS
rquad --> PASS
histogrammean --> PASS

zaplexpo --> PASS
condoclk --> PASS
fepbiasparity2 --> PASS
fepbiasparity2 --> PASS

07/02/18 Flight S/W Patches, Revision G-H-|
17:45:42 cc3x3+eventhist+compressall+txings.notes

cornermean --> PASS
tlmbusy --> PASS
buscrash --> PASS
badpix --> PASS
buscrash2 --> PASS
buscrash2 --> PASS
buscrash2 --> PASS

07/02/18 Flight S/W Patches, Revision G-H-I
22:53:41 cc3x3+eventhist+compressall+txings+deahktrip.notes

TITLE: ACIS cc3x3, eventhist, txings, compressall, deahktrip, smtimedlookup Patch Certi
fication Release Notes

DOCUMENT NUMBER: 36-58021.03 REVISION: I

ORIGINATOR: Peter G. Ford <pgfe@space.mit.edus>

LETTER SCO NO. DESCRIPTION APPROVED DATE

G 36-1046 Certify Rev-E-Opt-F patches RFG 03/02/2011
H 36-1049 Certify Rev-F-Opt-G patches RFG 12/16/2013
I 36-1054 Certify Rev-G-Opt-H patches RFG 06/29/2018
I 36-1054 Certify Rev-G-Opt-H patches

07/02/18 Flight S/W Patches, Revision G-H-I
22:53:41 cc3x3+eventhist+compressall+txings+deahktrip.notes

Title: ACIS cc3x3, eventhist, txings, compressall, deahktrip, smtimedlookup Patch Certi
fication Release Notes for Version I

Software Change Order: 36-1054

Build Date: Mon Jul 2 22:53:41 EDT 2018
Part Number: 36-58021.03

Version: I

CVS Tag: cc3x3+eventhist+compressall+txings-deahktrip-G-H-I
Std Number: 36-58010

Std Version: G

Std Tag: review-release-G

Std SCO: 36-1048

Opt Number: 36-58020

Opt Version: H

Opt Tag: review-release-G-opt-H

Opt SCO: 36-1048

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

Description:
This certification verifies the operation of the Continuous Clocking
3x3, Event Histogram, Compress All, Science Mode Timed Lookup,
Threshold Crossing Trigger, and DEA H/K Temperature Alert Patches.

The certification consists of seven tests, copied from the original test
run during the Options Release. The tests have been modified to load

all five optional patches, rather than just one at a time, and to clean
up some false failures due to timing/pattern matching issues in the
tests.

The tests verify that the patch modes run as they did during the
original test when they are both installed into the system.

The Continuous Clocking 3x3 (cc3x3) test consists of two parts. The
first launches a CC3x3 run, whereas the second runs CClx3. This suite
performs CClx3 tests to verify that the modifications to the existing
BEP Continuous Clocking functions do not break the existing CC1x3
functionality. Since the FEP software only contains CC3x3 code during
CC3x3 runs (this is verified by the CC1lx3 run), and no BEP functions
used by Timed Exposure are modified by the patch, the Timed Exposure
modes do not need to be re-tested as part of this certification.

Each test sends a series of events on the right side of each quadrant
(the original test was derived from the test for the rquad bug fix),
and verifies that the mode runs nominally, and produces the expected
event list. Since the "stop" critereon for the test is a little fuzzy,
the runs tend to produce additional exposures that aren’t in the file
used to check the run’s event output. "diff" used in the test produces
mismatches on the additional exposures produced by the test run. Manual
check of the run data shows that the event lists are replicated
correctly by the run. Later, a "wrapping" comparison may be developed
to eliminate this manual step.

The Event Histogram test uses a similar strategy to the CC3x3 test. It
starts an Event Histogram run, and sends in a series of standard

07/02/18 Flight S/W Patches, Revision G-H-I
22:53:41 cc3x3+eventhist+compressall+txings+deahktrip.notes

events. It then compares the resulting quadrant histograms with an
example file to verify the results.

One caveat that arose during the review of the Optional patches is
that, when the standard patch "zaplexpo" is present, which it should
always be, the first exposure of event histogram mode will not contain
any events. This will cause the first histogram from each FEP quadrant
to appear to have been integrated for 1 less frame time than subsequent
quadrant histograms. This is different than Raw Histogram mode, which
is not affected by the "zaplexpo" patch. The histogram example file
used for this certification assumes that no events are sent during
exposure 2 (the first "real" exposure of the run).

The smTimedExposure patch is tested by merely running a timed-exposure
faint run, verifying that the bias and event detection phases have been
invoked, and then stopping the run.

The Compress All patch is tested by copying an image to the image
loader that contains several very "noisy" rows that are known to be
incompressible by the Huffman tables. A timed-exposure raw-mode run is
executed and the pixelCount field of the dataTeRaw packets of a couple
of raw frames is monitored. The test fails if pixelCount is ever zero.

The Threshold Crossing Trigger patch, txings, conducts a series of
science runs -- timed exposure 3x3, event histogram, and raw, and
continuously clocked 3x3, 1x3, and raw, increasing the threshold
crossing rate and monitoring the ACIS bi-levels for the trigger signal,
accompanied by the appropriate bepReadReply packet.

The DEA H/K Thermal Trip patch starts a Timed Exposure Faint 3x3 event
mode science run and, once the BEP output buffers are full, sends a
"writeBep" command to trigger an alert. The test succeeds if it reads
a "scienceReport" and a "bepReadReply" packet and if the software
bilevels report a "1110" (14) wvalue.

Included Patches:
cc3x3
eventhist
txings
compressall
deahktrip
smtimedlookup

Test Support Patches:
tlmio
dearepl
printswhouse

Test Results:
smtimedlookup --> PASS
cc3x3 --> PASS
eventhist --> PASS
eventhist2 --> PASS
compressall --> PASS
txings --> PASS
deahktrip --> PASS

Regression Results:
corruptblock --> PASS

07/02/18 Flight S/W Patches, Revision G-H-I
22:53:41 cc3x3+eventhist+compressall+txings+deahktrip.notes

digestbiaserror --> PASS
histogramvar --> PASS
rquad --> PASS
histogrammean --> PASS
zaplexpo --> PASS
condoclk --> PASS
fepbiasparity2 --> PASS
fepbiasparity2 --> PASS
cornermean --> PASS
tlmbusy --> PASS
buscrash --> PASS
badpix --> PASS
buscrash2 --> PASS
buscrash2 --> PASS
buscrash2 --> PASS

	ECO 36-1053
	Standard G Optional H
	Existing patches
	New/updated patches

	Problem Reports
	SPR 140
	SPR 151

	ECO 36-1051
	Buscrash Rev B-
	1. Reasons for patch
	2. Description of original patch
	3. Update to the buscrash patch
	4. Controlled sources
	5. Testing
	5.1 Reproduce bus crash
	5.2 Reproduce failure to terminate
	5.3 Verify correct behavior

	Appendices
	A. Example of expect script
	B. Glossary

	ECO 36-1052
	Deahktrip Rev A-
	1. Reasons for patch
	2. Patch description
	3. Controlled sources
	4. Testing
	4.1 Verify behavior in format 2
	4.2 Verify behavior in format 1

	5. Makefile targets
	Appendices
	A. The runtest.tcl script
	B. Timing
	C. Glossary
	D. Applicable documents

	Standard Patches
	Release notes
	digestbiaserror
	badpix
	cornermen
	quad
	histogrammean
	corruptblock
	zap1expo
	tlmbusy
	fepbiasparity2
	buscrash
	bistogramvar
	buscrash2
	condoclk

	Optional Patches
	Release notes
	tlmio
	eventhist
	compressall
	ctireport1
	dearepl
	cc3x3
	deaeng
	reportgrade1
	txings
	ccignore
	teignore
	printswhouse
	deahktrip
	smtimedlookup
	ctireport2

	buscrash sources
	buscrash.C
	buscrash.pkg
	makebias
	bug-hw/runtest2.tcl
	bug-hw/runtest.tcl
	fix-hw/runtest.tcl

	deahktrip sources
	deahktrip.C
	deahktrip.pkg
	makebias.pl
	makeimage.pl
	runtest.tcl
	aux.tcl
	aux.tcl

	ECO 36-1054
	cc3x3+eventhist+compressall+txings
	cc3x3+eventhist+compressall+txings+deahktrip

