
ENGINEERING CHANGE ORDER
ECO No.
36–1045

CENTER FORSPACERESEARCH
MASSACHUSETTSINSTITUTE OFTECHNOLOGY

DWG. NO. NEW
REV. DRAWING TITLE

36-58010 F Flight Software Standard Patch Release E, Optional Release F

REASON FORCHANGE:
Add optional patch txings to accumulate threshold crossings and set special bi-level value
when conditions indicate an unacceptible level of background radiation.

DESCRIPTION OFCHANGE:
The txings patch replacesEventExposure::copyExpEnd () to accumulate threshold crossings
from all FEP frames that were processed by the pixel thresholders, and replacesLeds::show ()
to test the integrated crossing rates and, if these exceed pre-set thresholds, set the ACIS bi-
levels to a special value,LED_BOOT_SPARE1, that can be recognized by the OBC as a command
to "safe" the science instruments.

SIGNATURE DATE REMARKS:

ORIGINATOR RFG 03/02/11 Reviewed and signed-off

MECHANICAL

ELECTRICAL

SOFTWARE

STRUCTURE

FABRICATION

SCIENCE

SYSTEMSENG.

QUALITY

PROJ. ENGINEER

DEPUTY PM

PROJ. MANAGER

MIT CSR

ACIS

ECO 36–1045

- 2 -

Existing ACIS Flight Software Patches

ID Name Rev Size Part ECO SPR

Standard Release E

i corruptblock A 16 36–58030.01 994 113

ii digestbiaserror A 64 36–58030.02 995 116

iii histogramvar A 16 36–58030.03 999 115

iv biastiming A 112 36–58030.04 993 117

v rquad A 16 36–58030.14 1000 121

vi histogrammean A 156 36–58030.15 996 123

vii zap1expo A 64 36–58030.16 997 122

viii condoclk A 640 36–58030.17 1012 127

ix fepbiasparity2 A 504 36–58030.19 1015 130

x cornermean A 32 36–58030.21 1017 128

xi tlmbusy A 344 36–58030.29 1033 138

xii buscrash A 296 36–58030.30 1034 140

xiii badpix A 60 36–58030.31 1037 141

xiv buscrash2 B 428 36–58030.32 1041 142

Optional Release F

1 smtimedlookup A 3712 36–58030.24 1025 N/A

2 eventhist B 5908 36–58030.05 1025 N/A

3 cc3x3 B 4636 36–58030.06 1018 120,124,126

4 ctireport1 A 5452 36–58030.25 1026 N/A

5 ctireport2 A 2784 36–58030.26 1026 N/A

6 compressall A 2368 36–58030.27 1027 134

7 untricklebias B 1740 36–58030.28 1028 133

8 reportgrade1 A 816 36–58030.22 1021 131,132

9 txings A 3128 36–58030.33 1044 N/A

leaf teignore A 36 36-58030.09 1003 N/A

leaf ccignore A 36 36-58030.10 1004 N/A

Under Development

12 hybrid 03 6104 36–58030.13 1010 N/A

13 fepbiasparity1 02 36–58030.18 1014 N/A

14 squeegy 06 4412 36-58030.23 1023 N/A

15 forcebiastrickle 01 N/A 36-58030.29 1024 133

Engineering Unit Utility Patches

10 tlmio 02 10312 36–58030.07 1010 N/A

11 printswhouse 01 7224 36–58030.08 986 N/A

leaf deaeng 02 2604 36–58030.11 1010 N/A

leaf dearepl 02 556 36–58030.12 1010 N/A

ECO 36–1045

- 3 -

Status of Patch Release E, Optional Revision F

a. typographical errors in the documentation

b. review item discrepancies—requiring changes to the patch code and/or test procedures

Name Part Number Description Typos a RIDsb Status

txings 36–58030.33
(ECO 36-1044)

Report high background radia-
tion levels.

0 0
Reviewed and

signed off

S/W Review 36–58020
(ECO 36-1045)

Documentation accompanying
the individual patch ECOs 20 0

Reviewed and
signed off

Certification 36–58021.04
(ECO 36-1046)

Documentation describing the
multi-patch certification tests 1 0

Reviewed and
signed off

ENGINEERING CHANGE ORDER
ECO No.
36–1044

CENTER FORSPACERESEARCH
MASSACHUSETTSINSTITUTE OFTECHNOLOGY

DWG. NO. NEW
REV. DRAWING TITLE

36-58030.33 A Flight S/W patch to report high background radiation levels

REASON FORCHANGE:

Gradual deterioration of the EPHIN particle detector will likely leave ACIS exposed to dam-
age from low-energy charged particles. A study of 10 years of ACIS data and more than 50
radiation alerts shows that many periods of high background are associated with increasing
ACIS threshold crossing rates, which can be monitored by ACIS flight software with relative
ease.

DESCRIPTION OFCHANGE:

Thetxings patch accumulates threshold crossing rates for all active CCDs of each type (front-
and back-illuminated) during any timed exposure or continuous clocking run that uses the FEP
pixel thresholders. When the averaged rates are found to be increasing for a specified number
of integration periods, the software bi-levels are set toLED_BOOT_SPARE1, an otherwise un-
used value, so that the OBC can respond by "safeing" the science instruments.

SIGNATURE DATE REMARKS:

ORIGINATOR RFG 03/02/11 Reviewed and signed-off

MECHANICAL

ELECTRICAL

SOFTWARE

STRUCTURE

FABRICATION

SCIENCE

SYSTEMSENG.

QUALITY

PROJ. ENGINEER

DEPUTY PM

PROJ. MANAGER

MIT CSR

ACIS

To: ACIS Science Operations Team

From: Peter Ford, NE80-6071 <pgf@space.mit.edu>

Date: April 15th 2011

Subject: Using ACIS to detect and report high radiation conditions (v 1.3)

1. Introduction

With the continuing degradation of the EPHIN detector on board the Chandra X-Ray Observatory, we are
evaluating alternatives to the major function of that instrument: to report the electron and proton flux over a
range of energies, permitting the observatory to take the actions necessary to preserve its instruments during
times of high solar activity.

A recent analysis [Grant et al., 2010] has shown that, in certain circumstances, the signature of solar events
can be detected within the counts of CCD threshold crossings that are included in downlinked telemetry.
While that work continues, the current report examines whether it would be practical to develop a patch to
the existing ACIS flight software that could monitor threshold crossings and communicate an alarm to the
Chandra On-Board Computer (OBC).

2. ACIS Threshold Counts

Each active ACIS CCD sends its digitized pixel values to a Front End Processor (FEP), whose firmware dis-
criminates between values that are above and below a threshold. This threshold is determined by the sum of
(a) the value corresponding to that pixel in a pre-computed bias map; (b) a constant eventThreshold1 that is
uplinked to ACIS within the parameter block that controls the science run; and (c) a correction factor com-
puted from difference between the average “overclock” values from the previous CCD frame and those from
the first CCD frame that was used to compute the bias map. The three factors therefore represent the value
expected for an “eventless” pixel, plus an estimate of the variance in that value, plus a correction for the drift
in the DC sampling level during the course of the run.

The thresholding firmware fills a memory buffer composed of 32-bit words, each bit of which maps to 32
input pixels and is given the value 0 or 1 according to whether that pixel’s value is less than the threshold or
not. The FEP’s software need only read one word from this buffer to determine whether any of the corre-
sponding 32 pixels are “interesting”, thereby greatly speeding up its work of locating event candidates, i.e.,
local pixel maxima. During this process, the software retains a count of the number of threshold crossings
and sends this to the BEP after processing each CCD frame.

The only filtering that is performed on the threshold crossings is in the choice of eventThreshold in the run’s
parameter block. Each output node of each CCD can be assigned a different value, but in fact these have not
changed since launch—20 ADU for back-illuminated CCDs (BI: S1 and S3), and 38 for front-illuminated (FI:
I0–I3, S0, S2, S4, S5)—except when observing optically-bright sources, e.g., Jupiter and Saturn, when event-
Threshold for the observing CCD (typically S3) is increased to prevent the optical signal from contributing
false triggers. The choice of bias algorithm also systematically affects the threshold count. For timed-
exposure runs, the algorithm has not changed since launch: some minor adjustments have been made to its
parameters, but these have had no observed effect on the threshold rate. For continuous-clocking runs, the
bias algorithm was changed for FI CCDs in 2005, but again the average threshold rate was unaffected.

The metric that best represents the threshold crossing rate is the number per frame, divided by the number of
pixels exposed, and divided by the exposure time. The simplest algorithm therefore keeps a running sum of
threshold crossings and a second running sum of exposure times. At fixed intervals, the first is divided by the

 MIT Kavli Institute
 1 Hampshire Street

 Cambridge MA 02139–4307
 Tel: 617-253-7277

 Fax: 617-253-8084

 r e p o r t

1 In this report, names of command and telemetry packets and their fields are written in italics; the names of classes,
methods, objects, and variables of the ACIS flight software are written in a typewriter font.

mailto:pgf@space.mit.edu
mailto:pgf@space.mit.edu

second, yielding the average number of crossings per second per pixel row, and when the rising threshold
count rates exceed a predetermined value, an alarm is posted. In (un-summed) continuous clocking mode,
there are always 524288 pixels per exposure “frame” (512 rows of 1024 pixels), and they are always exposed
for 2.9184 seconds, as determined by the ACIS clock, which is accurate to a part in 105. In timed-exposure
mode, an exposure frame always consists of 1024 pixels per row, but the number of rows is specified by one
plus the value of the subarrayRowCount field in the parameter block. Similarly, the exposure time of the first
frame is 0.1*primaryExposure seconds, followed by dutyCycle frames at 0.1*secondaryExposure seconds, and so on.
To each of these exposure times, it is necessary to add 0.04104 seconds to account for the time taken to
transfer the pixels from the image store to the frame store.

3. Observed High Background Events

To choose suitable parameters for a radiation filter, all science runs in which ACIS ran in event-mode in the
focal plane were examined and their threshold crossing rates were averaged over 300 second intervals. The
rates for CCD_I3 (front-illuminated) and CCD_S3 (back-illuminated) are shown in Figure 1. To reduce the
number of points plotted, all I3 rates that exceed 10 crossings/row/sec are shown, as are all S3 rates above
1.0 crossings/row/sec. In addition, the rates for every 50th interval, irrespective of rate, are also plotted in
order to show the normal range of crossing rates for these CCDs. The points are colored to distinguish those
from “valid” and “rejected” runs. The latter include observations of the Crab Nebula and Jupiter (usually
with S3) and two periods of FEP hardware anomalies (T-plane latch-up and bias parity plane anomalies.)

The gentle rise in the rates for “valid” runs from 2001 through 2009 has also been seen in background event
rates, and is probably due to the increase in cosmic ray background during that part of the solar cycle. The
high “rejected” I3 rates in 1999 and in early 2002 are due to the FEP hardware anomalies.

Figure 1: Threshold crossing rates for I3 and S3

USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS V 1.3

2

4. A Possible Trigger Algorithm

The FEP hardware anomalies can be filtered out by ignoring any exposure in which the number of threshold
crossings exceeds some fraction of the available pixels. A simple radiation threshold algorithm (ignoring
summed-pixel modes) takes the following form:

The following table shows the triggers that resulted from running the algorithm over all OBSIDs, when ACIS
was in the focal plane, from November 1999 through April 2011, for the optimum choice of parameters:
MAX_TX_PER_ROW=512, MINUTES=5, RATE_LIMIT[0]=6.75+0.025*y , RATE_LIMIT[1]=0.4+0.02*y ,
TX_INCR[0]=TX_INCR[1]=0.02, and TRIGGER_COUNT=5. y is the number of years past 2000.0. The FB col-
umn indicates the type and number of CCDs that caused the trigger, and the N column shows how many
consecutive 5-minute intervals were found to exceed the threshold criteria.

The filter triggered during 13 runs, 7 of which were terminated by EPHIN and 2 by ground command due to
high radiation fluxes. EPHIN E1300 rates during the remaining OBSIDs, 2344, 4365, 58650, and 56867 were
only slightly below the RADMON trigger threshold.

1. For each exposure of each active CCD:
a. Ignore if thresholdPixels > MAX_TX_PER_ROW * (subarrayRowCount+1) (timed exposures)

Ignore if thresholdPixels > MAX_TX_PER_ROW * 512 (continuous clocking)
b. Add thresholdPixels to crossings accumulator for this CCD, threshold[nccd].
c. Add exposure time to the time accumulator for this CCD, exposure[nccd], i.e.,

 0.1 * primaryExposure + 0.04104 secs (timed exposures)
or 0.1 * secondaryExposure + 0.04104 secs if (exposureNumber % (dutyCycle+1))
or 2.9184 seconds (continuous clocking)

2. After a suitable integration time, MINUTES minutes:
a. Compute the average threshold rate (r) in crossings per row per second, i.e.,

r = threshold[nccd] / exposure[nccd] / (subarrayRowCount + 1) (timed exposures)
 threshold[nccd] / exposure[nccd] / 512 (continuous clocking)

b. Inspect the average rates of all active front-illuminated CCDs.
If they all exceed a preset threshold, RATE_LIMIT[0], save their average; otherwise save 0.

c. Inspect the average rates of all active back-illuminated CCDs.
If they all exceed a preset threshold, RATE_LIMIT[1], save their average; otherwise save 0.

3. If either the front-illuminated or the back-illuminated average rate is non-zero, and has increased by
more than TX_INCR[i] (i=0,1) for each of TRIGGER_COUNT consecutive integration intervals, sound
the alarm.

 Date Phase Run OBSID Mode FB N Target
 1. 2000-11-24 acis6 41 2344 Te3x3 FI5 9 HDF_NORTH
 2. 2001-04-03 acis7 180 1578 Te3x3 FI4 19 NGC4111 (RADMON)
 3. 2001-09-24 acis10 79 1890 Te3x3 FI4 5 HD_93497 (RADMON)
 4. 2001-11-04 acis10 165 2010 Te3x3 BI2 7 PSR0628-28 (TPLANE_LATCHUP) (RADMON)
 5. 2001-11-21 acis11 29 3389 Te5x5 FI4 5 HDF-N (RADMON)
 6. 2002-03-18 acis12 175 3463 Cc3x3 BI2 5 RX_J170930.2-26 (SCS107)
 7. 2002-04-21 acis13 40 61227 Te3x3 FI5 5 FAINT_MODE_I (RADMON)
 8. 2002-08-21 acis14 210 4365 Te3x3 FI5 5 GROTH-WESTPHAL_
 9. 2002-08-23 acis14 217 2783 Te5x5 BI1 8 SNR_N157B (RADMON)
10. 2004-11-07 acis27 10 6152 Te5x5 BI2 5 M101 (SCS107)
11. 2005-09-07 acis31 107 5760 Te5x5 FI5 7 CL0216-1747 (RADMON)
12. 2006-12-13 acis38 163 58650 Te3x3 BI2 5 CTI_CAL_S
13. 2009-08-28 acis56 38 56867 Te3x3 FI5 6 CTI_CAL_I

V 1.3 USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS

3

5. Sending a Trigger to the OBC

All communication to and from
the ACIS instrument passes
through a Remote Command &
Telemetry Unit (RCTU). Most
output channels are assigned to
thermistors and to sensors on
the Power Supply and Mecha-
nism Controller (PSMC), and
are inaccessible to the flight
software, whose principal out-
put flows through a serial digi-
tal interface in a structured se-
ries of telemetry packets. While it would be simple to reprogram a currently unused field in one of the packet
formats to use as a radiation alarm, the packets are written asynchronously to the RCTU, making it next to
impossible for the OBC to locate a particular packet field within the 24 kbps serial channel.

Happily, there is an alternative in the form of a set of 8 bi-levels, 1-bit signal channels that are sent to the
RCTU through a separate path. These can easily be accessed by the OBC in much the same way that it moni-
tors the EPHIN output channels. The 8 bi-levels are shown in Table 1. Four (1STAT7ST–1STAT4ST) are con-
trolled by DPA hardware and report on the status of the DPA and its input command FIFO. The remainder
(1STAT3ST–1STAT0ST) are controlled by the flight software executing within the BEP.

The 16 combinations that can be assigned to the 4 bits under flight software control are shown in Table 2.
Note that the BEP only uses the first 8 values during normal operations and 6 of the remainder when boot-
ing up, leaving two values completely unused. Chandra telemetry from 1999 through 2010 has been examined
and in no single case has either of these “spare” bi-level values been reported.

In normal science operation, the BEP’s software housekeeping task calls its Leds::show() method (Figure 2)
every 640 task interrupts (~64 seconds) to report 1STAT3ST, 1STAT2ST and 1STAT1ST, and to toggle the
value of 1STAT0ST. doLeds() in turn calls Leds::show() to drive the hardware. It is a simple matter to insert
code into this process to monitor threshold counts within the BEP and to force the four low-order bi-levels
to the LED_BOOT_SPARE1 state.

Table 2. ACIS Flight Software Bi-Level Assignments

State Symbol Bit Pattern Instrument State

LED_WD_SCIENCE_A x x x x 0 0 0 0 Most recent boot was from watchdog timer
(patches not installed). Performing Science Run.LED_WD_SCIENCE_B x x x x 0 0 0 1
Most recent boot was from watchdog timer
(patches not installed). Performing Science Run.

LED_WD_IDLE_A x x x x 0 0 1 0 Most recent boot was from watchdog timer
(patches not installed). Not performing science run.LED_WD_IDLE_B x x x x 0 0 1 1
Most recent boot was from watchdog timer
(patches not installed). Not performing science run.

LED_RUN_SCIENCE_A x x x x 0 1 0 0 Most recent boot was commanded.
Performing Science Run.LED_RUN_SCIENCE_B x x x x 0 1 0 1
Most recent boot was commanded.
Performing Science Run.

LED_RUN_IDLE_A x x x x 0 1 1 0 Most recent boot was commanded.
Not performing science run.LED_RUN_IDLE_B x x x x 0 1 1 1
Most recent boot was commanded.
Not performing science run.

LED_RUN_STARTUP x x x x 1 0 0 0 Task executive is starting up
LED_RUN_PATCH x x x x 1 0 0 1 Resetting patch list
LED_BOOT_UPLINK_EXECUTE x x x x 1 0 1 0 Calling loaded program
LED_BOOT_UPLINK_COPY x x x x 1 0 1 1 Waiting for “Continue Upload” packets
LED_LBOOT_UPLINK_WAIT x x x x 1 1 0 0 Waiting for “Start Upload” packet
LED_BOOT_SPARE1 x x x x 1 1 0 1 Unused: to be assigned to the ACIS radiation alert
LED_BOOT_SPARE2 x x x x 1 1 1 0 Unused
BOOT_RESET x x x x 1 1 1 1 Software is starting up

USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS V 1.3

4

Table 1. ACIS Bi-Level Bit Assignments
Bit Symbol Bit Pattern Instrument State
1STAT7ST 1 0 0 0 0 0 0 0 BEP input FIFO: 0=empty, 1=not empty
1STAT6ST 0 1 0 0 0 0 0 0 BEP FIFO: 0=full, 1=not full
1STAT5ST 0 0 1 0 0 0 0 0 BEP CPU state: 0=halted, 1=running
1STAT4ST 0 0 0 1 0 0 0 0 ID of active BEP: 0=A, 1=B
1STAT3ST 0 0 0 0 1 0 0 0 Software state: 0=running, 1=loading
1STAT2ST 0 0 0 0 0 1 0 0 Software startup: 0=watchdog, 1=normal
1STAT1ST 0 0 0 0 0 0 1 0 Science run: 0=running, 1=idle
1STAT0ST 0 0 0 0 0 0 0 1 Software toggle: alternating 0 or 1

Figure 2. The Leds::show() method

void Leds::show(unsigned value)
{
! bepReg.showLeds(value);
}

6. Patching the Flight Software

To determine where best to patch the flight software to accumulate the threshold counts, it is necessary to
review the BEP architecture. Event records are read from the FEP-BEP ring buffers by the process-
Record() methods of the PmEvent, PmHist, and PmRaw classes. Each calls EventExposure::copyExpEnd()
to parse the FEPexpEndRec records that contain thresholds, the count of threshold crossings, and expnum,
the exposure number, but this routine (see Figure 3) doesn’t have access to the ccdId that labels the record
and which will be needed to accumulate the crossings from that particular CCD.

Figure 3. The original copyExpEnd() method

void EventExposure::copyExpEnd(const FEPexpEndRec* dataptr)
{
! if ((expNum + 1) != dataptr->expnum) {
! ! swHousekeeper.report (SWSTAT_SCI_EXPEND_EXPNUM, dataptr->expnum);
! }
! expThresholdCnt = dataptr->thresholds;
! expParityErrs = dataptr->parityerrs;
}

Luckily, the MIPS CPU architecture makes it relatively easy to make inline patches that permit additional ar-
guments to be passed to subroutines. In the current case, described in detail in Section 8 below, we shall patch
the routines that call copyExpEnd() in order to pass an extra argument. When processRecord() is called with
a PmEvent object, this argument will be the address of the object, but for other callers, i.e., PmRaw or PmHist
(i.e. raw frame or raw histogram mode), the argument will be null to show that these modes don’t count
threshold crossings. Since PmEvent is a sub-class of ProcessMode, the ccdId value can then be determined
by a call to getCcdId(). A suitable replacement for copyExpEnd() is shown in Figure 4. It is called with an
object of class EventExposure, and it calls saveTXings() with a static TXings object named txings (see
Figure 5) in which the threshold crossing accumulators are to be stored.

Figure 4. Replacement for copyExpEnd()
void
Test_EventExposure::copyExpEnd(const FEPexpEndRec* dataptr, const ProcessMode* pm)
{
! if ((expNum + 1) != dataptr->expnum) {
! ! swHousekeeper.report (SWSTAT_SCI_EXPEND_EXPNUM, dataptr->expnum);
! }
! expThresholdCnt = dataptr->thresholds;
! expParityErrs = dataptr->parityerrs;

! // if called from PmEvent::processRecord(), save threshold counts
! if (pm != (ProcessMode*)0) {
! ! txings.saveTXings(pm->getMode(), pm->getCcdId(),
! ! ! dataptr->expnum, expFepTime, expThresholdCnt);
! }
}

V 1.3 USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS

5

Figure 5. The TXings class
#define private public
#include "filesscience/smtimedexposure.H"
#include "filesscience/smcontclocking.H"
#undef private
#include "filesscience/sciencemanager.H"
#include "filesswhouse/swhousekeeper.H"
#include "filesmemserver/memoryserver.H"

extern SmTimedExposure smTimedExposure;
extern SmContClocking smContClocking;
extern ScienceManager scienceManager;

class TXings {

! public:
! ! void saveTXings(const ScienceMode* sm, unsigned ccdId,
! ! ! unsigned expnum, unsigned fepTime, unsigned& thresh);
! ! Boolean triggerRadmon(void);

! private:
! ! struct _TX {! // parameter structure
! ! ! unsigned MINUTES; ! // averaging 64-sec intervals
! ! ! unsigned TRIGGER_COUNT;! // threshold counter
! ! ! unsigned MAX_TX_PER_ROW;! // max crossings per row
! ! ! unsigned CC_TICKS;! // FEP ticks per frame in CC mode
! ! ! unsigned RATE_LIMIT[2];! // trigger thresholds/hundred-rows/sec
! ! ! unsigned TX_INCR[2];! // trigger threshold increments
! ! } TX;

! ! struct {! // accumulator structure
! ! ! unsigned count;! // count of calls to saveTXings
! ! ! Boolean triggered;! // BoolTrue when alarm triggered
! ! ! unsigned minutes;! // 64-second interval count
! ! ! unsigned ccd_rows;! // number of CCD rows contributing
! ! ! unsigned ccd_tx_max;! // max accepted crossings per row
! ! ! unsigned ccd_ticks;! // frame readout time (10 usecs)
! ! ! unsigned increment;! // additional crossings (test only)
! ! ! unsigned trigger_count[2];! // FI/BI intervals over threshold
! ! ! unsigned saved_rates[2];! // FI/BI rates
! ! ! unsigned threshold_accum[10];!// threshold accumulators
! ! ! unsigned exposure_accum[10];! // time tick accumulators
! ! } tx;
};

TXings txings;! // a single static TXings object

! ! ! ! // initialization for the TX structure
struct TXings::_TX TXinit = { 5, 5, 512, 291840, { 700, 40 }, { 8, 8 } };
struct TXings::_TX TXnext = { 5, 5, 512, 291840, { 700, 40 }, { 8, 8 } };

The saveTXings() method (see Figures 4 and 6) is called once for each event-mode exposure frame. The first
time that it is called in a science run, it determines the number of read-out rows, the maximum anticipated
number of non-pathological threshold crossings per frame, and the frame exposure time in units of the FEP
pixel clock (i.e., 10 µs), and it increments the tx.threshold_accum and tx.exposure_accum accumulators.
Integration times of less than 2000 seconds are guaranteed not to overflow either accumulator.

USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS V 1.3

6

Since the number of rows per frame and the frame exposure time are constant in continuous clocking mode,
they are initialized in the TX structure, but in timed-exposure mode, the frame time depends on the duty-
Cycle, primaryExposure, and secondaryExposure parameters. These are extracted from the external
pramTe object, where they were copied from the science run parameter block when the run started.

Figure 6. The saveTXings() method
void TXings::saveTXings(const ScienceMode* sm, unsigned ccdId,
! unsigned expnum, unsigned fepTime, unsigned& thresh)
{
! // Check validity of arguments
! if (ccdId > 9 || tx.triggered == BoolTrue) {
! ! return;
! }

! // On new science run, reload TX parameters, clear accumulators
! if (tx.count++ == 0) {
! ! TX = TXnext;! // load parameters from TXnext
! ! TXnext = TXinit;! // load TXnext with defaults
! ! for (int ii = 1; ii < sizeof(tx)/sizeof(unsigned); ii++) {
! ! ! ((unsigned*)&tx)[ii] = 0;
! ! }
! }

! // Determine exposure time and row count
! if (TX.MINUTES == 0) {
! ! return;
! } else if (sm == (ScienceMode*)&smTimedExposure) {
! ! // Timed exposure mode
! ! if (pramTe.dutyCycle != 0 || tx.ccd_ticks == 0) {
 !! ! unsigned sw = (expnum % (pramTe.dutyCycle + 1)) != 0;
! ! ! tx.ccd_ticks = pramTe.exposureTime[sw] * 10000 + 4104;
! ! ! if (tx.ccd_rows == 0) {
! ! ! ! // First call in timed exposure mode
! ! ! ! tx.ccd_rows = pramTe.summedRows();
! ! ! ! tx.ccd_tx_max = (tx.ccd_rows*TX.MAX_TX_PER_ROW) >> pramTe.sumFlag;
! ! ! }
! ! }
! } else if (sm != (ScienceMode*)&smContClocking) {
! ! // unrecognized ScienceMode
! ! return;
! } else if (tx.ccd_ticks == 0) {
! ! // First call in continuous clocking mode
! ! tx.ccd_ticks = TX.CC_TICKS;
! ! tx.ccd_rows = pramCc.summedRows;
! ! tx.ccd_tx_max = (tx.ccd_rows*TX.MAX_TX_PER_ROW) >> pramCc.colSum;
! }

! // ignore zero or excessive crossings
! if (thresh > 0 && thresh <= tx.ccd_tx_max) {
! ! thresh += tx.increment; ! // increment crossings only when testing
! ! tx.threshold_accum[ccdId] += thresh;
! ! tx.exposure_accum[ccdId] += tx.ccd_ticks;
! }
}

The radiation triggering algorithm is run in the triggerRadmon() routine (see Figure 7). It is called every 64
seconds whether or not a science run is in progress. If it isn’t, tx.count is set to zero until a subsequent call
to saveTXings() from copyExpEnd() reloads the TX parameter structure from TXnext.

V 1.3 USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS

7

Figure 7. The triggerRadmon() method
Boolean TXings::triggerRadmon(void)
{
! // if not running a science mode, clear the crossings count and trigger flag
! if (scienceManager.isIdle() == BoolTrue) {
! ! tx.count = 0;
! ! tx.triggered = BoolFalse;
! }

! // if already triggered, return immediately
! if (tx.triggered == BoolTrue) {
! ! return BoolTrue;
! }

! // Examine threshold crossings every TX.MINUTES*64 seconds
! if (tx.count == 0 || TX.MINUTES == 0 || tx.ccd_rows == 0 ||
! ! ! ++(tx.minutes) < TX.MINUTES) {
! ! return BoolFalse;
! }

! // Clear the counters (index tt = FI, BI)
! unsigned ccdcount[2] = { 0, 0 };! // number of CCDs of type ii
! unsigned ratecount[2] = { 0, 0 };! // number of CCDs of type ii reporting
! unsigned rateavg[2] = { 0, 0 };! // average count rate for type ii

! // Compute average threshold crossing rates for FI, BI separately
! for (unsigned cc = 0; cc < 10; cc++) {
! ! if (tx.exposure_accum[cc] > 0) {
! ! ! unsigned tt = (cc == 5 || cc == 7);
! ! ! unsigned exptime = (tx.exposure_accum[cc] + 500) / 1000;
! ! ! unsigned rate = tx.threshold_accum[cc] / exptime;
! ! ! rate = (10000 * rate) / tx.ccd_rows;
! ! ! ccdcount[tt]++;
! ! ! if (rate >= TX.RATE_LIMIT[tt]) {
! ! ! ! rateavg[tt] += rate;
! ! ! ! ratecount[tt]++;
! ! ! }
! ! }
! }

! // Test the average BI and FI chip rates separately
! for (unsigned tt = 0; tt < 2; tt++) {
! ! if (ratecount[tt] > 0 && ratecount[tt] == ccdcount[tt]) {
! ! ! unsigned rate = rateavg[tt] + ratecount[tt]/2;
! ! ! rate /= ratecount[tt];
! ! ! if (rate > tx.saved_rates[tt] + TX.TX_INCR[tt]) {
! ! ! ! tx.saved_rates[tt] = rate;
! ! ! ! if (++tx.trigger_count[tt] >= TX.TRIGGER_COUNT) {
! ! ! ! ! tx.triggered = BoolTrue;
! ! ! ! }
! ! ! ! continue;
! ! ! }
! ! }
! ! tx.saved_rates[tt] = 0;
! ! tx.trigger_count[tt] = 0;
! }

continued overleaf...

USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS V 1.3

8

Figure 7 (continued). The triggerRadmon() method

! // If triggered, send a readBep packet and return
! if (tx.triggered == BoolTrue) {
! ! unsigned *addr = (unsigned*)&TX;
! ! unsigned nword = (sizeof(TX)+ sizeof(tx))/sizeof(unsigned);
! ! CmdResult rc = memoryServer.readBep(1, addr, nword, TTAG_READ_BEP);
! ! if (rc != CMDRESULT_OK) {
! ! ! swHousekeeper.report(SWSTAT_CMDECHO_DROPPED, (unsigned)addr);
! ! }
! ! return BoolTrue;
! }

! // reset the accumulators and interval counter and return
! for (unsigned id = 0; id < 10; id++) {
! ! tx.threshold_accum[id] = tx.exposure_accum[id] = 0;
! }
! tx.minutes = 0;
! return BoolFalse;
}

In Section 5, we had talked about replacing Leds::show(). Since this routine is also called when booting up,
we must be careful to not intercept calls until after the science manager has started (see Figure 8).

Figure 8. The Test_Leds class
class Test_Leds {
! void Test_Leds::show(unsigned value);
! {
! ! DebugProbe probe;

! ! // if the BEP is not booting up, check for a threshold trigger
! ! if (((value & 0x08) == 0 || (value & 0x0f) == LED_BOOT_SPARE1)
! ! ! ! && (txings.triggerRadmon() == BoolTrue)) {
! ! ! value = LED_BOOT_SPARE1;
! ! }
! ! bepReg.showLeds(value);
! }
};

7. Control Flow

After the TXings patch has been uploaded and the BEP warm-booted, the tx.count and tx.triggered
fields will be initialized to zero by the patch loader. The first time an event-mode science run reads a FEPex-
pEndRec record from the FEP-BEP ring buffer, it will call saveTXings(), which will reinitialize the radiation
filter parameters from the TXnext structure (see Figure 6). This makes it easy to change the filter parameters
for subsequent science runs, as described in Section 9.

Test_Leds::show() calls txings.triggerRadmon() every 64 seconds to compute the average threshold
crossing rates and look for triggers. When a trigger occurs, triggerRadmon() sets tx.triggered to Bool-
True and commands the memory manager thread to send a bepReadReply packet to telemetry, reporting the
values of the txings parameters and variables. Then Test_Leds::show() sets the software bi-level channels
to LED_BOOT_SPARE1, which persists for the remainder of the science run.

After the science run ends, the next call to triggerRadmon() from Leds::show() sets tx.count to zero and
tx.triggered to BoolFalse, canceling the special bilevel value and preventing threshold crossing triggers
until the next science task starts, calls saveTXings(), and reloads the TX structure.

V 1.3 USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS

9

8. Inline Patches

When they find a FEPexpEndRec record in the FEP-BEP ring buffer, the processRecord() methods of the
three ProcessMode subclasses (PmEvent, PmHist, and PmRaw) call copyExpEnd() with assembler code frag-
ments as shown in Figure 9. The nop instructions are added by the compiler because the lw (load from mem-
ory) instruction requires two machine cycles. A nop can be replaced by another machine instruction provided
the latter doesn’t address a register that is being loaded from—or stored into—external memory.

Figure 9. Assembler code segment when PmEvent::processRecord() calls copyExpEnd()

// getExposureInfo().copyExpEnd ((const FEPexpEndRec*) record.data);
! ...! ! // $2 = address of EventExposure object
! lw! $3,84($2)! // load address of EventExposure method table
! nop! ! // wait for the value to appear in $3
! lw! $3,32($3)! // load address of copyExpEnd()
! nop! ! // replace this instruction with “move $6,$17”
! move! $4,$2! // arg1 = address of expInfo object
! jal! $31,$3! // call copyExpEnd()
! move! $5,$19 ! // arg2 = data address (executed before the jal jump)

If the second nop in Figure 9 is replaced by a move $6,$17 instruction, the effect will be to pass the contents
of register $17 (which contains the address of the caller’s PmEvent object) as a second argument to copyEx-
pEnd(). By inspection, register $6 is not used for any other purpose in the processRecord() callers, and by
MIPS linkage convention, $6 is never restored upon exiting a subroutine. For PmHist and PmRaw, we load $6
with a zero value (move $6,$0) to signal that these modes do not measure threshold crossings. The inline
patches (see Figure 10) are defined in a simple language that combines assembler instructions with names that
define ranges of byte offsets from external address references.

Figure 10. Assembler patch for the three copyExpEnd() calls
 .set noreorder
 .set nomacro
 .set noat
 .text
#
pass address of PmEvent object to Test_EventExposure::copyExpEnd()

 .globl pmevent_lst_04d4_04d4
 .ent pmevent_lst_04d4_04d4
pmevent_lst_04d4_04d4:
 move $6,$17! # arg2 = address of caller’s object
 .end pmevent_lst_04d4_04d4
#
pass null pointer to Test_EventExposure::copyExpEnd()
#
 .globl pmhist_lst_01c0_01c0
 .ent pmhist_lst_01c0_01c0
pmhist_lst_01c0_01c0:
 move $6,$0! # arg2 = NUL
 .end pmhist_lst_01c0_01c0
#
pass null pointer to Test_EventExposure::copyExpEnd()
#
 .globl pmraw_lst_0244_0244
 .ent pmraw_lst_0244_0244
pmraw_lst_0244_0244:
 move $6,$0! # arg2 = NUL
 .end pmraw_lst_0244_0244

USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS V 1.3

10

9. Operations

Once it is included in a patch load, and the BEP is warm-booted, the txings patch will be active during all sub-
sequent science runs. When triggered by high and increasing threshold crossings, it sets the ACIS software bi-
level values to LED_BOOT_SPARE1 until the science run ends, or until the tx.triggered field is explicitly
cleared by a writeBep command. This guarantees that it will appear in Chandra major frame readouts (once per
32.4 seconds).

The OBC should be patched to examine the ACIS bi-levels. It should safe the instruments if (a) RADMON is
enabled, and (b) the bi-level channels (1STAT3ST–1STAT0ST) have the LED_BOOT_SPARE1 values (1, 1, 0, 1).

The default filter parameters can be overridden by sending single writeBep command to ACIS to change the
contents of the TXinit structure, whose address will depend on the ACIS flight software patch level (e.g.,
0x8003dc30 in the current level E-F-G version). The command “write 0 0x8003dc30 {\n0\n}” will, for
instance, suspend the threshold crossing filter, and “write 0 0x8003dc30 {\n5\n}” will turn it on again
with an integration time of 5 minutes.

After a trigger, the bi-levels are not reset until Leds::show() is called when a science run is not in process. In
the unlikely event that there is less than 64 seconds between the end of the triggering run and the start of the
next, the bi-levels will continue to report LED_BOOT_SPARE1. This can be prevented by issuing a writeBep
command to clear the counters: “write 0 0x8003dc90 {\n0 0\n}” prior to the second startScience.

In normal operation, most science runs can be conducted with txings enabled, but exceptionally bright tar-
gets observed by few CCDs may lead to false triggers. It might be best to disable txings for short runs
where the risk of radiation damage is small, or turn on additional CCDs for longer runs to reduce the likeli-
hood of a false trigger. To change the trigger parameters for the next science run only, a writeBep command
should update the fields in TXnext rather than TXinit, and this must be done before the science run has
started to report events. In the current level E-F-G version, TXnext is located at 0x8003dc50.

When a threshold crossing trigger occurs, triggerRadmon() commands the BEP’s memory manager to write
a bepReadReply packet to telemetry, reporting the contents of the TX and tx structures. If this action is
blocked for any reason, a SWSTAT_CMDECHO_DROPPED event will be reported in software housekeeping.

The current version of the patch reports bepReadReply packets with a formatTag of TTAG_READ_BEP. If this
causes confusion, a new TlmFormatTag value could be defined, but the CXC Data System would need to be
reconfigured to handle it. Similarly, if SWSTAT_CMDECHO_DROPPED is confusing, a new SwStatistic value
could be defined.

10. Testing

Reliable automated tests of the txings patch have proved to be quite difficult to implement. In a first attempt,
we built a stand-alone patch and ran it in the Engineering Unit in timed-exposure mode, commanding the
Image Loader to write to the FEPs a series of data streams containing an increasing number of high-valued
pixels. This was sufficient to test the patch itself, but frequently caused a “T-plane Latch-Up” in one or more
of the FEPs. This indicates that the pixel processor in an Actel FPGA had halted, and was likely caused by a
known design error in the Actel’s microcode. This problem first showed up prior to launch when a FEP’s
firmware had been stressed by simultaneously (a) processing many threshold crossings per frame, (b) making
many memory accesses from the FEP CPU, and (c) handling frequent remote memory accesses through the
FEP-BEP interface. We updated BEP flight software to prevent this from occurring in flight, and it has only
occurred on a few occasions when, for unknown reasons, the BEP began copying FEP bias maps during
event processing. Its recurrence when handling modest numbers of event crossings and event candidates was
unexpected. Assuming that it was our reloading the images during event processing that was causing the
latch-ups, we changed the testing strategy, commanding the Image Loader to write a single image frame con-
taining a variety of pixel values, but varying the FEP thresholds by sending a series of writeFep commands to
the BEP to update the thresholds in the FEPparmBlock structures in the FEPs’ D-caches. This had no no-
ticeable effect on the probability of latch-ups.

V 1.3 USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS

11

Figure 11. Extract from timed-exposure event-processing tests in runtest.tcl
---- Load TX addresses in BEP ----
source "txings.def"

---- Make the Bias Run ----
system make biaste ROWS=$rows
send -i $cmd_id "start 0 te bias 4\n"
command_echo 1 15 "start bias run"
wait_stop_science

---- Load the TX parameter block ----
send -i $cmd_id "write 0 $txnext {\n 3 3 512 145920 700 40 8 8 \n}\n"
command_echo 1 192 "write TX block"

---- Start the Science Run ----
system make imagete ROWS=$rows
send -i $cmd_id "start 0 te 4\n"
command_echo 1 14 "start science run"

---- Conduct the Run ----
set state 0
set inc 0
set timeout 360
expect {
! -re "swHousekeeping\[^\r]*\[\r\n]+" {
! ! if {$state == 1} {
! ! ! send -i $cmd_id "write 0 $txincraddr {\n $inc \n}\n"
! ! ! incr inc 500
! ! ! send -i $cmd_id "wait 1\nread 0 $txblock $txlen\n"
! ! }
! ! exp_continue
! }
! -re ".*SWSTAT_FEP_STARTDATA:\[^\r]*\[\r\n]+" {
! ! set state 1
! ! exp_continue
! }
! -re "bepReadReply\[^\r]*commandId=1 \[^\r]*\[\r\n]+" {
! ! set state 2
! }
! -re "scienceReport\[^\r]*terminationCode=(\[0-9]+)\[\r\n]+" {
! ! fail "BEP termination code $expect_out(1,string)"
! }
! timeout { fail "Timeout: no RADMON bepReadReply state $state" }
}

---- Wait for bilevels to be reported ----
if {$state == 2} {
! set psci_id $spawn_id
! spawn /bin/sh -c "filterClient -h $env(ACISSERVER) | ltlm -p61 -v"
! expect {
! ! -re "value *= \[0-9]+ \# \\(1011.*\[\r\n]*" { set state 2 }
! ! timeout { }
! }
! set spawn_id $psci_id
}

USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS V 1.3

12

We therefore tried a third strategy: leaving the input stream and the FEPs alone and changing the txings patch
so that it increases the apparent threshold count itself. As shown in Figure 6, saveTXings() increments its
caller’s thresh variable by the value of tx.increment. The latter field will be zero in flight, but for testing
purposes it is set to successively higher values by a series of writeBep commands, as shown in Figure 11, where
it is addressed as $txincraddr (0x8003dca8 in the E-F-G patch load).

Patch-dependent addresses are defined in file “txings.def ”. For testing purposes, the default TX parameters
were overridden so as to shorten the run time and to decrease the threshold levels, reducing the possibility of
a FEP latch-up. A bias image was written to the Image Loader and a bias-only run made. Then a test image
was sent to the Image Loader and a science run started. After every software housekeeping packet was te-
lemetered—at intervals of ~64 secs—a writeBep was issued to add 500 to tx.increment and the contents of
the txings object was then read to telemetry with a readBep command. This continued until the radiation
alert was triggered (or until the run terminated abnormally or timed out). The expect loop exited and a sec-
ond one was started to look for the “1101” bilevel values indicating that the patch had reported correctly.

The “runtest.tcl” script (see Figure 11) conducts 6 separate tests: timed-exposure mode (full-frame, and event
histogram), continuous clocking mode (3x3 and 1x3), and continuous and timed raw mode (see Figure 12).
The relevant patches are loaded at the start of the script, after which the tests are run without rebooting the
BEP or power-cycling the FEPs.

Figure 12. Extract from a raw-mode test in runtest.tcl

set timeout 360
set state 0
expect {
! -re "data..Raw\[^\r]*\[\r\n]+" {
! ! if {$state == 0} {! ! !
! ! ! send -i $cmd_id "stop 0 science\n"
! ! ! set state 1
! ! }
! ! exp_continue
! }
! -re "swHousekeeping\[^\r]*\[\r\n]+" {
! ! if {$state == 1} {! ! !
! ! ! send -i $cmd_id "read 0 $txblock $txlen\n"
! ! ! set state 2
! ! }
! ! exp_continue
! }
! -re "bepReadReply\[^\r]*commandId=(\[0-9])\[^\r]*\[\r\n]+" {
! ! if {$expect_out(1,string) != 2} {
! ! ! fail "Bad bepReadReply id=$expect_out(1,string)"
! ! }
! ! exp_continue
! }
! -re "scienceReport\[^\r]*terminationCode=(\[0-9]+)\[\r\n]+" {
! ! if {$expect_out(1,string) != 1} {
! ! ! fail "BEP termination code $expect_out(1,string)"
! ! }
! }
! timeout { fail "Timeout: no RADMON bepReadReply state $state" }
}

---- Check the TX Block against txings.txt ----
set cmd “perl ltlm -X -p1 -v pkts.raw | tail -24 | diff - txings.txt”
if {[catch {system $cmd} err]} {
! fail $err
}

V 1.3 USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS

13

Table 3. Event threshold values used in runtest.tcl

Test Mode
Front-Illuminated CCDsFront-Illuminated CCDsFront-Illuminated CCDs Back-Illuminated CCDsBack-Illuminated CCDsBack-Illuminated CCDs

Test Mode Threshold
(ADU)

Threshold
Crossings

Event
Candidates

Threshold
(ADU)

Threshold
Crossings

Event
Candidates

Timed Exposure (3x3) 580 12584 108 665 2409 21

Continuous Clocking (3x3) 285 7260 63 330 1936 17

Continuous Clocking (1x3) 320 3146 297 335 1210 121

The FEP thresholds and resulting numbers of threshold crossings and event candidates used in runtest.tcl are
shown in Table 3. The threshold crossing count used by txings is augmented in steps of 500 ADU at 64 sec-
ond intervals.

A lingering doubt remained. When the EU FEPs reported a sustained rate of more than ~10,000 threshold
crossings, passing several hundred event candidates per frame to the BEP, there was a high likelihood that the
FEP’s pixel processing firmware would fail, either by latching the T-plane or by advancing the exposure
counter by large increments for each frame VSYNC received from the Image Loader. This behavior has never
been seen on the flight unit, and appears unrelated to the txings patch—it occurs as frequently when the patch
is removed—and may point to a hitherto unrecognized problem with the Image Loader-to-DPA interface.

To better validate the patch, we decided to add an additional set of tests, runtest2.tcl, that by-pass the Image
Loader and use the EU DEA as a source of pixels. With resistive loads across their analog inputs, the DEAs
output a pixel stream from each CCD quadrant, whose 12-bit values are well approximated by Gaussian func-
tions with FWHM of 5–10 ADU. By choosing suitable values of eventThreshold and videoOffset in the timed-
exposure and continuous-clocking parameter blocks, the average threshold crossing rates per frame can be
“tuned” to lie within the 10,000–20,000 required to test the txings patch. However, this gives rise to an un-
wanted side effect: since each above-threshold pixel is most likely to be a local maximum, the number of
event candidates reported by each FEP will be almost as large as the number of threshold crossings, and will
exceed the number than can be processed by the BEP during a single exposure time. This causes the FEPs to
drop exposures—typically 4 out of every 5—and we are no longer testing a flight-like scenario. We have
therefore created a new fepthrottle patch (see Figure 13) whose sole function is to reduce the number of event
candidates reported by each FEP by a factor of ~100. This patch is only to be used in conjunction with the
txings patch, and only on the Engineering Unit, and is not therefore added to the release-E-opt-F package.

Figure 13. The throttleFepAppendRingBuf routine
#include "fepCtl.h"

void throttleFepAppendRingBuf(unsigned *ptr, unsigned wordcnt, FEPparm *fp)
{
 unsigned fepThrottle = 100;
 if ((ptr[1] % fepThrottle) == 0) { /* ptr[1] is "short row,col" */
 fepAppendRingBuf(ptr, wordcnt, fp);
 }
}

The fepthrottle patch also includes inline patches to call throttleFepAppendRingBuf() in place of fepAppen-
dRingBuf() from within the event-processing routines in fepSciTimed.c and fepSciCClk.c, and from within the
cc3x3 patch. The test script, runtest2.tcl, is essentially the same as runtest.tcl (see Figures 12 and 13), with the
omission of the bias -only runs—the bias maps can be created directly from the DEA noise input. The event
thresholds and video offsets (4 nodes per CCD) as listed in Table 4, alongside the resulting average counts of
threshold crossings and event candidates. The latter are suppressed relative to their “true” values by means of
the fepthrottle patch.

USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS V 1.3

14

Table 4. Event threshold and video offset values used in runtest2.tcl

FEP CCD Event
Thresholds

Video
Offsets

Threshold CrossingsThreshold CrossingsThreshold Crossings Event CandidatesEvent CandidatesEvent Candidates
FEP CCD Event

Thresholds
Video

Offsets TE CC3x3 CC1x3 TE CC3x3 CC1x3

0 S3 7, 7, 7, 7 33, 38, 38, 38 12750 2722 4663 107 12 31

1 I0 7, 7, 7, 7 33, 33, 33, 33 13296 3152 3835 115 16 22

2 I1 4, 4, 4, 4 43, 44, 43, 23 10709 2908 3131 88 13 15

3 I2 4, 4, 4, 4 33, 33, 33, 33 8768 4752 2568 68 30 10

4 I3 6, 6, 6, 6 33, 33, 33, 33 19080 4371 3960 169 27 23

5 S1 7, 7, 7, 7 33, 33, 33, 33 12555 3194 3208 108 16 16

11. References

“Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor,” C. E. Grant, B. LaMarr, M.
W. Bautz and S. L. O’Dell, SPIE, June 2010.

“DPA Hardware Specification and System Description,” MIT 36-02104, Rev. C, April 15, 1997.

“ACIS Software User’s Guide,” MIT 36-54003, Rev. A, (NAS8-37716/DR/SDM05) July 21, 1999.

“ACIS Software Detailed Design Specification (As-Built),” MIT 36-53200, Rev. A, (NAS8-37716/DR/
SDM03) February 3, 2000.

12. Glossary

1STATnS The software names for the 8 one-bit ACIS bilevel fields (n = 0..7).
ACISSERVER UNIX Environment variable containing the host name of the EU interface.
ACTEL A manufacturer’s brand name of FPGA used in BEPs and FEPs.
ADU Analog Data Unit — the least significant bit of a 12-bit pixel value.
Back-Illuminated A CCD that detects x-rays incident on the face opposite to that of its junctions.
BEP ACIS Back End Processor — the unit that interfaces between RCTU and FEPs.
BI .. An abbreviation for Back-Illuminated. (q.v.)
Bi-Level A data channel from DPA to RCTU reporting only OFF or ON.
Bias The average value for a pixel that contains no event or background charge.
BoolFalse The “false” value for a software boolean field.
BoolTrue The “true” value for a software boolean field.
CC An abbreviation for Continuous Clocking (q.v.)
CC1x3 Continuous Clocking mode that reports 1 (row) by 3 (columns) events.
CC3x3 Continuous Clocking mode that reports 3 (rows) by 3 (columns) events.
CCD Charge-Coupled Device — the x-ray detectors used by ACIS.
ccdId The index of a particular ACIS CCD (0..3 = I0..I3, 4..9 = S0..S5).
CmdResult The result returned by a BEP command (1 = success).
CPU Central Processing Unit — ACIS FEPs and BEPs use the R3000 Mongoose.
CXC Chandra X-Ray Observatory Science Center.
D-cache The radiation-hard data cache memory used in BEPs and FEPs.
DC Direct Current — the average zero-event input to the DEAs.
DEA ACIS Detector Electronics Assembly — CCD sequencers and digital converters.
DPA ACIS Digital Processor Assembly — containing 6 FEPs and 2 BEPs.
E1300 EPHIN channel most sensitive to low-energy protons that can damage ACIS.
EPHIN Electron, Proton and Helium Instrument — flown on Chandra and SOHO.
EU ACIS Engineering Unit — duplicate DEA+DPA+PSMC in an MIT laboratory.
EventExposure BEP software object containing details of FEP event candidates.
FEP ACIS Front End Processor — extracts event candidates from a pixel stream.

V 1.3 USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS

15

FEP-BEP The memory-mapped interface between the BEPs and the 6 FEPs.
FEPexpEndRec FEP-BEP record indicating the end of an exposure frame.
FEPparm FEP software structure containing all current variables.
FEPparmBlock Software structure passed from BEP to FEP to control a science run.
FI ... An abbreviation for Front-Illuminated. (q.v.)
FIFO First-In-First-Out — the order in which BEP commands are processed.
FPGA Field-Programmable Gate Array — in ACIS BEPs and FEPs (see ACTEL).
Front-Illuminated A CCD that detects x-rays incident on the same face as its junctions.
FWHM Full Width at Half Maximum — the width of a Gaussian distribution.
I-cache The radiation-hard instruction cache memory used in BEPs and FEPs.
Inline A patch that replaces existing code without requiring additional storage.
Latch-Up What happens when all or part of a FEP ACTEL stops working.
LED_BOOT_SPARE1 ... The 4-bit value of 1STAT3ST–1STAT0ST indicating a radiation threshold trip.
Leds Light-Emitting Diodes — original ACIS software name for bi-levels.
MIPS Microprocessor without Interlocked Pipeline Stages — a.k.a. Mongoose CPU.
NUL Zero value.
OBC On-Board Computer — the Chandra spacecraft’s central controller.
OBSID Observation Identifier — a unique number assigned by the CXC to a science run.
PmEvent BEP software class describing FEP event candidates.
PmHist BEP software class describing FEP raw histograms.
PmRaw BEP software class describing FEP raw frames.
ProcessMode BEP software class describing the current TE or CC science mode.
PSMC ACIS Power Supply and Mechanism Controller.
RADMON Excessive radiation alert signal from EPHIN or ground to OBS and/or ACIS.
Raw Mode ACIS processing mode that returns all pixel values.
RCTU Remote Command and Telemetry Unit — interface between ACIS and the S/C.
readBep External command to ACIS to dump specified contents of BEP memory.
readFep External command to ACIS to dump specified contents of FEP memory.
ScienceManager BEP software task and class to control science runs.
ScienceMode BEP software class to control mode-dependent processing.
SCS107 Command to OBC from EPHIN or ground to safe the science instruments.
SmContClocking Sub-class of ScienceMode to control Continuous Clocking runs.
SmTimedExposure Sub-class of ScienceMode to control Timed Exposure runs.
SwHousekeeper BEP software task and class to report software events at 64 second intervals.
SwStatistic A field in SwHousekeeper telemetry packets to report event characteristics.
T-plane Threshold Crossing Plane — 1-bit FEP memory recording threshold crossings.
TE An abbreviation for Timed Exposure (q.v.)
Te3x3 Timed-Exposure mode that reports 3 (rows) by 3 (columns) events.
Te5x5 Timed-Exposure mode that reports 5 (rows) by 5 (columns) events.
Threshold Value by which a pixel exceeds its corresponding bias value to become interesting.
TlmFormatTag The field whose value distinguishes the possible types of ACIS telemetry packets.
TX The sub-array in TXblock that is re-initialized at the start of a science run.
TXblock The instance variables used by the txings patch during the current science run.
TXinit The default set of TX parameters copied to TXnext at the start of a science run.
TXnext The set of TX parameters copied to TX at the start of a science run.
tx .. The sub-array in TXblock containing accumulators for the current science run.
VSYNC Flag in the FEP pixel input stream marking the start of a new exposure frame.
writeBep External command to ACIS to update specified contents of BEP memory.
writeFep External command to ACIS to update specified contents of FEP memory.

USING ACIS TO DETECT AND REPORT HIGH RADIATION CONDITIONS V 1.3

16

04/15/11
10:07:34 1../../txings/txings.C

Flight S/W Patches, Revision E-F-G

#define private public
#include "filesscience/smtimedexposure.H"
#include "filesscience/smcontclocking.H"
#undef private
#include "filesscience/sciencemanager.H"
#include "filesswhouse/swhousekeeper.H"
#include "filesmemserver/memoryserver.H"

extern SmTimedExposure smTimedExposure;
extern SmContClocking smContClocking;
extern ScienceManager scienceManager;

// ---
// Class TXings -- where all the work is done
// ---

class TXings {
public:
 void saveTXings(const ScienceMode* sm,
 unsigned ccdId, unsigned expnum, unsigned& thresh);
 Boolean triggerRadmon(void);
private:
 struct _TX {
 unsigned MINUTES; // averaging interval x 64 seconds
 unsigned TRIGGER_COUNT; // threshold counter
 unsigned MAX_TX_PER_ROW; // max crossings per row
 unsigned CC_TICKS; // ticks per frame in CC mode
 unsigned RATE_LIMIT[2]; // trigger thresholds/hundred-rows/sec
 unsigned TX_INCR[2]; // trigger threshold increments
 } TX;
 struct {
 unsigned count; // number of calls to saveTXings
 Boolean triggered; // true when alarm triggered
 unsigned minutes; // 64-second interval count
 unsigned ccd_rows; // number of CCD rows contributing
 unsigned ccd_tx_max; // max accepted crossings per row
 unsigned ccd_ticks; // CCD readout time (10 usecs)
 unsigned increment; // additional crossings (test only)
 unsigned trigger_count[2]; // intervals over threshold
 unsigned saved_rates[2]; // BI and FI rates
 unsigned threshold_accum[10]; // threshold accumulators
 unsigned exposure_accum[10]; // time tick accumulators
 } tx;
};

TXings txings; // single static TXings object

struct TXings::_TX TXinit = { 5, 5, 512, 291840, { 700, 40 }, { 8, 8 } };
struct TXings::_TX TXnext = { 5, 5, 512, 291840, { 700, 40 }, { 8, 8 } };

// ---
// TXings::saveTXings -- save event-mode threshold crossing counts
// ---

void TXings::saveTXings(const ScienceMode* sm,
 unsigned ccdId, unsigned expnum, unsigned& thresh)
{
 // Check validity of arguments
 if (ccdId > 9 || tx.triggered == BoolTrue) {
 return;
 }

 // on new science run, reload TX parameters, clear tx accumulators
 if (tx.count++ == 0) {

04/15/11
10:07:34 2../../txings/txings.C

Flight S/W Patches, Revision E-F-G

 TX = TXnext;
 TXnext = TXinit;
 for (int ii = 1; ii < sizeof(tx)/sizeof(unsigned); ii++) {
 ((unsigned *)&tx)[ii] = 0;
 }
 }

 // get rows and exposure time
 if (TX.MINUTES == 0) {
 return;
 } else if (sm == (ScienceMode*)&smTimedExposure) {
 if (pramTe.dutyCycle != 0 || tx.ccd_ticks == 0) {
 unsigned sw = (expnum % (pramTe.dutyCycle + 1)) != 0;
 tx.ccd_ticks = pramTe.exposureTime[sw] * 10000 + 4104;
 if (tx.ccd_rows == 0) {
 tx.ccd_rows = pramTe.summedRows;
 tx.ccd_tx_max =
 (tx.ccd_rows * TX.MAX_TX_PER_ROW) >> pramTe.sumFlag;
 }
 }
 } else if (sm != (ScienceMode*)&smContClocking) {
 return;
 } else if (tx.ccd_ticks == 0) {
 tx.ccd_ticks = TX.CC_TICKS;
 tx.ccd_rows = pramCc.summedRows;
 tx.ccd_tx_max = (tx.ccd_rows*TX.MAX_TX_PER_ROW) >> pramCc.colSum;
 }

 // ignore zero excessive crossings
 if (thresh > 0 && thresh <= tx.ccd_tx_max) {
 thresh += tx.increment; // increment crossings only when testing
 tx.threshold_accum[ccdId] += thresh;
 tx.exposure_accum[ccdId] += tx.ccd_ticks;
 }
}

// ---
// TXings::triggerRadmon -- determine whether to trigger RADMON
// ---

Boolean TXings::triggerRadmon(void)
{
 // if not running a science mode, clear the crossings count
 if (scienceManager.isIdle() == BoolTrue) {
 tx.count = 0;
 tx.triggered = BoolFalse;
 }

 // If already triggered, return immediately
 if (tx.triggered == BoolTrue) {
 return BoolTrue;
 }

 // Examine threshold crossings every TX.MINUTES*64 seconds
 if (tx.count == 0 || TX.MINUTES == 0 || tx.ccd_rows == 0 ||
 ++(tx.minutes) < TX.MINUTES) {
 return BoolFalse;
 }

 // clear the counters (index ii = FI, BI)
 unsigned ccdcount[2] = { 0, 0 }; // number of CCDs of type ii
 unsigned ratecount[2] = { 0, 0 }; // number of CCDs above threshold
 unsigned rateavg[2] = { 0, 0 }; // average count rate for type ii

04/15/11
10:07:34 3../../txings/txings.C

Flight S/W Patches, Revision E-F-G

 // compute average threshold crossing rates
 for (unsigned cc = 0; cc < 10; cc++) {
 if (tx.exposure_accum[cc] > 0) {
 unsigned tt = (cc == 5 || cc == 7);
 unsigned exptime = (tx.exposure_accum[cc] + 500) / 1000;
 unsigned rate = tx.threshold_accum[cc] / exptime;
 rate = (10000 * rate) / tx.ccd_rows;
 ccdcount[tt]++;
 if (rate >= TX.RATE_LIMIT[tt]) {
 rateavg[tt] += rate;
 ratecount[tt]++;
 }
 }
 }

 // test BI and FI chip rates separately
 for (unsigned tt = 0; tt < 2; tt++) {
 if (ratecount[tt] > 0 && ratecount[tt] == ccdcount[tt]) {
 unsigned rate = rateavg[tt] + ratecount[tt]/2;
 rate /= ratecount[tt];
 if (rate > tx.saved_rates[tt] + TX.TX_INCR[tt]) {
 tx.saved_rates[tt] = rate;
 if (++tx.trigger_count[tt] >= TX.TRIGGER_COUNT) {
 tx.triggered = BoolTrue;
 }
 continue;
 }
 }
 tx.saved_rates[tt] = 0;
 tx.trigger_count[tt] = 0;
 }

 // if triggered, send a readBep packet and return
 if (tx.triggered == BoolTrue) {
 unsigned *addr = (unsigned*)&TX;
 unsigned nword = (sizeof(TX)+sizeof(tx))/sizeof(unsigned);
 CmdResult rc = memoryServer.readBep(1, addr, nword, TTAG_READ_BEP);
 if (rc != CMDRESULT_OK) {
 swHousekeeper.report (SWSTAT_CMDECHO_DROPPED, (unsigned)addr);
 }
 return BoolTrue;
 }

 // reset the accumulators and return
 for (unsigned id = 0; id < 10; id++) {
 tx.threshold_accum[id] = tx.exposure_accum[id] = 0;
 }
 tx.minutes = 0;
 return BoolFalse;
}

// ---
// Class Test_EventExposure -- save event-mode threshold crossing counts
// ---

class Test_EventExposure : public EventExposure
{
public:
 void Test_EventExposure::copyExpEnd(const FEPexpEndRec* dataptr,
 ProcessMode* pm)
 {
 if ((expNum + 1) != dataptr->expnum) {
 swHousekeeper.report (SWSTAT_SCI_EXPEND_EXPNUM, dataptr->expnum);
 }

04/15/11
10:07:34 4../../txings/txings.C

Flight S/W Patches, Revision E-F-G

 expThresholdCnt = dataptr->thresholds;
 expParityErrs = dataptr->parityerrs;

 // if called from PmEvent::processRecord(), save threshold counts
 if (pm != (ProcessMode*)0) {
 txings.saveTXings(pm->getMode(), pm->getCcdId(),
 dataptr->expnum, expThresholdCnt);
 }
 }
};

// ---
// Class Test_Leds -- call triggerRadmon() and maybe set bi-levels
// ---

class Test_Leds
{
public:
 void Test_Leds::show(unsigned value)
 {
 DebugProbe probe;

 // if the BEP is not booting up, test for RADMON
 if (((value & 0x08) == 0 || (value & 0x0f) == LED_BOOT_SPARE1)
 && (txings.triggerRadmon() == BoolTrue)) {
 value = LED_BOOT_SPARE1;
 }
 bepReg.showLeds(value);
 }
};

// ---
// End of txings patch
// ---

11/17/10
15:45:49 1../../txings/txingsinline.S

Flight S/W Patches, Revision E-F-G

/*===
//
// $Source: /acis/h3/acisfs/configcntl/patches/txings/txingsinline.S,v $
//
// MODULE NAME:
//
// PURPOSE:
//
// REFERENCES:
//
// $Log: txingsinline.S,v $
// Revision 1.1 2010/11/17 20:45:49 pgf
// Initial version.
//
// COPYRIGHT: Massachusetts Institute of Technology 2008
//
===*/

 .set noreorder
 .set nomacro
 .set noat
 .text

#####################
#
pass address of PmEvent object to Test_EventExposure::copyExpEnd()
#
#####################

 .globl pmevent_lst_04d4_04d4
 .ent pmevent_lst_04d4_04d4
pmevent_lst_04d4_04d4:
 move $6,$17
 .end pmevent_lst_04d4_04d4

#####################
#
pass null pointer to Test_EventExposure::copyExpEnd()
#
#####################

 .globl pmhist_lst_01c0_01c0
 .ent pmhist_lst_01c0_01c0
pmhist_lst_01c0_01c0:
 move $6,$0
 .end pmhist_lst_01c0_01c0

#####################
#
pass null pointer to Test_EventExposure::copyExpEnd()
#
#####################

 .globl pmraw_lst_0244_0244
 .ent pmraw_lst_0244_0244
pmraw_lst_0244_0244:
 move $6,$0
 .end pmraw_lst_0244_0244

03/25/11
09:16:26 1../../txings/testsuite/smoke/runtest.tcl

Flight S/W Patches, Revision E-F-G

#! /usr/bin/env expect
#
$Source: /nfs/acis/h3/acisfs/configcntl/patches/txings/testsuite/smoke/runtest.tcl,v $
#
Tests of txings patch
#

send_user "Welcome to txings/testsuite/smoke/runtest.tcl\n"

---- Launch the command and telemetry server processes ----
set basedir [lindex $argv 0] ; # Patch base directory
set tools [lindex $argv 1] ; # Tool directory
set patchdir [lindex $argv 2] ; # Patch directory

---- Run Parameters ----
set ccd_list "7 0 1 2 3 5" ; # Desired fepCcdSelect
set rows 1024 ; # Number of rows in TE mode
set primary 32 ; # TE mode exposure time
set txminutes 3 ; # TX integration Time
set timeout 30 ; # Default timeout

---- Embed the Procedure Library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Start the Command Pipe ----
spawn $basedir/$tools/bin/cmdclient $env(ACISSERVER)
set cmd_id $spawn_id

---- Start the Telemetry Pipe ----
spawn $basedir/$tools/bin/tlmclient $env(ACISSERVER)
sleep 1

---- Load TX Parameters ----
source "txings.def"

---- Halt the Processor ----
cold_boot

---- Load Patches ----
load_patch_list "$basedir/$tools/share/standard.bcmd\
 $basedir/$tools/share/opt_smtimedlookup.bcmd\
 $basedir/$tools/share/opt_eventhist.bcmd\
 $basedir/$tools/share/opt_cc3x3.bcmd\
 $basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_dearepl.bcmd\
 $basedir/$patchdir/opt_txings.bcmd"

---- Apply Patches ----
warm_boot

---- Power Down all Boards ----
power_off_boards
set timeout 10
expect { timeout {} }

---- Wait for FEPs to finish powering ----
for {set fep 5} {$fep >= 0} {incr fep -1} {
 if {[lindex [split $ccd_list " "] $fep] < 10} { break }
}
set timeout 120
power_on_boards "$ccd_list"
expect {
 -re ".*SWSTAT_FEP_EXECMEM: $fep\[\r\n]" { }

03/25/11
09:16:26 2../../txings/testsuite/smoke/runtest.tcl

Flight S/W Patches, Revision E-F-G

 timeout { fail "boards not powered on" }
}

---- Initialize the TX Blocks ----
proc load_tx_block {} {
 global cmd_id txnext txblock txlen txminutes

 # ---- Load the TXnext parameter block ----
 send -i $cmd_id "write 0 $txnext {\n $txminutes 3 512 145920 700 40 \n}\n"
 command_echo 1 192 "write TXnext block"

 # ---- Clear the TX block ----
 send -i $cmd_id "write 0 $txblock {\n"
 for {set i 0} {$i < $txlen} {incr i} {send -i $cmd_id "0\n" }
 send -i $cmd_id "}\n"
 command_echo 1 192 "clear TX counters"
}

---- Load TE Parameter Block ----
proc load_te_test { fepmode bepmode rows primary thFI thBI } {
 global cmd_id ccd_list

 # --- Send Parameter Block ---
 send -i $cmd_id "load 0 te 4 {
 parameterBlockId = 0xffffffff
 fepCcdSelect = $ccd_list
 fepMode = $fepmode
 bepPackingMode = $bepmode
 onChip2x2Summing = 0
 ignoreBadPixelMap = 1
 ignoreBadColumnMap = 1
 recomputeBias = 0
 trickleBias = 0
 subarrayStartRow = 0
 subarrayRowCount = [expr $rows - 1]
 overclockPairsPerNode = 8
 outputRegisterMode = 0
 ccdVideoResponse = 0 0 0 0 0 0
 primaryExposure = $primary
 secondaryExposure = 0
 dutyCycle = 0
 fep0EventThreshold = $thBI $thBI $thBI $thBI
 fep1EventThreshold = $thFI $thFI $thFI $thFI
 fep2EventThreshold = $thFI $thFI $thFI $thFI
 fep3EventThreshold = $thFI $thFI $thFI $thFI
 fep4EventThreshold = $thFI $thFI $thFI $thFI
 fep5EventThreshold = $thBI $thBI $thBI $thBI
 fep0SplitThreshold = 13 13 13 13
 fep1SplitThreshold = 13 13 13 13
 fep2SplitThreshold = 13 13 13 13
 fep3SplitThreshold = 13 13 13 13
 fep5SplitThreshold = 13 13 13 13
 fep4SplitThreshold = 13 13 13 13
 fep5SplitThreshold = 13 13 13 13
 lowerEventAmplitude = 2000
 eventAmplitudeRange = 10
 gradeSelections = 0xfeffffff 0xffffffff 0xfffffffb 0xfffff7ff\
 0xffffffff 0xffffffff 0xffbfffff 0x7fffffff
 windowSlotIndex = 65535
 histogramCount = 10000
 biasCompressionSlotIndex = 1 1 1 1 1 1
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1

03/25/11
09:16:26 3../../txings/testsuite/smoke/runtest.tcl

Flight S/W Patches, Revision E-F-G

 biasArg0 = 1 1 1 1 1 1
 biasArg1 = 0 0 0 0 0 0
 biasArg2 = 0 0 0 0 0 0
 biasArg3 = 50 50 50 50 50 50
 biasArg4 = 20 20 20 20 20 20
 fep0VideoOffset = 65 65 65 65
 fep1VideoOffset = 65 65 65 65
 fep2VideoOffset = 65 65 65 65
 fep3VideoOffset = 65 65 65 65
 fep4VideoOffset = 65 65 65 65
 fep5VideoOffset = 65 65 65 65
 deaLoadOverride = 0
 fepLoadOverride = 0\n}\n"

 # ---- Wait for Echo ----
 command_echo 1 9 "load te"
}

---- Load CC Parameter Block ----
proc load_cc_test { fepmode bepmode thFI thBI } {
 global cmd_id ccd_list

 # --- Send Parameter Block ---
 send -i $cmd_id "load 0 cc 4 {
 parameterBlockId = 0xffffffff
 fepCcdSelect = $ccd_list
 fepMode = $fepmode
 bepPackingMode = $bepmode
 ignoreBadColumnMap = 1
 recomputeBias = 0
 trickleBias = 0
 rowSum = 0
 columnSum = 0
 overclockPairsPerNode = 8
 outputRegisterMode = 0
 ccdVideoResponse = 0 0 0 0 0 0
 fep0EventThreshold = $thBI $thBI $thBI $thBI
 fep1EventThreshold = $thFI $thFI $thFI $thFI
 fep2EventThreshold = $thFI $thFI $thFI $thFI
 fep3EventThreshold = $thFI $thFI $thFI $thFI
 fep4EventThreshold = $thFI $thFI $thFI $thFI
 fep5EventThreshold = $thBI $thBI $thBI $thBI
 fep0SplitThreshold = 13 13 13 13
 fep1SplitThreshold = 13 13 13 13
 fep2SplitThreshold = 13 13 13 13
 fep3SplitThreshold = 13 13 13 13
 fep5SplitThreshold = 13 13 13 13
 fep4SplitThreshold = 13 13 13 13
 fep5SplitThreshold = 13 13 13 13
 lowerEventAmplitude = 2000
 eventAmplitudeRange = 10
 gradeSelections = 0x0e
 windowSlotIndex = 65535
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasRejection = 384 384 384 384 384 384
 fep0VideoOffset = 65 65 65 65
 fep1VideoOffset = 65 65 65 65
 fep2VideoOffset = 65 65 65 65
 fep3VideoOffset = 65 65 65 65
 fep4VideoOffset = 65 65 65 65
 fep5VideoOffset = 65 65 65 65
 deaLoadOverride = 0

03/25/11
09:16:26 4../../txings/testsuite/smoke/runtest.tcl

Flight S/W Patches, Revision E-F-G

 fepLoadOverride = 0\n}\n"

 # ---- Wait for Echo ----
 command_echo 1 10 "load cc"
}

---- Run Event Mode Test ----
proc run_event_test { mode rows bias start } {
 global cmd_id spawn_id env txblock txlen txincraddr
 set timeout 360
 set state 0
 set inc 0

 # ---- Load the Bias Image ----
 system make bias$mode ROWS=$rows

 # ---- Load the TX parameter block ----
 load_tx_block

 # ---- Compute Bias Maps ----
 send -i $cmd_id "start 0 $mode bias 4\n"
 command_echo 1 $bias "start bias run"
 wait_stop_science

 # ---- Load Image ----
 system make image$mode ROWS=$rows

 # ---- Load the TX parameter block ----
 load_tx_block

 # ---- Start the Science Run ----
 send -i $cmd_id "start 0 $mode 4\n"
 command_echo 1 $start "start $mode run"

 # ---- Wait for First Exposure ----
 expect {
 -re "exposure\[^\r]*\[\r\n]+" { }
 timeout { }
 }

 # ---- Wait for TX Trigger ----
 expect {
 -re "swHousekeeping\[^\r]*\[\r\n]+" {
 send -i $cmd_id "write 0 $txincraddr {\n $inc \n}\n"
 incr inc 500
 send -i $cmd_id "wait 1\nread 0 $txblock $txlen\n"
 exp_continue
 }
 -re "bepReadReply\[^\r]*\
 commandId=1 \[^\r]*\[\r\n]+" {
 set state 1
 }
 -re "scienceReport\[^\r]*\
 terminationCode=(\[0-9]+)\[\r\n]+" {
 fail "BEP termination code $expect_out(1,string)"
 }
 -re "bepStartupMessage\[^\r]*\[\r\n]+" {
 fail "BEP rebooted in state $state"
 }
 timeout {
 fail "Timeout: no RADMON bepReadReply state $state"
 }
 }

03/25/11
09:16:26 5../../txings/testsuite/smoke/runtest.tcl

Flight S/W Patches, Revision E-F-G

 # ---- Wait for bilevels to be reported ----
 if {$state == 1} {
 set timeout 60
 set psci_id $spawn_id
 spawn /bin/sh -c "filterClient -h $env(ACISSERVER) | ltlm -p61 -v"
 expect {
 -re "value *= \[0-9]+ \# \\(1011.*\[\r\n]*" { set state 2 }
 timeout { }
 }
 close
 set spawn_id $psci_id
 }

 # ---- Stop the Job ----
 send -i $cmd_id "stop 0 science\n"
 wait_stop_science
 system "ltlm -p1 -v pkts.raw | tail -34"

 # ---- Report fate ----
 if {$state == 2} {
 send_user "\n---- RADMON triggered ----\n\n"
 } else {
 fail "RADMON not triggered $state"
 }
}

---- Run a Raw Job ----
proc run_raw_test { mode rows start } {
 global cmd_id txblock txlen
 set timeout 360

 # ---- Load Image ----
 system make image$mode ROWS=$rows

 # ---- Load the TX parameter block ----
 load_tx_block

 # ---- Start the Science Run ----
 send -i $cmd_id "start 0 $mode 4\n"
 command_echo 1 $start "start raw $mode run"

 # ---- Wait for First Data Record ----
 expect {
 -re "data..Raw\[^\r]*\[\r\n]+" { send -i $cmd_id "stop 0 science\n" }
 timeout { fail "No data packets"}
 }

 # ---- Dump the TX block ----
 send -i $cmd_id "read 2 $txblock $txlen\n"

 expect {
 -re "bepReadReply\[^\r]*\
 commandId=(\[0-9])\[^\r]*\[\r\n]+" {
 if {$expect_out(1,string) != 2} {
 fail "Bad bepReadReply id=$expect_out(1,string)"
 }
 }
 timeout { fail "No bepReadReply packet"}
 }

 # ---- Wait for End of Run ----
 set timeout 3600
 expect {
 -re "scienceReport\[^\r]*\

03/25/11
09:16:26 6../../txings/testsuite/smoke/runtest.tcl

Flight S/W Patches, Revision E-F-G

 terminationCode=(\[0-9]+)\[\r\n]+" {
 if {$expect_out(1,string) != 1} {
 fail "BEP error $expect_out(1,string)"
 }
 }
 timeout {
 fail "Timed out after $timeout secs"
 }
 }

 # ---- Check that the TX block is unused ----
 set cmd "ltlm -p1 -v pkts.raw | tail -24 | diff - txings.txt"
 if {[catch {system $cmd} err]} {
 fail $err
 }
}

---- Run TE 3x3 Job ----
load_te_test 2 0 $rows $primary 580 665
run_event_test te $rows 15 14

---- Run TE EvHist Job ----
set ccd_list "7 0 1 2 10 5"
load_te_test 2 3 $rows 32 580 665
run_event_test te $rows 15 14

---- Run CC 3x3 Job ----
set ccd_list "7 0 1 2 3 5"
load_cc_test 2 0 285 330
run_event_test cc 512 17 16

---- Run CC 1x3 Job ----
load_cc_test 1 0 320 335
run_event_test cc 512 17 16

---- Run TE Raw Job ----
load_te_test 0 0 100 32 580 665
run_raw_test te 100 14

---- Run CC Raw Job ----
load_cc_test 0 0 285 330
run_raw_test cc 512 16

---- Success ----
pass "RADMON tests successful"

07/29/11
10:42:00 1../../txings/testsuite/smoke/runtest2.tcl

Flight S/W Patches, Revision E-F-G

#! /usr/bin/env expect
#
$Source: /nfs/acis/h3/acisfs/configcntl/patches/txings/testsuite/smoke/runtest2.tcl,v $
#
Tests of txings patch
#

send_user "Welcome to txings/testsuite/smoke/runtest2.tcl\n"

---- Launch the command and telemetry server processes ----
set basedir [lindex $argv 0] ; # Patch base directory
set tools [lindex $argv 1] ; # Tool directory
set patchdir [lindex $argv 2] ; # Patch directory

---- Run Parameters ----
set ccd_list "7 0 1 2 3 5" ; # Desired fepCcdSelect
set rows 1024 ; # Number of rows in TE mode
set primary 32 ; # TE mode exposure time
set txminutes 3 ; # TX integration Time
set timeout 30 ; # Default timeout

---- Embed the Procedure Library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Start the Command Pipe ----
spawn $basedir/$tools/bin/cmdclient $env(ACISSERVER)
set cmd_id $spawn_id

---- Start the Telemetry Pipe ----
spawn $basedir/$tools/bin/tlmclient $env(ACISSERVER)
sleep 1

---- Load TX Parameters ----
source "txings.def"

---- Halt the Processor ----
cold_boot

---- Load Patches ----
load_patch_list "$basedir/$tools/share/standard.bcmd\
 $basedir/$tools/share/opt_smtimedlookup.bcmd\
 $basedir/$tools/share/opt_eventhist.bcmd\
 $basedir/$tools/share/opt_cc3x3.bcmd\
 $basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_deaeng.bcmd\
 $basedir/$patchdir/opt_txings.bcmd\
 $basedir/$patchdir/opt_fepthrottle.bcmd"

---- Apply Patches ----
warm_boot

---- Power Down all Boards ----
power_off_boards
set timeout 10
expect { timeout {} }

---- Wait for FEPs to finish powering ----
for {set fep 5} {$fep >= 0} {incr fep -1} {
 if {[lindex [split $ccd_list " "] $fep] < 10} { break }
}
set timeout 120
power_on_boards "$ccd_list"
expect {

07/29/11
10:42:00 2../../txings/testsuite/smoke/runtest2.tcl

Flight S/W Patches, Revision E-F-G

 -re ".*SWSTAT_FEP_EXECMEM: $fep\[\r\n]" { }
 timeout { fail "boards not powered on" }
}

---- Select FEP input from DEA ----
system make deaselect

---- Initialize the TX Blocks ----
proc load_tx_block {} {
 global cmd_id txnext txblock txlen txminutes

 # ---- Load the TXnext parameter block ----
 send -i $cmd_id "write 0 $txnext {\n $txminutes 3 512 145920 700 40 \n}\n"
 command_echo 1 192 "write TXnext block"

 # ---- Clear the TX block ----
 send -i $cmd_id "write 0 $txblock {\n"
 for {set i 0} {$i < $txlen} {incr i} {send -i $cmd_id "0\n" }
 send -i $cmd_id "}\n"
 command_echo 1 192 "clear TX counters"
}

---- Load TE Parameter Block ----
proc load_te_test { fepmode bepmode rows primary thr vid } {
 global cmd_id ccd_list

 set th1 [expr $thr + 1]
 set th2 [expr $thr + 2]
 set th3 [expr $thr + 3]

 set p05 [expr $vid + 5]
 set p10 [expr $vid + 10]
 set m05 [expr $vid - 5]
 set m10 [expr $vid - 10]

 # --- Send Parameter Block ---
 send -i $cmd_id "load 0 te 4 {
 parameterBlockId = 0xffffffff
 fepCcdSelect = $ccd_list
 fepMode = $fepmode
 bepPackingMode = $bepmode
 onChip2x2Summing = 0
 ignoreBadPixelMap = 1
 ignoreBadColumnMap = 1
 recomputeBias = 0
 trickleBias = 0
 subarrayStartRow = 0
 subarrayRowCount = [expr $rows - 1]
 overclockPairsPerNode = 8
 outputRegisterMode = 0
 ccdVideoResponse = 0 0 0 0 0 0
 primaryExposure = $primary
 secondaryExposure = 0
 dutyCycle = 0
 fep0EventThreshold = $th3 $th3 $th3 $th3
 fep1EventThreshold = $th3 $th3 $th3 $th3
 fep2EventThreshold = $thr $thr $thr $thr
 fep3EventThreshold = $thr $thr $thr $thr
 fep4EventThreshold = $th2 $th2 $th2 $th2
 fep5EventThreshold = $th3 $th3 $th3 $th3
 fep0SplitThreshold = 13 13 13 13
 fep1SplitThreshold = 13 13 13 13
 fep2SplitThreshold = 13 13 13 13
 fep3SplitThreshold = 13 13 13 13

07/29/11
10:42:00 3../../txings/testsuite/smoke/runtest2.tcl

Flight S/W Patches, Revision E-F-G

 fep5SplitThreshold = 13 13 13 13
 fep4SplitThreshold = 13 13 13 13
 fep5SplitThreshold = 13 13 13 13
 lowerEventAmplitude = 2000
 eventAmplitudeRange = 10
 gradeSelections = 0xfeffffff 0xffffffff 0xfffffffb 0xfffff7ff\
 0xffffffff 0xffffffff 0xffbfffff 0x7fffffff
 windowSlotIndex = 65535
 histogramCount = 10000
 biasCompressionSlotIndex = 1 1 1 1 1 1
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasArg0 = 5 5 5 5 5 5
 biasArg1 = 10 10 10 10 10 10
 biasArg2 = 20 20 20 20 20 20
 biasArg3 = 50 50 50 50 50 50
 biasArg4 = 20 20 20 20 20 20
 fep0VideoOffset = $vid $p05 $p05 $p05
 fep1VideoOffset = $vid $vid $vid $vid
 fep2VideoOffset = $p10 $vid $p10 $m10
 fep3VideoOffset = $vid $vid $vid $vid
 fep4VideoOffset = $vid $vid $vid $vid
 fep5VideoOffset = $vid $vid $vid $vid
 deaLoadOverride = 0
 fepLoadOverride = 0\n}\n"

 # ---- Wait for Echo ----
 command_echo 1 9 "load te"
}

---- Load CC Parameter Block ----
proc load_cc_test { fepmode bepmode thr vid } {
 global cmd_id ccd_list

 set th1 [expr $thr + 1]
 set th2 [expr $thr + 2]
 set th3 [expr $thr + 3]

 set p05 [expr $vid + 5]
 set p10 [expr $vid + 10]
 set m05 [expr $vid - 5]
 set m10 [expr $vid - 10]

 # --- Send Parameter Block ---
 send -i $cmd_id "load 0 cc 4 {
 parameterBlockId = 0xffffffff
 fepCcdSelect = $ccd_list
 fepMode = $fepmode
 bepPackingMode = $bepmode
 ignoreBadColumnMap = 1
 recomputeBias = 0
 trickleBias = 0
 rowSum = 0
 columnSum = 0
 overclockPairsPerNode = 8
 outputRegisterMode = 0
 ccdVideoResponse = 0 0 0 0 0 0
 fep0EventThreshold = $th3 $th3 $th3 $th3
 fep1EventThreshold = $th3 $th3 $th3 $th3
 fep2EventThreshold = $thr $thr $thr $thr
 fep3EventThreshold = $thr $thr $thr $thr
 fep4EventThreshold = $th2 $th2 $th2 $th2
 fep5EventThreshold = $th3 $th3 $th3 $th3

07/29/11
10:42:00 4../../txings/testsuite/smoke/runtest2.tcl

Flight S/W Patches, Revision E-F-G

 fep0SplitThreshold = 13 13 13 13
 fep1SplitThreshold = 13 13 13 13
 fep2SplitThreshold = 13 13 13 13
 fep3SplitThreshold = 13 13 13 13
 fep5SplitThreshold = 13 13 13 13
 fep4SplitThreshold = 13 13 13 13
 fep5SplitThreshold = 13 13 13 13
 lowerEventAmplitude = 2000
 eventAmplitudeRange = 10
 gradeSelections = 0x0e
 windowSlotIndex = 65535
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasRejection = 384 384 384 384 384 384
 fep0VideoOffset = $vid $p05 $p05 $p05
 fep1VideoOffset = $vid $vid $vid $vid
 fep2VideoOffset = $p10 $vid $p10 $m10
 fep3VideoOffset = $vid $vid $vid $vid
 fep4VideoOffset = $vid $vid $vid $vid
 fep5VideoOffset = $vid $vid $vid $vid
 deaLoadOverride = 0
 fepLoadOverride = 0\n}\n"

 # ---- Wait for Echo ----
 command_echo 1 10 "load cc"
}

---- Run Event Mode Test ----
proc run_event_test { mode rows bias start } {
 global cmd_id spawn_id env txblock txlen txincraddr
 set timeout 360
 set state 0
 set inc 0

 # ---- Load the TX parameter block ----
 load_tx_block

 # ---- Compute Bias Maps ----
 send -i $cmd_id "start 0 $mode bias 4\n"
 command_echo 1 $bias "start bias run"
 wait_stop_science

 # ---- Load the TX parameter block ----
 load_tx_block

 # ---- Start the Science Run ----
 send -i $cmd_id "start 0 $mode 4\n"
 command_echo 1 $start "start $mode run"

 # ---- Wait for First Exposure ----
 expect {
 -re "exposure\[^\r]*\[\r\n]+" { }
 timeout { }
 }

 # ---- Wait for TX Trigger ----
 expect {
 -re "swHousekeeping\[^\r]*\[\r\n]+" {
 send -i $cmd_id "write 0 $txincraddr {\n $inc \n}\n"
 incr inc 500
 send -i $cmd_id "wait 1\nread 0 $txblock $txlen\n"
 exp_continue
 }

07/29/11
10:42:00 5../../txings/testsuite/smoke/runtest2.tcl

Flight S/W Patches, Revision E-F-G

 -re "bepReadReply\[^\r]*\
 commandId=1 \[^\r]*\[\r\n]+" {
 set state 1
 }
 -re "scienceReport\[^\r]*\
 terminationCode=(\[0-9]+)\[\r\n]+" {
 fail "BEP termination code $expect_out(1,string)"
 }
 -re "bepStartupMessage\[^\r]*\[\r\n]+" {
 fail "BEP rebooted in state $state"
 }
 timeout {
 fail "Timeout: no RADMON bepReadReply state $state"
 }
 }

 # ---- Wait for bilevels to be reported ----
 if {$state == 1} {
 set timeout 60
 set psci_id $spawn_id
 spawn /bin/sh -c "filterClient -h $env(ACISSERVER) | ltlm -p61 -v"
 expect {
 -re "value *= \[0-9]+ \# \\(1011.*\[\r\n]*" { set state 2 }
 timeout { }
 }
 close
 set spawn_id $psci_id
 }

 # ---- Stop the Job ----
 send -i $cmd_id "stop 0 science\n"
 set timeout 600
 expect {
 -re "scienceReport\[^\r]*\
 terminationCode=(\[0-9]+)\[\r\n]+" {
 if {$expect_out(1,string) != 1} {
 fail "BEP termination code $expect_out(1,string)"
 }
 }
 timeout {
 fail "Timeout: no scienceReport in state $state"
 }
 }

 # ---- Report triggering TXblock ----
 system "ltlm -p1 -v pkts.raw | tail -33"

 # ---- Report fate ----
 if {$state == 2} {
 send_user "\n---- RADMON triggered ----\n\n"
 } else {
 fail "RADMON not triggered $state"
 }
}

---- Run a Raw Job ----
proc run_raw_test { mode rows start } {
 global cmd_id txblock txlen
 set timeout 360

 # ---- Load the TX parameter block ----
 load_tx_block

 # ---- Start the Science Run ----

07/29/11
10:42:00 6../../txings/testsuite/smoke/runtest2.tcl

Flight S/W Patches, Revision E-F-G

 send -i $cmd_id "start 0 $mode 4\n"
 command_echo 1 $start "start raw $mode run"

 # ---- Wait for First Data Record ----
 expect {
 -re "data..Raw\[^\r]*\[\r\n]+" {
 send -i $cmd_id "stop 0 science\n"
 }
 timeout {
 fail "No data packets"
 }
 }

 # ---- Dump the TX block ----
 send -i $cmd_id "read 2 $txblock $txlen\n"
 expect {
 -re "bepReadReply\[^\r]*\
 commandId=(\[0-9])\[^\r]*\[\r\n]+" {
 if {$expect_out(1,string) != 2} {
 fail "Bad bepReadReply id=$expect_out(1,string)"
 }
 }
 timeout {
 fail "No bepReadReply packet"
 }
 }

 # ---- Wait for End of Run ----
 set timeout 3600
 expect {
 -re "scienceReport\[^\r]*\
 terminationCode=(\[0-9]+)\[\r\n]+" {
 if {$expect_out(1,string) != 1} {
 fail "BEP termination code $expect_out(1,string)"
 }
 }
 timeout {
 fail "Timeout: no scienceReport in state $state"
 }
 }

 # ---- Check that the TX block is unused ----
 set cmd "ltlm -p1 -v pkts.raw | tail -23 | diff - txings.txt"
 if {[catch {system $cmd} err]} {
 fail $err
 }
}

---- Run TE 3x3 Job ----
load_te_test 2 0 $rows $primary 4 33
run_event_test te $rows 15 14

---- Run TE EvHist Job ----
set ccd_list "7 0 1 2 10 5"
load_te_test 2 3 $rows 32 4 33
run_event_test te $rows 15 14

---- Run CC 3x3 Job ----
set ccd_list "7 0 1 2 3 5"
load_cc_test 2 0 4 33
run_event_test cc 512 17 16

---- Run CC 1x3 Job ----
load_cc_test 1 0 4 33

07/29/11
10:42:00 7../../txings/testsuite/smoke/runtest2.tcl

Flight S/W Patches, Revision E-F-G

run_event_test cc 512 17 16

---- Run TE Raw Job ----
load_te_test 0 0 100 32 4 33
run_raw_test te 100 14

---- Run CC Raw Job ----
load_cc_test 0 0 4 33
run_raw_test cc 512 16

---- Success ----
pass "RADMON tests successful"

02/08/11
16:55:34 1../../txings/testsuite/smoke/makebias.pl

Flight S/W Patches, Revision E-F-G

#! /usr/bin/perl
#
$Source: /nfs/acis/h3/acisfs/configcntl/patches/txings/testsuite/smoke/makebias.pl,v $
#

$rows = $ARGV[0] ? $ARGV[0] : 1024;
$noop = $ARGV[1] ne ’’ ? $ARGV[1] : 33743;

print <<EOF;
 Rows = $rows
 Columns = 256
 Mode = ABCD
 Overclocks = 16
 Seed = 12345678
 Noop = 4 before Oclks
 Noop = 0 before HSYNC
 Noop = 8 after HSYNC
 Noop = $noop before VSYNC
 Noop = 3 after VSYNC

 Begin Node = A
 Bias = 210
 dBias = 0
 OverClock = 200
 dOverClock = 0
 End Node = A

 Begin Node = B
 Bias = 310
 dBias = 0
 OverClock = 300
 dOverClock = 0
 End Node = B

 Begin Node = C
 Bias = 410
 dBias = 0
 OverClock = 400
 dOverClock = 0
 End Node = C

 Begin Node = D
 Bias = 510
 dBias = 0
 OverClock = 500
 dOverClock = 0
 End Node = D
EOF

exit 0;

02/08/11
16:55:06 1../../txings/testsuite/smoke/makeimage.pl

Flight S/W Patches, Revision E-F-G

#! /usr/bin/perl
#
$Source: /nfs/acis/h3/acisfs/configcntl/patches/txings/testsuite/smoke/makeimage.pl,v $
#

$rows = $ARGV[0] ? $ARGV[0] : 1024;
$noop = $ARGV[1] ne ’’ ? $ARGV[1] : 34626;
$incr = $ARGV[2] ? $ARGV[2] : 100;

print <<EOF;
 Rows = $rows
 Columns = 256
 Mode = ABCD
 Overclocks = 16
 Seed = 12345678
 Noop = 4 before Oclks
 Noop = 0 before HSYNC
 Noop = 8 after HSYNC
 Noop = $noop before VSYNC
 Noop = 3 after VSYNC

 Begin Node = A
 Bias = 220
 dBias = 0
 OverClock = 201
 dOverClock = 0
 End Node = A

 Begin Node = B
 Bias = 320
 dBias = 0
 OverClock = 302
 dOverClock = 0
 End Node = B

 Begin Node = C
 Bias = 420
 dBias = 0
 OverClock = 403
 dOverClock = 0
 End Node = C

 Begin Node = D
 Bias = 520
 dBias = 0
 OverClock = 504
 dOverClock = 0
 End Node = D
EOF

$r2 = 5;
$c2 = 5;
$rr = 2 * $r2 + 1;
$cc = 2 * $c2 + 1;
$n = 1;

for ($r = $rr; $r < $rows - $rr - 1; $r += $incr) {

for ($r = $rows - $rr - 1; $r > $rr; $r -= $incr) {
 for ($c = $cc; $c < 1024 - $cc; $c += $incr, $n++) {
 $v = " $n" x ($rr * $cc);
 print <<EOE;
 Begin Event = event_$n
 Rows = $rr

02/08/11
16:55:06 2../../txings/testsuite/smoke/makeimage.pl

Flight S/W Patches, Revision E-F-G

 Columns = $cc
 Value =$v
 End Event = event_$n

 event_$n $r $c
EOE
 }
}

exit 0;

05/22/11
11:08:31 1../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

TITLE: ACIS Flight Software Standard Patch Component Release Notes

DOCUMENT NUMBER: 36-58010 REVISION: E

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

01 36-984 Initial numeric release jimf 10/27/1998
A 36-1006 Bug fixes, incorporate tests RFG 05/11/1999
B 36-1019 Add new patches, retest RFG 12/16/1999
C 36-1035 Add new patches, retest RFG 08/09/2007
D 36-1039 Add new patches, retest RFG 09/29/2009
E 36-1042 Update buscrash2, retest RFG 01/06/2010
E 36-1042 Update buscrash2

05/22/11
11:08:31 2../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Title: ACIS Patch Release Notes for Version E

Software Change Order: 36-1042

Build Date: Sun May 22 11:08:30 EDT 2011
Part Number: 36-58010
Version: E
CVS Tag: release-E

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

Load Size: 2660 bytes

--
Description:
 This is the fifth letter release of the standard patch set for the
 ACIS Flight Software.

 The purpose of this release is to add the txings optional patch
 along with the fepthrottle patch that is used to test it..

 This release consists of the following bug fix/system modification
 patches, where * indicates the new or modified patches since the
 previous release:

 biastiming - Fixes SPR 117
 corruptblock - Fixes SPR 113
 digestbiaserror - Fixes SPR 116
 histogramvar - Fixes SPR 115
 rquad - Fixes SPR 121
 histogrammean - Fixes SPR 123
 zap1expo - Addresses SPR 122
 condoclk - Addresses SPR 127
 fepbiasparity2 - Addresses SPR 130
 cornermean - Fixes SPR 128
 tlmbusy - Fixes SPR 138
 buscrash - Fixes SPR 140
 badpix - Fixes SPR 141
 buscrash2 - Fixes SPR 142

 For archival purposes, this document contains two attachments. The
 first contains ASCII command inputs to the ACIS command generator,
 "bcmd", used to generate the binary patch commands corresponding to
 this release. The second attachment contains the linker map listing
 for the ACIS Flight Software, and the patches built by this release.

 The following documentation identifies these patches, provides a brief
 justification for each patch, and briefly describes the contents of
 these patches and their command, telemetry and science impacts.

--
Addressed Problem Reports:
 SPR-142
 SPR-128
 SPR-123
 SPR-127
 SPR-130
 SPR-138

05/22/11
11:08:31 3../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 SPR-122
 SPR-141
 SPR-115
 SPR-113
 SPR-140
 SPR-117
 SPR-116
 SPR-121

--
Included Patches:
 tlmbusy
 fepbiasparity2
 biastiming
 histogramvar
 badpix
 zap1expo
 digestbiaserror
 corruptblock
 cornermean
 buscrash
 buscrash2
 rquad
 condoclk
 histogrammean

--
Additional Release Level Tests:

05/22/11
11:08:31 4../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: tlmbusy

Part Number: 36-58030.29
Version: A
SCO:

Description:
 This standard patch prevents the BEP from writing anomalous telemetry
 output when the TlmManager::post() method is called from one task while
 it is still enqueuing a packet from another task.

 The BEP will not drop the occasional packet (usually a housekeeping
 packet), and will be prevented from writing garbage in its stead.
 This will prevent the ground system from mis-processing science runs
 in which the garbage consists of correctly formatted, but unexpected,
 packets.

Applicable Reports/Requests:
 SPR-138
 SER-None

Test Results:
 smoke --> PASS

Replaced Functions:
 TlmManager::post

Command Impact:
 None.

Telemetry Impact:
 The occasional packet drop-out or garbling will no longer occur, so the
 impact should be wholly favorable.

Science Impact:
 None.

05/22/11
11:08:31 5../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: fepbiasparity2

Part Number: 36-58030.19
Version: A
SCO: 36-1015

Description:
 In TE mode, this patch causes FEP_0 to bypass the upper half of each
 image map (rows 512 through 1023) if the bias parity errors in any one
 frame reported by the firmware exceed a threshold value (10). In
 addition, the 10 bias values, and their corresponding pixel values,
 are copied to a static location from which they can be dumped at a
 later time. In CC mode, the patch copies the lower half of the FEP_0
 bias map into the upper half whenever 10 or more bias errors have been
 detected.

 The patch has no effect on other FEPs.

Applicable Reports/Requests:
 SPR-130

Test Results:
 bugTe --> PASS
 bugCc --> PASS
 fixTe --> PASS
 patchCc --> PASS

Replaced Functions:

Command Impact:
 Once the patch is installed and FEP_0 powered up and running, it is
 advisable to clear its static save area via the following command:

 write ‘c’ fep 0 0x80000210 {
 0
 }

 Then, either on a regular basis, or when it is noticed that 10
 parity errors have been reported from a single FEP_0 exposure frame,
 the following command should be executed to dump the contents of the
 static save area:

 read ‘c’ fep 0 0x80000210 20

Telemetry Impact:
 If 10 or more bias parity errors are detected in FEP_0 during a
 timed-exposure science run, fepbiasparity2 will prevent more from
 being reported in telemetry. Once the threshold is reached, no further
 events will be reported from rows 512-1023. In 5x5 mode, a few
 additional parity errors may be reported from row 512.

 In continuous clocking mode, when 10 or more bias parity errors are
 detected in FEP_0, fepbiasparity2 will copy the entire contents of the
 lower half of the bias map, i.e., 512 rows x 1024 pixels, to the upper
 half, thereby (hopefully) restoring the original contents. Occasional

05/22/11
11:08:31 6../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 parity errors will be corrected in the usual manner, i.e., by
 searching through the bias map, starting at row 0, for a pair of
 undamaged values.

Science Impact:
 When this patch is triggered in timed-exposure modes, no further
 parity errors will be reported from rows 513-1023 of the CCD attached
 to FEP_0. In 3x3 mode, no events will be reported from rows 511-1023;
 in 5x5 mode, none will be reported from 510-1023. Ground software must
 be prepared to sense this condition, e.g., by examining the
 biasParityErrors fields in exposure packets, or by recognizing the
 absense of events above row 512, and updating the exposure maps
 accordingly.

 The patch should have less impact in continuous clocking mode. When
 the 10-error threshold is triggered, FEP_0 may skip an exposure frame
 while replacing the upper half of its bias map, but otherwise, event
 processing will continue, taking advantage of the full area of the
 CCD.

05/22/11
11:08:31 7../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: biastiming

Part Number: 36-58030.04
Version: A
SCO: 36-993

Description:

 Reason:
 This patch fixes a software problem which was first
 encountered during AXAF thermal vacuum testing at TRW.

 Symptom:
 At TRW thermal vacuum testing, someone observed that the
 instrument sent a science report in the middle of trickled
 bias map data. Bev has subsequently observed one case where
 the instrument started sending science data while trickling
 the bias maps.

 Symptom Impact:
 This symptom opens the possibility that the FEP threshold
 plane will lock up during a science run if the event rate
 is high enough (on the order of 5K events/sec/CCD).

 Symptom Cause:
 When the science manager tells the bias thief to start,
 by calling biasReady(), it set the thief’s busy flag prior
 to signaling the task to start. If the task monitor
 sneaks in, the bias thief’s main loop, goTaskEntry() ends
 up re-clearing the busyFlag, but then later picks up
 the start event and starts trickling the bias map. Since
 the busyFlag is clear at this point, the science manager
 assumes that the bias has been sent, and proceeds on to the
 data processing portion of the run (or if it’s a bias only
 run or the run has been told to stop, the terminate the run).

 Fix Description:
 This patch replaces the BiasThief::biasReady() function
 with one that re-orders the setting of the busyFlag. In
 the patched version, the busyFlag is set AFTER the
 notification to the thief to start sending the bias.
 If the task monitor sneaks in, the thief will clear
 the flag, but once we return to the biasReady() function,
 the flag will be correctly asserted.

Applicable Reports/Requests:
 SPR-117

Test Results:
 unit --> PASS
 fix --> PASS

Replaced Functions:
 BiasThief::biasReady

Command Impact:

05/22/11
11:08:31 8../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 None

Telemetry Impact:
 When this patch is not installed, it is possible, but rare, for bias maps
 to be telemetered while data processing is running and telemetering
 event data and exposure records, and even for a science report to
 be issued while the bias maps continue to be telemetered.

 Once the patch is installed, the instrument will reliably wait until
 all of the bias maps have been telemetered before proceeding with
 the data processing portion of the run.

Science Impact:
 Without this patch, it is possible, but extremely unlikely, that the
 FEP hardware threshold plane may lockup. This results in unreasonably
 low energy events being reported in the same set of positions, where ever
 there was a threshold crossing at the point where the threshold hardware
 locked up. This occurrence has only been seen with high event rates,
 on the order of 3000-5000 per exposure.

 With this patch, this situation will not occur.

05/22/11
11:08:31 9../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: histogramvar

Part Number: 36-58030.03
Version: A
SCO: 36-999

Description:
 This patch fixes a software problem, SPR-115.

 Symptom:
 The Raw Histogram Mode occassionally produces anomalously large
 values for the low word of the overclock variances.

 Symptom Impact:
 This slightly degrades the science analysis of histogram
 mode data by very occassionally providing bad variance values
 for the overclocks.

 Symptom Cause:
 The error is cause by an unsigned integer divide which should
 have been a signed integer divide. If the low order word ends up negative
 this produces an incorrectly high value for the variance.

 Fix Description:
 This inline patch modifies the FEP to use a signed divide instead
 of unsigned divide.

Applicable Reports/Requests:
 SPR-115

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 None

Science Impact:
 This patch affects Histogram Mode Only.
 Without this patch, the overclock variances in histogram mode may
 occassionally be incorrect. Once this patch is installed, the
 Flight Software correctly computes overclock variances.

05/22/11
11:08:31 10../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: badpix

Part Number: 36-58030.21
Version: A
SCO: 36-1037

Description:
 Reason:
 This patch fixes software problem report SPR-141.

 Symptom:
 The known bad pixels and columns supplied to ACIS through its bad
 pixel and column lists are not always being flagged in the correct
 locations in the FEP bias maps. The symptom only appears when the
 instrument is running in timed-exposure mode using sub-arrays whose
 initial row number is greater than zero.

 Symptom Impact:
 In most timed-exposure sub-array runs, when the sub-array starts
 after the first CCD row, bad pixel will be mis-located; the truly
 bad pixels will be accepted as valid and good pixels will be
 treated as bad. In practice, this will have little effect since
 bad pixels will be recognized by the bias map creation algorithm.

 Symptom Cause:
 The BEP maintains a list of known bad pixels and columns in each CCD.
 After a bias map is created, the BEP’s loadBadMaps procedure will set
 the appropriate entries in the FEPs bias maps to 4095, telling the FEP
 software to ignore the corresponding image pixel, i.e., treat it as if
 it had zero value. This is in addition to any saturated pixels found
 during bias map creation, which will also be assigned the bias value
 4095.

 The code in SmTimedExposure::loadBadMaps() contains an error. It
 assumes that sub-arrays will be processed in the same relative location
 in a FEP’s image and bias memory as on the CCD from which the pixels
 originated. This is not so--the first row of a sub-array is always
 written into row 0 of a FEP’s image map, and the corresponding bias
 values are saved in row 0 of its bias map.

 SmTimedExposure::loadBadMaps() must be patched in two places, one to
 correct bad pixels, the other bad columns. The bad pixel correction
 is applied as follows:

 while (badPixelMap.getPixel (index, ccd, row, col) == BoolTrue) {
 if ((row >= start) && (row < end)) {
 row /= sum;
 col /= sum;
 for (FepId fep = FEP_0; fep < FEP_COUNT; fep = FepId(fep+1)) {
 if (fepCcd[fep] == ccd) {
 fepManager.loadBadPixel (fep, row, col);
 }
 }
 }
 index++;
 }

 and we want to change the "row /= sum" to "row = (row-start) / sum".
 This can best be done by recognizing that "sum" has only two values,
 1 or 2, and the MIPS takes 32 bytes of code to perform an unsigned
 integer divide, but only 4 bytes to perform a logical right shift.

05/22/11
11:08:31 11../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 The original assembler code

 1774 2400A28F lw $2,36($sp)
 1778 00000000 divu $2,$2,$18
 177C 1B005200
 1780 02004016
 1784 00000000
 1788 0D000700
 1798 2400A2AF sw $2,36($sp)

 can simply be modified as follows:

 1774 2400A28F lw $2,36($sp)
 1778 FFFF4326 addu $3,$18,-1
 177c 23105600 subu $2,$2,$22
 1780 06106200 srl $2,$2,$3
 1784 00000000 nop
 1788 00000000 nop
 178C 00000000 nop
 1790 00000000 nop
 1794 00000000 nop
 1798 2400A2AF sw $2,36($sp)

 The second patch sets the starting value of the row loop to zero:

 while (badTeColumnMap.getColumn (index, ccd, col) == BoolTrue) {
 col /= sum;
 for (FepId fep = FEP_0; fep < FEP_COUNT; fep = FepId(fep+1)) {
 if (fepCcd[fep] == ccd) {
 for (unsigned row = start; row < end; row++) {
 fepManager.loadBadPixel (fep, row, col);
 }
 }
 }
 index++;
 }

 The existing assembler code is

 $LM1578:
 18cc 0000043C la $4,fepManager
 18d0 00008424
 18d4 21282002 move $5,$17
 18d8 3000A78F lw $7,48($sp)
 18dc 00000000 nop
 18e0 0000000C jal loadBadPixel
 18e4 21300002 move $6,$16
 18e8 01001026 addu $16,$16,1
 18ec 2B101402 sltu $2,$16,$20
 18f0 F6FF4014 bne $2,$0,$L1578

 and the patch replaces the row in the loadBadPixel(fepId, row, col)
 call with row-start. (In the MIPS architecture, the instruction
 after a branch or call is executed before the branch is taken).

 18e4 23301602 subu $6,$16,$22

Applicable Reports/Requests:
 SPR-141

Test Results:

05/22/11
11:08:31 12../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None.

Telemetry Impact:
 None.

Science Impact:
 Without this patch, the BEP’s bad pixel and bad column lists will be
 applied incorrectly in timed-exposure sub-array mode when the sub-array
 begins on any but the first row of the CCD. Since almost all science
 runs are made in dithered mode, the impact once the patch is in place
 will be slight.

05/22/11
11:08:31 13../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: zap1expo

Part Number: 36-58030.16
Version: A
SCO: 36-997

Description:
 Reason:
 In event-finding mode, the FEP thresholds are adjusted using delta-overclock
 values, which are calculated from difference between the average overclock
 values from the preceding frame and the average overclock values from the
 initial bias frame. The delta-overclocks for the initial data frame are set
 to zero, i.e., it is assumed that the mean bias levels haven’t drifted
 since the first exposure frame used to compute the bias map. This is
 often a poor assumption, and can lead to a very large number of events
 being reported within the first exposure.

 Fix Description:
 Inhibit the FEP from finding any threshold crossings within the first
 examined exposure frame. This is performed at science run initialization
 time within the "fepSciTimed.c":FEPsciTimedInit function (TE mode) and
 the "fepSciCClk.c":FEPsciCClkInit function (CC mode) by storing 4095 in
 the FEP threshold registers. Thus,

 186:fepSciTimed.c **** for (iquad = 0; iquad < 4; iquad++) {
 925 0290 21200000 move $4,$0
 926 0294 0000053C la $5,stageThresh
 926 0000A524
 187:fepSciTimed.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 929 029c 40100400 sll $2,$4,1
 930 $L90:
 931 02a0 21105000 addu $2,$2,$16
 932 02a4 A0024394 lhu $3,672($2)
 933 02a8 00000000
 934 02ac 100043A4 sh $3,16($2)
 188:fepSciTimed.c **** fp->ex.dOclk[iquad] = 0;
 937 02b0 180040A4 sh $0,24($2)
 189:fepSciTimed.c **** FIOsetThresholdRegister(iquad, (short)(fp->tp.thresh[iqu
ad]));
 944 02b4 80180400 sll $3,$4,2
 945 02b8 21107000 addu $2,$3,$16
 948 02bc 21186500 addu $3,$3,$5
 949 02c0 4C004284 lh $2,76($2)
 950 02c4 00000000
 951 02c8 000062AC sw $2,0($3)
 958 02cc 01008424 addu $4,$4,1
 959 02d0 0400822C sltu $2,$4,4
 960 .set noreorder
 961 .set nomacro
 962 02d4 F2FF4014 bne $2,$0,$L90
 963 02d8 40100400 sll $2,$4,1
 964 .set macro
 965 .set reorder
 190:fepSciTimed.c **** }

 becomes

 186:fepSciTimed.c **** for (iquad = 0; iquad < 4; iquad++) {
 925 0290 21200000 move $4,$0
 926 0294 0000053C la $5,stageThresh
 926 0000A524

05/22/11
11:08:31 14../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 187:fepSciTimed.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 929 029c 40100400 sll $2,$4,1
 930 $L90:
 931 02a0 21105000 addu $2,$2,$16
 932 02a4 A0024394 lhu $3,672($2)
 933 02a8 00000000
 934 02ac 100043A4 sh $3,16($2)
 188:fepSciTimed.c **** fp->ex.dOclk[iquad] = 0xfff;
 937 02b0 FF0F0324 li $3,0x00000fff
 944 02b4 180043A4 sh $3,24($2)
 189:fepSciTimed.c **** FIOsetThresholdRegister(iquad, 0xfff);
 945 02b8 80180400 sll $3,$4,2
 948 02bc 21186500 addu $3,$3,$5
 949 02c0 FF0F0224 li $2,0x00000fff
 950 02c4 00000000
 951 02c8 000062AC sw $2,0($3)
 958 02cc 01008424 addu $4,$4,1
 959 02d0 0400822C sltu $2,$4,4
 960 .set noreorder
 961 .set nomacro
 962 02d4 F2FF4014 bne $2,$0,$L90
 963 02d8 40100400 sll $2,$4,1
 964 .set macro
 965 .set reorder
 190:fepSciTimed.c **** }

 and

 174:fepSciCClk.c **** for (iquad = 0; iquad < 4; iquad++) {
 774 01fc 21200000 move $4,$0
 775 0200 0000053C la $5,stageThresh
 775 0000A524
 175:fepSciCClk.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 778 0208 40100400 sll $2,$4,1
 779 $L83:
 780 020c 21105000 addu $2,$2,$16
 781 0210 A0024394 lhu $3,672($2)
 782 0214 00000000
 783 0218 100043A4 sh $3,16($2)
 176:fepSciCClk.c **** fp->ex.dOclk[iquad] = 0;
 786 021c 180040A4 sh $0,24($2)
 177:fepSciCClk.c **** FIOsetThresholdRegister(iquad, (short)(fp->tp.thresh[iqu
ad]));
 793 0220 80180400 sll $3,$4,2
 794 0224 21107000 addu $2,$3,$16
 797 0228 21186500 addu $3,$3,$5
 798 022c 4C004284 lh $2,76($2)
 799 0230 00000000
 800 0234 000062AC sw $2,0($3)
 807 0238 01008424 addu $4,$4,1
 808 023c 0400822C sltu $2,$4,4
 809 .set noreorder
 810 .set nomacro
 811 0240 F2FF4014 bne $2,$0,$L83
 812 0244 40100400 sll $2,$4,1
 813 .set macro
 814 .set reorder
 178:fepSciCClk.c **** }

 becomes

 174:fepSciCClk.c **** for (iquad = 0; iquad < 4; iquad++) {
 774 01fc 21200000 move $4,$0
 775 0200 0000053C la $5,stageThresh

05/22/11
11:08:31 15../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 775 0000A524
 175:fepSciCClk.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 778 0208 40100400 sll $2,$4,1
 779 $L83:
 780 020c 21105000 addu $2,$2,$16
 781 0210 A0024394 lhu $3,672($2)
 782 0214 00000000
 783 0218 100043A4 sh $3,16($2)
 176:fepSciCClk.c **** fp->ex.dOclk[iquad] = 0xfff;
 786 021c FF0F0324 li $3,0x00000fff
 787 0220 180043A4 sh $3,24($2)
 177:fepSciCClk.c **** FIOsetThresholdRegister(iquad, 0xfff);
 793 0224 80180400 sll $3,$4,2
 797 0228 21186500 addu $3,$3,$5
 798 022c FF0F0224 li $2,0x00000fff
 799 0230 00000000
 800 0234 000062AC sw $2,0($3)
 807 0238 01008424 addu $4,$4,1
 808 023c 0400822C sltu $2,$4,4
 809 .set noreorder
 810 .set nomacro
 811 0240 F2FF4014 bne $2,$0,$L83
 812 0244 40100400 sll $2,$4,1
 813 .set macro
 814 .set reorder
 178:fepSciCClk.c **** }

Applicable Reports/Requests:
 SPR-122

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 No events will be generated for the first examined exposure, i.e.,
 the frame with exposureNumber == 2 (unless the teignore or ccignore
 patches are loaded, in which case it will be the frame with
 exposureNumber == ignoreInitialFrames).

 To determine whether this patch was in effect during a particular
 science run, telemetry processing software should examine the 4 values
 in the deltaOverclocks array in exposure packets with exposureNumber
 == 2 (or with exposureNumber == ignoreInitialFrames if the relevant
 teignore or ccignore patch is installed). If they are all equal to
 4095, the patch was installed and this exposure frame should not be
 included in the good time interval (GTI); if they are all zero, the
 patch was omitted.

Science Impact:
 With this patch installed, the frame with exposureNumber == 2 (or with
 exposureNumber == ignoreInitialFrames if the relevant teignore or

05/22/11
11:08:31 16../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 ccignore patch is installed) should not be included in the GTI maps.

05/22/11
11:08:31 17../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: digestbiaserror

Part Number: 36-58030.02
Version: A
SCO: 36-995

Description:
 This patch fixes software problem SPR-116.

 Symptom:
 When a parity error is detected, the FEP produces a pair of bias
 values with a flag indicating if one or both are corrupt.
 The BEP mishandles this when telemetering the error.
 If the error occurs at an odd column position, the BEP reports
 the wrong column position of the error.

 Symptom Impact:
 This has the potential to degrade the science analysis by providing
 ambiguous knowledge of which bias map values have been
 corrupted.

 Symptom Cause:
 In PmEvent::digestBiasError, it assumes that only one of pair
 of bias values is corrupt and that the FEP reported column
 indicates which of the two is corrupt. This is WRONG.

 Fix Description:
 This inline patch provides a new representation of the bias error event
 and modifies the telemetry format tag to indicate the new format.
 Rather than telemeter the corrupt value (which is fairly useless),
 the 12-bit value field is as follows, where bit 0 is the
 least-significant bit:

 Bits 0 - 3: The top 4 bits of the bias value at the column position
 Bits 4 - 7: The top 4 bits of the bias value at column + 1
 Bits 8 - 11: Unused

 These bits contain the results of the hardware parity check
 of the corresponding pixel bias value.
 The format of these 4 bits are as follows:

 Bit 0 (H/W bit 12) - Always zero
 Bit 1 (H/W bit 13) - H/W computed parity of bias map value
 Bit 2 (H/W bit 14) - Parity bit stored in parity plane
 Bit 3 (H/W bit 15) - Parity error bit (0 - no parity error, 1 - parity error)

 The bit definition information is derived from the
 "DPA Hardware Specification and System Description",
 MIT 36-02104 Rev. C., Section 2.2.2.5.5 "Bias Map Parity Detection".

Applicable Reports/Requests:
 SPR-116

Test Results:
 reproduce --> PASS
 fix --> PASS

05/22/11
11:08:31 18../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 This patch affects the telemetry Pixel Bias Map Error records.
 Without this patch, the error records will be incorrect if the
 error occurs on an odd column.
 With this patch installed, the instrument will telemetry bias
 errors using a new telemetry format, TTAG_SCI_PATCHED_BIAS_ERROR,
 defined by the "Patch Data Bias Error" format in the IP&CL Software
 Structures Definitions, MIT 36-53204.0204 Rev. L.

Science Impact:
 Without the patch installed, there is an ambiguity whether a bias
 error is in the reported pixel, or in the adjacent, odd column.
 Once the patch is installed, the ground can determine exactly which
 pixel was upset.

05/22/11
11:08:31 19../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: corruptblock

Part Number: 36-58030.01
Version: A
SCO: 36-994

Description:
 Reason:
 This patch fixes software problem report SPR-113.

 Symptom:
 If a parameter block is corrupt, the flight software
 may use nonsense parameters, if just powered on, or run
 the previous run mode’s parameter block.

 Symptom Impact:
 If the original parameter block was corrupt and if this was
 the first run since the instrument was powered, the nonsense
 parameters may cause the instrument to crash and reset, preventing
 any science activity during that observation’s time period.
 The system will recover, although without patches, at the onset
 of the next observation. If there was an earlier run of
 the same type, Timed Exposure or Continuous Clocking, the
 previous run’s parameter will be used, which may or may not
 be ideal.

 Symptom Cause:
 The flight software start run routine, ChStartSciRun::processCmd(),
 declares an "alternate" parameter block variable, which is filled
 in by the science mode’s checkBlock() routine if the original
 parameter block is corrupt. processCmd() then erroneously passes
 this "alternate", and a reference to the "alternate" back to
 checkBlock() to verify that the alternate is not also corrupt.
 The called checkBlock() initializes the 2nd reference to INVALID,
 which ends up overwriting the desired alternate block id. This propagates
 through to the run, preventing the mode from loading the parameter
 block, and using, instead, what it had already staged from an earlier run.

 Fix Description:
 This inline patch modifies 2nd parameter to refer to a dummy
 variable when checking the default backup block. This prevents
 the id from being overridden and provides the proper default
 parameter block selection behavior when the selected block
 has been corrupted.

 The original line from chstartscirun.C is:
 if (mode.checkBlock (blockid, alternate) == BoolTrue)
 {
 result = CMDRESULT_OK;
 }
 <<< else if (mode.checkBlock (alternate, alternate) == BoolTrue)
 {
 blockid = alternate;
 usedAlternate = BoolTrue;
 }
 else
 {
 return CMDRESULT_CORRUPT_IDLE;
 }

 The effect of the patch changes this to:

05/22/11
11:08:31 20../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 if (mode.checkBlock (blockid, alternate) == BoolTrue)
 {
 result = CMDRESULT_OK;
 }
 >>> else if (mode.checkBlock (alternate, dummy) == BoolTrue)
 {
 blockid = alternate;
 usedAlternate = BoolTrue;
 }
 else
 {
 return CMDRESULT_CORRUPT_IDLE;
 }

 The stack frame of the modified patch will appear as follows, where
 the offsets in the left-hand column are relative to the stack pointer
 at the time the jump is made to the called subroutine mode.checkBlock(),
 the symbols in the center column indicate the "conventional" locations
 for various registers, and the right column indicates if the assembler
 actually put anything into that stack slot. If "unassigned" then
 the assembler didn’t explicitly store anything into that stack slot.
 If blank, then the "convention"
 (NOTE: In the MIPS processors, calls don’t explicitly push anything
 on the stack. The return address is maintained in "ra" at the time of
 the call and the caller is then required to save it if needed):
 *
 * ChStartSciRun::processCmd() - Stack Frame
 * Convention described in Section 2.3 of
 * MIPS programmers handbook, by Farquahar and Bunce
 *
 * 60 pad unassigned
 * 56 ra ra ($31)
 * 52 s3 s3 ($19)
 * 48 s2 s2 ($18)
 * 44 s1 s1 ($17)
 * 40 s0 s0 ($16)
 * 36 f23 unassigned (patch uses as local "dummy")
 * 32 f22 alternate (local variable)
 * 28 f21 unassigned
 * 24 f20 unassigned
 * 20 pad unassigned
 * 16 arg biasonly argument (arg4) to scienceManager.startRun()
 * 12 a3 unassigned
 * 8 a2 unassigned
 * 4 a1 unassigned
 * 0 a0 unassigned

Applicable Reports/Requests:
 SPR-113

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 Without this patch, corruptions (if any are actually ever encountered)
 may cause an previous parameter block to be used for an observation, or

05/22/11
11:08:31 21../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 at worst, a reset of the instrument.
 When the patch is installed, the instrument will use the appropriate
 default parameter block (slot 0 or slot 1) instead of the corrupted
 parameter block, or will skip the observation if the defaults are
 also corrupt.

Telemetry Impact:
 None.
 Although, without this patch, the instrument may select
 an inappropriate parameter block, the parameter blocks dumped
 to telemetry at the start of a science run will always be the
 the ones actually used for the run.

Science Impact:
 None

05/22/11
11:08:31 22../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: cornermean

Part Number: 36-58030.21
Version: A
SCO: 36-1017

Description:
 Reason:
 This patch fixes software problem report SPR-128.

 Symptom:
 In Timed Exposure Graded Telemetry mode, when some of
 the corner pixels have a small negative corrected pulse
 height, the system reports an incorrect, extremely large
 negative value for the mean corrected pulse height of
 the corner pixels. Additionally, the algorithm rounds
 incorrectly when the mean pulse height is negative (not
 mentioned in the SPR).

 Symptom Impact:
 Barring corrective ground analysis and action, the incorrectly
 reported corner mean value may confuse the science analysis
 process, and at worst, lead to incorrect conclusions about
 the science, or the state of the instrument data processing.

 Symptom Cause:
 The flight software routine, Pixel3x3:computePhGrade() divides
 a signed integer value, cornersum, with an unsigned integer value,
 sumcount (see filesscience/pixel3x3.H). In "C" and "C++", this
 division is performed as an unsigned divide, preventing any sign
 extension, hence the "signedness" of the cornersum is lost.
 The result is stored into a signed value, cornermean, which is
 later converted to a signed 13-bit value for telemetry. When the
 ground software extracts the 13-bit signed value, it will sign-extend
 the value. The effect of losing the sign in the divide, sometimes
 yields incorrect results, some of which appear as large negative values
 when processed by the ground.

 The rounding problem is due to incorrect coding of the integer
 rounding for negative values:
 mean = (sum + (count/2))/count
 should be:
 mean = (sum + (sign(sum) * int(count)/2))/int(count)

 Fix Description:
 This patch implements the fix to the loss of "signedness"
 problem and the rounding using an inline assembler patch.

 To fix the loss of "signedness" problem the patch replaces
 the existing unsigned divide instruction (divu) with a signed
 divide (div).

 In order to fix the rounding problem, more work was needed.

 The coded formula is:
 mean = (sum + (count/2))/count

 In practice, the MIPS assembler implements divides as an
 embedded assembler macro which performs a divide by zero
 check. In the case of Pixel3x3 it is as
 follows:

05/22/11
11:08:31 23../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 0370 2000638E lw $3,32($19)
 0374 00000000
 0378 42100300 srl $2,$3,1
 037c 2400648E lw $4,36($19)
 0380 00000000

 ---- Code we’re going to muck with ----
 0384 21104400 addu $2,$2,$4
 0388 1B004300 divu $2,$2,$3
 02006014
 00000000
 0D000700
 ---- End of code we’re going to muck with ----
 0398 12100000
 039c 00000000
 00000000
 03a4 280062AE sw $2,40($19)

 ...

 Since the C++ code already has an earlier zero check on the
 denominator, the patch re-codes this portion function as follows:

 0370 2000638E lw $3,32($19)
 0374 00000000
 0378 42100300 srl $2,$3,1
 037c 2400648E lw $4,36($19)
 0380 00000000

 ---- Start of change ----
 0384 bgez $4,positive
 0388 add $2,$2,$4
 038c sub $2,$2,$3
 positive:
 0390 div $0,$2,$3
 0394 nop
 ---- End of change ----

 0398 12100000
 039c 00000000
 00000000
 03a4 280062AE sw $2,40($19)

Applicable Reports/Requests:
 SPR-128

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None.

Telemetry Impact:

05/22/11
11:08:31 24../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 None.

Science Impact:
 Without this patch, the corner mean values in Graded Telemetry
 mode may occasionally be invalid. There is a deterministic ground
 algorithm which can detect and and correct for this effect, but
 without the flight patch or the ground algorithm, the corner mean
 values may be grossly incorrect in some cases.

 Once the patch is in place, the corner mean values should be
 within 1/2 an ADU of the true mean, regardless if sign, without
 further action needed by the ground science software.

05/22/11
11:08:31 25../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: buscrash

Part Number: 36-58030.30
Version: A
SCO:

Description:

 Reason:
 If ACIS is computing bias maps when commanded to power down its front-end
 processors (FEPs), it is likely to crash the back-end processor (BEP)
 interface bus, causing the BEP to reboot without flight software patches.
 Normal operations must be restored via ground command. The cause of the
 problem has been traced to a design flaw in the BEP flight software and
 this ECO describes a small patch that will fix it.

 Symptom:
 During execution of SCS107, typically due to high background radiation,
 ACIS is powered down. Science telemetry reports that the flight s/w
 version number is 11, whereas typical values (depending in the patch
 combination) are 30 or higher, indicating that the BEP rebooted itself.
 Subsequent inspection of the recorded telemetry shows no scienceReport
 packet from the last science run, but a bepStartupMessage packet with
 lastFatalCode=7 and watchdogFlag=1.

 Symptom Impact:
 Since the observatory is usually in safe mode for several hours following
 the SCS107, there is generally sufficient time to establish a realtime
 contact, set the BEP’s warm-boot flag, and restart it. However, this
 takes time and manpower.

 Symptom Cause:
 The bus crash has been traced to a flaw in the FepManager::loadBadPixel()
 method. This routine is executed after the FEP bias maps have been
 created and before they are (optionally) reported in telemetry. It
 uses the memory-mapped interface between BEP and FEP to change those
 locations in the FEP bias maps that correspond to "bad" pixels or whole
 columns. However, unlike all other FepManager operations, loadBadPixel()
 does not confirm that a FEP is powered up before it writes to its map.
 This causes the bus crash.

 Fix Description:
 Call the FepManeger::isEnabled() method to check if the FEP is powered
 up before writing to a FEP’s bias memory (and parity plane).

Applicable Reports/Requests:
 SPR-140

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:
 FepManager::loadBadPixel

Command Impact:

05/22/11
11:08:31 26../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 None.

Telemetry Impact:
 None.

Science Impact:
 None.

05/22/11
11:08:31 27../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: buscrash2

Part Number: 36-58030.30
Version: B-
SCO:

Description:

 Reason:
 If ACIS is copying bias maps to telemetry when commanded to power down its
 front-end processors (FEPs), it is likely to crash the back-end processor
 (BEP) interface bus, causing the BEP to reboot without flight software
 patches. Normal operations must be restored via ground command. The cause
 of the problem has been traced to a design flaw in the BEP flight software
 and this ECO describes a small patch that will fix it.

 Symptom:
 During execution of SCS107, typically due to high background radiation,
 ACIS is powered down. Science telemetry reports that the flight s/w
 version number is 11, whereas typical values (depending in the patch
 combination) are 30 or higher, indicating that the BEP rebooted itself.
 Subsequent inspection of the recorded telemetry shows no scienceReport
 packet from the last science run, but a bepStartupMessage packet with
 lastFatalCode=7 and watchdogFlag=1.

 Symptom Impact:
 Since the observatory is usually in safe mode for several hours following
 the SCS107, there is generally sufficient time to establish a realtime
 contact, set the BEP’s warm-boot flag, and restart it. However, this
 takes time and manpower.

 Symptom Cause:
 The bus crash has been traced to a flaw in the BiasThief::checkMonitor()
 method. This routine is executed after the FEP bias maps have been
 created and it copies them to telemetry. It uses the memory-mapped
 interface between BEP and FEP to access the maps but, unlike other
 FepManager operations, it does not confirm that a FEP is powered up before
 it reads the maps. This causes the bus crash.

 Fix Description:
 Call the FepManeger::isEnabled() method to check if the FEP is powered
 up before reading from a FEP’s bias memory. This is done by patching
 BiasThief::checkMonitor() as follows:

 class Test2_BiasThief : public BiasThief
 {
 public:
 Boolean checkMonitor(FepId fepid);
 };

 Boolean Test2_BiasThief::checkMonitor(FepId fepid)
 {
 DebugProbe probe;
 Boolean retval = BoolTrue; // Assume no abort

 if (fepid >= FEP_COUNT ||
 fepManager.isEnabled (fepid) == BoolFalse) {
 swHousekeeper.report(SWSTAT_FEPREC_POWEROFF, fepid);
 retval = BoolFalse; // FEP not available or powered
 } else {
 unsigned caught = requestEvent (EV_TASKQUERY | EV_ABORT);

05/22/11
11:08:31 28../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 if (caught & EV_TASKQUERY) {
 taskMonitor.respond ();
 }
 if (caught & EV_ABORT) {
 retval = BoolFalse;
 }
 }
 // ---- Return BoolTrue if no abort, BoolFalse if aborted ----
 return retval;
 }

 To pass the fepId as an argument to this version of checkMonitor(),
 other BiasThief methods are patched inline, as follows:

 biasthief+0x0340:
 sw $6,36($sp)

 biasthief+0x0360:
 lw $5,36($sp)

 biasthief+0x04d4:
 lw $5,104($sp)

 biasthief+0x050c:
 lw $6,104($sp)

 biasthief+0x07b0:
 move $5,$18

 biasthief+0x07f4:
 move $6,$18

Applicable Reports/Requests:
 SPR-142

Test Results:
 reproduce --> PASS
 fixTe --> PASS
 fixCc --> PASS

Replaced Functions:
 BiasThief::checkMonitor

Command Impact:
 None.

Telemetry Impact:
 None.

Science Impact:
 None.

05/22/11
11:08:31 29../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

05/22/11
11:08:31 30../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: rquad

Part Number: 36-58030.14
Version: A
SCO: 36-1000

Description:
 Reason:
 This patch fixes software problem report SPR-121.

 Symptom:
 If the center pixel of a 3x3 event is in the last
 column of any but the right-most quadrant (i.e. in FULL mode,
 quadrants A, B or C, but not D), the flight software will
 inappropriately use the delta overclock and split threshold
 for the center pixel’s quadrant on the pixels on the right
 edge of the event. The instrument is supposed to use the
 delta overclock and split thresholds for the next quadrant
 on these pixels.

 Symptom Impact:
 This may lead to an incorrect estimate of the
 event’s total pulse height and grade, possibly
 leading to inappropriate pulse height and grade
 filtering of these events, or, when using Graded
 Event formats, incorrect pulse height and grade
 code values.

 Symptom Cause:
 The flight software is fetching the quadrant identifier
 for the wrong column position for the right edge pixels:

 quad = exposure->getQuadrant (col);
 doclk[1] = exposure->getOverclockDelta (quad);
 split[1] = exposure->getSplitThreshold (quad);

 WRONG---> quad = exposure->getQuadrant (col);
 doclk[2] = exposure->getOverclockDelta (quad);
 split[2] = exposure->getSplitThreshold (quad);

 computePhGrade (doclk, split);

 This should be:

 quad = exposure->getQuadrant (col);
 doclk[1] = exposure->getOverclockDelta (quad);
 split[1] = exposure->getSplitThreshold (quad);

 CORRECT---> quad = exposure->getQuadrant (col+1);
 doclk[2] = exposure->getOverclockDelta (quad);
 split[2] = exposure->getSplitThreshold (quad);

 computePhGrade (doclk, split);

 Fix Description:
 The patch increments the column register variable using
 an "nop" slot of an earlier instruction following
 the previous call to exposure->getQuadrant() and prior
 to the last call to exposure->getQuadrant().

05/22/11
11:08:31 31../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 This is the last time the register is used in the function,
 so it won’t corrupt subsequent code, and the "nop"
 was inserted by the compiler after a "lw", which allows
 for increments of registers unrelated to the "lw".

 05cc 2C00A2AF sw $2,44($sp)
 $LM84:
 210:../filesscience/pixel3x3.C ****
 211:../filesscience/pixel3x3.C **** quad = exposure->getQ
uadrant (col);
 05d0 5400028E lw $2,84($16)
 "addu $18,$18,1" --->> 05d4 00000000
 05d8 0800428C lw $2,8($2)
 00000000
 05e0 21200002 move $4,$16
 .set noreorder
 .set nomacro
 "col" is passed in 05e4 09F84000 jal $31,$2
 a delay slot --->>05e8 21284002 move $5,$18
 .set macro
 .set reorder

 05ec 21884000 move $17,$2
 $LM85:
 ../filesscience/pixel3x3.C **** doclk[2] = exposure->getO
verclockDelta (quad);
 05f0 5400028E lw $2,84($16)
 05f4 00000000
 05f8 0400428C lw $2,4($2)
 00000000
 0600 21200002 move $4,$16
 .set noreorder
 .set nomacro
 0604 09F84000 jal $31,$2
 0608 21282002 move $5,$17
 .set macro
 .set reorder

 060c 2000A2AF sw $2,32($sp)
 $LM86:
 ../filesscience/pixel3x3.C **** split[2] = exposure->getS
plitThreshold (quad);
 .stabn 68,0,213,$LM86
 0610 5400028E lw $2,84($16)
 0614 00000000
 0618 0C00428C lw $2,12($2)
 00000000
 0620 21200002 move $4,$16
 .set noreorder
 .set nomacro
 0624 09F84000 jal $31,$2
 0628 21282002 move $5,$17
 .set macro
 .set reorder

 062c 3000A2AF sw $2,48($sp)
 $LM87:
 ../filesscience/pixel3x3.C ****
 ../filesscience/pixel3x3.C **** computePhGrade (doclk, sp
lit);
 .stabn 68,0,215,$LM87
 0630 1000828E lw $2,16($20)
 0634 00000000
 0638 1C00428C lw $2,28($2)

05/22/11
11:08:31 32../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 00000000
 0640 21208002 move $4,$20
 0644 1800A527 addu $5,$sp,24
 .set noreorder
 .set nomacro
 0648 09F84000 jal $31,$2
 064c 2800A627 addu $6,$sp,40
 .set macro
 .set reorder

 $LBB29:
 $LM88:
 $LBB30:
 $LBE30:
 $LM89:
 $LBE29:
 $LM90:
 ../filesscience/pixel3x3.C ****
 ../filesscience/pixel3x3.C **** //
 ../filesscience/pixel3x3.C **** }
 $LBE26:
 0650 4C00BF8F lw $31,76($sp)
 00000000
 0658 4800B48F lw $20,72($sp)
 00000000
 0660 4400B38F lw $19,68($sp)
 00000000
 0668 4000B28F lw $18,64($sp)
 00000000
 0670 3C00B18F lw $17,60($sp)
 00000000
 0678 3800B08F lw $16,56($sp)
 00000000
 0680 5000BD27 addu $sp,$sp,80
 0684 0800E003 j $31
 00000000
 .end Pixel3x3::attachData(FEPeven
tRec3x3 const *, EventExposure *)
 $LM91:

Applicable Reports/Requests:
 SPR-121

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 See SCIENCE IMPACT.

Science Impact:
 Without this patch, all Timed Exposure and CC3x3 events on the left
 edge of a quadrant boundary may have incorrect pulse heights and

05/22/11
11:08:31 33../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 grades, and events which impact at these positions may be inappropriately
 filter out or telemetered if pulse height and grade filters are used.

05/22/11
11:08:31 34../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: condoclk

Part Number: 36-58030.17
Version: A
SCO: 36-1012

Description:
 Reason:
 The first timed exposure frames received during OAC (e.g.,
 SOP_61052_DARK_CUR) showed sporadic increases in the overclock
 averages, and anomalous dark patches within bias maps. Once raw frames
 were examined (in SOP_61054_RAW_DATA and SAP_61079_RAW_BIAS), the
 effect was seen to be caused by charged particle background "leaking"
 into the overclocks.

 Fix Description:
 Patch the FEP overclock processing function, fepOclkProc in
 fep/fepCtl.c, to "condition" the overclock sum on a row-by-row
 basis. The patch, which will not apply to OC_RAW or OC_HIST modes,
 will ignore the overclock sum of particular row and node if it exceeds
 the previous sum by some suitable threshold. This entails replacing
 the following fepOclkProc() code:

 for (ioclk = 0; ioclk < fp->tp.noclk; ioclk++) {
 unsigned p0 = *fp->oc.optr++;
 unsigned p1 = *fp->oc.optr++;
 switch (fp->tp.quadcode) {
 case FEP_QUAD_AC:
 fp->oc.osum[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.osum[1] += PIXEL0(p1) & PIXEL_MASK;
 break;
 case FEP_QUAD_BD:
 fp->oc.osum[0] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.osum[1] += PIXEL1(p1) & PIXEL_MASK;
 break;
 default:
 fp->oc.osum[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.osum[1] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.osum[2] += PIXEL0(p1) & PIXEL_MASK;
 fp->oc.osum[3] += PIXEL1(p1) & PIXEL_MASK;
 break;
 } /* end switch */
 } /* end for ioclk */

 with an inline patch that saves R9-R12:

 condoclkCtl(fp);

 subu $sp,$sp,16
 sw $9,0($sp)
 sw $10,4($sp)
 sw $11,8($sp)
 sw $12,12($sp)
 jal condoclkCtl
 move $4,$16
 lw $9,0($sp)
 lw $10,4($sp)
 lw $11,8($sp)
 lw $12,12($sp)
 j fepCtl+0x0f74
 addu $sp,$sp,16

05/22/11
11:08:31 35../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 and adding the condoclkCtl function:

 void condoclkCtl(FEPparm *fp)
 {
 unsigned dsum = OCLK_COND * fp->tp.noclk;
 unsigned ioclk, iquad;

 /* clear local accumulator */
 for (iquad = 0; iquad < 4; iquad++) {
 fp->oc.ossql[iquad] = 0;
 /* clear saved row sum at start of frame */
 if (fp->oc.osum[iquad] == 0) {
 fp->oc.ossqh[iquad] = 0;
 }
 } /* end for iquad */

 /* accumulate the overclock sums */
 for (ioclk = 0; ioclk < fp->tp.noclk; ioclk++) {
 unsigned p0 = *fp->oc.optr++;
 unsigned p1 = *fp->oc.optr++;
 switch (fp->tp.quadcode) {
 case FEP_QUAD_AC:
 fp->oc.ossql[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.ossql[1] += PIXEL0(p1) & PIXEL_MASK;
 break;
 case FEP_QUAD_BD:
 fp->oc.ossql[0] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.ossql[1] += PIXEL1(p1) & PIXEL_MASK;
 break;
 default:
 fp->oc.ossql[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.ossql[1] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.ossql[2] += PIXEL0(p1) & PIXEL_MASK;
 fp->oc.ossql[3] += PIXEL1(p1) & PIXEL_MASK;
 break;
 } /* end switch */
 } /* end for ioclk */

 /* condition the sums */
 for (iquad = 0; iquad < 4; iquad++) {
 if (fp->oc.ossqh[iquad] == 0) {
 /* always save first row sum */
 fp->oc.ossqh[iquad] = fp->oc.ossql[iquad];
 } else if (fp->oc.osum[iquad] == fp->oc.ossqh[iquad] &&
 fp->oc.ossqh[iquad] > fp->oc.ossql[iquad] + dsum) {
 /* if second row sum much less than first, replace the
 total sum by twice the second sum */
 fp->oc.osum[iquad] = fp->oc.ossqh[iquad] = fp->oc.ossql[iquad];
 } else if (fp->oc.ossql[iquad] <= fp->oc.ossqh[iquad] + dsum) {
 /* save row sum if not much greater than the saved sum */
 fp->oc.ossqh[iquad] = fp->oc.ossql[iquad];
 }
 /* increment overclock accumulator */
 fp->oc.osum[iquad] += fp->oc.ossqh[iquad];
 } /* end for iquad */
 }

 The algorithm uses the oc.ossql[4] and oc.ossqh[4] fields which would
 not otherwise participate in OC_SUM mode, and whose prior contents may
 be safely overwritten. The oc.ossql fields are used to accumulate the
 overclocks of the current row, and the current "best" value of this

05/22/11
11:08:31 36../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 sum is saved from row to row in oc.ossqh. If the current row sum
 exceeds the current best sum by a constant OCLK_COND times the number
 of overclocks in the row, the current best sum will be used in its
 place; otherwise, the sum of the current row will replace the current
 best. The first two rows of each frame receive special treatment: the
 first row sum is used to initialize oc.ossqh -- the "best" sum -- and,
 if the sum of the second row is anomalously LOWER than this, the best
 row sum and the running total sum are corrected.

Applicable Reports/Requests:
 SPR-127

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 None

Science Impact:
 With this patch installed, the effect of background events on
 overclock averages will be greatly reduced, directly reducing
 systematic errors within bias maps and increasing the accuracy of
 photon energy determination.

05/22/11
11:08:31 37../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: histogrammean

Part Number: 36-58030.15
Version: A
SCO: 36-996

Description:
 Reason:
 In raw TE histogram mode, the FEPs report the mean of each CCD
 quadrant’s overclocks. This is done in two steps: first, the
 overclocks of each quadrant of each frame are summed into fields
 "oc.osum" in the FEPparm structure, and these are then averaged over
 the separate "histogramCount" frames and reported to the BEP in
 "omean" fields in FEPeventRecHist structures. The error is caused by
 using the 16-bit "omean" fields as accumulators, as well as final
 values, since, if the mean overclock value multiplied by
 "histogramCount" exceeds 65535, overflow will occur.

 Fix Description:
 The patch adds 8 32-bit integer fields to the end of the D-cache stack
 employed by the fepCtl function. Within FEPsciTimedHist, machine
 instructions are altered to initialize these fields to zero, to use
 them to accumulate the intermediate sums, and hence to form the means
 which are stored into "omean".

 (a) increase fepCtl stack length by an extra 32 bytes

 .globl fepCtl_lst_0000_0000
 .ent fepCtl_lst_0000_0000
 fepCtl_lst_0000_0000:

 0000 88FABD27 subu $sp,$sp,1368+32
 0004 5405BFAF

 .end fepCtl_lst_0000_0000

 (b) decrease fepCtl stack length by an extra 32 bytes

 .globl fepCtl_lst_012c_012c
 .ent fepCtl_lst_012c_012c
 fepCtl_lst_012c_012c:
 0128 00000000
 012c 7805BD27 addu $sp,$sp,1368+32
 0130 0800E003
 .end fepCtl_lst_012c_012c

 (c) set mean and variance sums to zero

 .globl fepSciTimed_lst_1858_1864
 .ent fepSciTimed_lst_1858_1864
 fepSciTimed_lst_1858_1864:
 1854 80180B00
 1858 21187000 addu $3,$3,$16
 185c 480560AC sw $0,1368-16($3)
 1860 580560AC sw $0,1368($3)
 1864 140040A4 sh $0,20($2)
 1868 0C0044A4
 .end fepSciTimed_lst_1858_1864

 (d) increment mean sum

05/22/11
11:08:31 38../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 .globl fepSciTimed_lst_1acc_1adc
 .ent fepSciTimed_lst_1acc_1adc
 fepSciTimed_lst_1acc_1adc:
 1ab0 1B006A00
 02004015
 00000000
 0D000700
 12180000
 1acc 34050925 addu $9,$8,1368-36
 1ad0 4805028D lw $2,1368-16($8)
 1ad4 00000000 nop
 1ad8 21104300 addu $2,$2,$3
 1adc 480502AD sw $2,1368-16($8)
 1ae0 1B00AA01
 1ae4 02004015
 1ae8 00000000
 1aec 0D000700
 1af0 12200000
 .end fepSciTimed_lst_1acc_1adc

 (e) save stack pointer in R9

 .globl fepSciTimed_lst_1c38_1c38
 .ent fepSciTimed_lst_1c38_1c38
 fepSciTimed_lst_1c38_1c38:
 1c34 1403028E
 1c38 48050926 addu $9,$16,1368-16
 1cec 22004010
 .end fepSciTimed_lst_1c38_1c38

 (f) load overclock mean sum

 .globl fepSciTimed_lst_1c50_1c50
 .ent fepSciTimed_lst_1c50_1c50
 fepSciTimed_lst_1c50_1c50:
 1c4c 21187200
 1c50 0000228D lw $2,0($9)
 1c54 00000000
 .end fepSciTimed_lst_1c50_1c50

 (g) load overclock variance sum

 .globl fepSciTimed_lst_1c84_1c84
 .ent fepSciTimed_lst_1c84_1c84
 fepSciTimed_lst_1c84_1c84:
 1c80 21187200
 1c84 1000228D lw $2,16($9)
 1c88 00000000
 .end fepSciTimed_lst_1c84_1c84

 (h) increment R9

 .globl fepSciTimed_lst_1cb8_1cb8
 .ent fepSciTimed_lst_1cb8_1cb8
 fepSciTimed_lst_1cb8_1cb8:
 1cb4 1403028E
 1cb8 04002925 addu $9,$9,4
 1cbc 2B106201
 .end fepSciTimed_lst_1cb8_1cb8

Applicable Reports/Requests:

05/22/11
11:08:31 39../dist/standard-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 SPR-123

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 None. It should be pointed out that an alternative approach to
 fixing this problem is to add the following code to the downlink
 raw histogram software, although this algorithm may fail for very
 large values of "histogramCount".

 if (fs->meanOverclock[node] < fs->minimumOverclock[node] ||
 fs->meanOverclock[node] > fs->maximumOverclock[node]) {
 unsigned hh = loadTeBlock_histogramCount(param);
 double dmlim = 8192.0*hh*loadTeBlock_overclockPairsPerNode(param);
 unsigned mm, mlim = (dmlim < 0x7fffffff) ? dmlim : 0x7fffffff;
 for (mm = 0; mm < mlim; mm += 65536) {
 unsigned nn = fs->meanOverclock[node]+(mm+hh/2)/hh;
 if (nn >= fs->minimumOverclock[node] &&
 nn <= fs->maximumOverclock[node]) {
 fs->meanOverclock[node] = nn;
 break;
 }
 }
 }

Science Impact:
 None -- raw histogram mode is not necessary for science processing.

05/22/11
18:42:32 1../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

TITLE: ACIS Flight Software Optional Patch Component Release Notes

DOCUMENT NUMBER: 36-58020 REVISION: F

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

01 36-987 Initial numeric release jimf 11/12/1998
A 36-1007 Bug fixes, incorporate tests RFG 05/12/1999
B 36-1019 Add new patches, retest RFG 12/16/1999
C 36-1022 Add new patches, retest RFG 03/21/2003
D 36-1040 Add new patches, retest RFG 09/29/2009
E 36-1042 No new patches, retest RFG 01/06/2010
F 36-1044 Add txings patch, retest RFG 03/02/2011
F 36-1044 Add txings patch

05/22/11
18:42:32 2../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Title: ACIS Optional Patch Release Notes for Version F

Software Change Order: 36-1044

Build Date: Sun May 22 18:42:31 EDT 2011
Part Number: 36-58020
Version: F
CVS Tag: release-E-opt-F

Std Number: 36-58010
Std Version: E
Std Tag: release-E
Std SCO: 36-1042

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This is the sixth letter release of the optional patch set for the ACIS
 Flight Software. The purpose of this release is to add the txings and
 fepthrottle patches and test them with the Rev. E Standard Patch release.

 Although the patches listed in this release have been tested in
 combination with the standard patch release, they have NOT been tested
 in various combinations with each other as part of this release. Each
 needed combination will be provided a distinct part number, and will
 be released invidually, based on the patches provided in this release.

 This release consists of the following optional flight patches:

 cc3x3 - Continuous Clocking 3x3 Event Mode
 ccignore - Ignore Continuous Clocking data frames
 compressall - Fixes SPR 134
 ctireport1 - Reports precursor charge
 ctireport2 - Reports precursor charge
 eventhist - Timed Exposure Event Histogram Mode
 reportgrade1 - Addresses SPR 132
 smtimedlookup - Supports eventhist and ctireport
 teignore - Ignore Timed Exposure data frames
 untricklebias - Fixes SPR 133
 * txings - Triggers bilevels on excess threshold crossings

 This release also contains a set of informally controlled engineering
 patches, used for ground testing, debugging and experimentation:

 hybrid - Prototype of a hybrid clocking mode
 squeegy - Prototype of a squeegee clocking mode
 fepbiasparity1 - Prototype of the fepbiasparity2 patch
 forcebiastrickle - Patch to set trickleBias flag
 tlmio - Telemetry Standard I/O Utility Routines
 printswhouse - Print S/W Housekeeping reports in realtime
 deaeng - Detect/configure for DEA Engineering video boards
 dearepl - Stubs for use when a DEA is not attached
 * fepthrottle - Reduces FEP event candidates

--
Addressed Problem Reports:
 SPR-134

05/22/11
18:42:32 3../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 SPR-126
 SPR-132
 SPR-133
 SPR-120
 SPR-124

--
Included Patches:
 cc3x3 (4636 bytes)
 ccignore (36 bytes)
 compressall (2368 bytes)
 ctireport1 (5452 bytes, depends on smtimedlookup)
 ctireport2 (2784 bytes, depends on smtimedlookup)
 deaeng (2604 bytes, depends on tlmio, conflicts with dearepl)
 dearepl (556 bytes, conflicts with deaeng)
 eventhist (5908 bytes, depends on smtimedlookup)
 printswhouse (7240 bytes, depends on tlmio)
 reportgrade1 (816 bytes)
 smtimedlookup (3712 bytes)
 teignore (36 bytes)
 tlmio (10312 bytes)
 txings (3128 bytes)
 untricklebias (1740 bytes, depends on buscrash2)

05/22/11
18:42:32 4../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: reportgrade1

Part Number: 36-58030.22
Version: A
SCO: 36-1021
Environment: flight

Conflicts:
Depends On:
Size: 816 bytes

Bcmd File: opt_reportgrade1.bcmd
Pkts File: opt_reportgrade1.pkts

Description:
 This patch reports per-FEP event filtering statistics via software
 housekeeping. The SwHousekeeper constructor is patched in order to
 add an extra 54 housekeeping codes, 9 per FEP, as follows:

 SW_FILT_NONE, /* events unfiltered */
 SW_FILT_ENERGY, /* events filtered by energy */
 SW_FILT_GRADE1, /* events filtered by SW_GRADE_CODE1 */
 SW_FILT_GRADE2, /* events filtered by SW_GRADE_CODE2 */
 SW_FILT_GRADE3, /* events filtered by SW_GRADE_CODE3 */
 SW_FILT_GRADE4, /* events filtered by SW_GRADE_CODE4 */
 SW_FILT_GRADE5, /* events filtered by SW_GRADE_CODE5 */
 SW_FILT_OTHER, /* events filtered by other grade */
 SW_FILT_WIN, /* events filtered by window */

 These SwStatistic codes begin at a value of SWSTAT_FILTER_BASE. They
 are defined in "acis_h/interface.h", along with the 5 special grade
 codes:

 SW_GRADE_CODE1 = 24,
 SW_GRADE_CODE2 = 66,
 SW_GRADE_CODE3 = 107,
 SW_GRADE_CODE4 = 214,
 SW_GRADE_CODE5 = 255

 Thus, the number of grade 214 events rejected by FEP_3 during the
 current housekeeping interval will be reported in swHousekeeping
 packets with a "statistics[].swStatisticId" value of
 SWSTAT_FILTER_BASE+SW_FILT_GRADE4+(9*FEP_3). The corresponding
 "statistics[].count" field will contain the number of events in this
 particular class from this particular FEP during the current ˜64 sec
 housekeeping interval. As an aide to synchronizing housekeeping data
 and event packets, the "statistics[].value" field will contain the
 most recent exposure number read from this FEP during this interval.

Applicable Reports/Requests:
 SPR-132

Test Results:
 testTe --> PASS
 testCc --> PASS

05/22/11
18:42:32 5../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

Replaced Functions:
 PmEvent::filterEvent

Command Impact:
 None.

Telemetry Impact:
 No reduction of telemetry throughput is anticipated. To identify the
 new housekeeping fields, ground software must recognize the new
 SwStatistic codes. Refer to the ACIS Software IP&CL Release Notes,
 Rev. L or later, for details

Science Impact:
 None.

05/22/11
18:42:32 6../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: untricklebias

Part Number: 36-58030.28
Version: B
SCO: 36-1028
Environment: flight

Conflicts:
Depends On: buscrash2
Size: 1740 bytes

Bcmd File: opt_untricklebias.bcmd
Pkts File: opt_untricklebias.pkts

Description:
 For reasons unknown, the BEP has occasionally run the science and bias
 thief tasks simultaneously. This causes the FEPs to start searching
 for x-ray events while the BEP is copying their bias maps to
 telemetry. If the threshold crossing freqency is sufficiently high,
 this can trigger an error in the FEP firmware leading to a "T-plane
 latchup" condition.

 The untricklebias patch prevents this behavior by ensuring that the
 FEP bias maps are never accessed by the BiasThief task. Instead, the
 science task is given these functions.

 The main routine of the bias thief task is repaced by
 Test_BiasThief::goTaskEntry, which does nothing beyond waking up
 whenever the task monitor tells it to, but goes back to sleep again
 immediately.

 Where necessary, the remaining BiasThief methods that are called from
 the science task are replaced by methods that do not notify the bias
 thief task that a change has been made. The trickleTeBias and
 trickleCcBias do not need to be patched, but the checkMonitor method
 must be replaced with a version that is appropriate for being called
 from the science task. Note that it tests the EV_SM_BIAS_ABORT_RUN in
 the event mask: this is the value appropriate for a science task
 abort.

 When used with Standard Patch Release D or higher, containing the
 buscrash2 patch, the BiasThief::checkMonitor() method has been updated
 to test whether the fepId is powered up. This method must therefore
 override both the original checkMonitor() and the updated version
 loaded by the buscrash2 patch.

Applicable Reports/Requests:
 SPR-133

Test Results:
 patchTe --> PASS
 patchAll --> PASS
 patchCc --> PASS

Replaced Functions:
 BiasThief::abort

05/22/11
18:42:32 7../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 ScienceMode::waitForBiasTrickle
 BiasThief::goTaskEntry
 BiasThief::biasReady
 BiasThief::checkMonitor

Command Impact:
 None.

Telemetry Impact:
 None.

Science Impact:
 None.

05/22/11
18:42:32 8../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: deaeng

Part Number: 36-58030.11
Version: 02
SCO: 36-1010
Environment: engineering

Conflicts: dearepl
Depends On: tlmio
Size: 2604 bytes

Bcmd File: opt_deaeng.bcmd
Pkts File: opt_deaeng.pkts

Description:
 This patch provides the basic capability to detect
 and communicate with the engineering version of the
 DEA CCD controller boards. For historical reasons,
 these boards have a different interface than
 the flight CCD controllers.

 This patch relies on printf() being installed
 (see tlmio).

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:
 DeaCcdController::updateRegister
 DeaCcdController::powerOn
 DeaCcdController::writeData

Command Impact:
 This patch will determine the type of video boards
 installed in the system. Due to the interface differences
 between boards, high-speed tap commands will not work
 on engineering video boards, but will continue to work
 on "flight-like" video boards.

Telemetry Impact:
 Since this patch calls printf(), it will result
 in TTAG_USER telemetry packets.

Science Impact:
 N/A

05/22/11
18:42:32 9../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: cc3x3

Part Number: 36-58030.06
Version: B
SCO: 36-1018
Environment: flight

Conflicts:
Depends On:
Size: 4636 bytes

Bcmd File: opt_cc3x3.bcmd
Pkts File: opt_cc3x3.pkts

Description:
 This patch implements the Continuous Clocking 3x3
 Event Mode. In this mode, the instrument performs the
 standard continuous clocking manipulation of the CCDs,
 but rather than accept and telemetry 1x3 events, the mode
 processes 3x3 event islands, improving the spectral performance
 of the mode and reducing the problems associated with vertically
 split events.

 Because the Continuous Clocking parameter block only provides
 4 bits for defining the grade selection for the mode (in 1x3, only
 4 bits were necessary), this patch provides table which maps
 the 4-bit code into a set of pre-built 256-bit grade selection
 masks. In this release, the grade selection map is populated with
 masks provided by Fred Baganoff. Refer to grade_table.html for
 a description of the grade families. The following table summarizes
 the selections:

 Code 0 - Reject all grades
 Code 1 - Reject ASCA grades 1,2,3,4,5,6,7
 Code 2 - Reject ASCA grades 1,5,6,7
 Code 3 - Reject ASCA grades 1,5,7
 Code 4 - Undefined (currently rejects all grades)
 Code 5 - Undefined (currently rejects all grades)
 Code 6 - Undefined (currently rejects all grades)
 Code 7 - Reject ACIS flight grades 24,66,107,127,214,223,248,251,254,255
 Code 8 - Reject ACIS flight grades 24,107,127,214,223,248,251,254,255
 Code 9 - Reject ACIS flight grades 24,66,107,214,248,255
 Code 10 - Reject ACIS flight grades 24,66,107,214,255
 Code 11 - Reject ACIS flight grades 24,107,214,248,255
 Code 12 - Reject ACIS flight grades 24,107,214,255
 Code 13 - Reject ASCA grade 7
 Code 14 - Reject ACIS flight grade 255
 Code 15 - Accept all grades

 NOTE: CC3x3 Codes 0 and 15 have the same effect
 as their numerical equivalents in CC1x3, where 0
 will reject all events, and 15 will accept events
 with any grade code.

Applicable Reports/Requests:
 SPR-126
 SPR-120
 SPR-124

05/22/11
18:42:32 10../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

Test Results:
 unit --> PASS
 smoke --> PASS

Replaced Functions:
 SmContClocking::setupFepBlock
 SmContClocking::setupProcess
 SmContClocking::terminate

Command Impact:
 This version of CC3x3 uses different grade sets than the
 previous version. This may have an impact on the grade selection
 field of CC Parameter Block command packets already built
 built for CC3x3 observations.

 This mode is invoked by using the FEP_CC_MODE_EV3x3 (2) in the
 fepMode field of the Continuous Clocking Parameter block, in
 conjunction with any of the BEP_CC event processing modes for
 the bepPackingMode field. This restricts the use of this mode
 to CC Faint and CC Graded modes. This patch does NOT support
 other Timed Exposure derived modes, such as Faint with Bias,
 5x5, nor any of the exisiting nor patched histogram modes.

 At the onset of a CC3x3 science run, the run will force two
 resets and reloads of the FEP software, the first to ensure
 that the boot-strap code is in the FEPs, and the second to
 load the patch code into the FEPs. This will always add up
 to 14 seconds per FEP to the start-up time of the run, compared
 to runs where the FEPs were already loaded and running.

 To ensure that the patch is not present at the start of the
 next run, which may or may not be a CC3x3 run, a CC3x3 science
 run will always force the FEPs into a reset state at the end
 of the run. This will add another 7 seconds per FEP to the
 start up time of the run following a CC3x3 run, relative to
 the normal start up time, where the FEPs were already loaded
 and running.

 These resets will also impact the power consumption of ACIS,
 where the system will draw up to 16 watts less than normal (with
 all 6 on and running) while the FEPs are held a reset state.

 Refer to the ACIS Software IP&CL Structure Definitions, Rev. L
 or later for details.

Telemetry Impact:
 This mode defines 4 new telemetry packet types.

 When configured for FEP_CC_MODE_EV3x3 and BEP_CC_MODE_FAINT,
 the patch produces TTAG_SCI_CC_REC_FAINT3x3 exposure records
 and TAG_SCI_CC_DAT_FAINT3x3 event data packets.
 When configured for FEP_CC_MODE_EV3x3 and BEP_CC_MODE_GRADED,
 it produces TTAG_SCI_CC_REC_GRADED3x3 exposure records and
 TTAG_SCI_CC_DAT_GRADED3x3 event data packets.

 The size of and overhead of these packets are the same as
 their Timed Exposure counterparts, TTAG_SCI_TE_REC_FAINT3x3,
 TTAG_SCI_TE_DAT_FAINT3x3, TTAG_SCI_TE_REC_GRADED3x3 and
 TTAG_SCI_TE_DAT_GRADED3x3.

05/22/11
18:42:32 11../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 When used, a CC3x3 science run will produce additional
 Software Housekeeping counts to the FEP write and execute
 statistics, reflecting the additional resets and reloads
 of the FEPs. Runs immediately following a CC3x3 run will also
 produce additional FEP related counts, as they load and run
 the reset FEPs.

 Refer to the ACIS Software IP&CL Structure Definitions, Rev. L
 or later for details

Science Impact:
 This version of CC3x3 uses different grade sets than the
 previous version. The ground data analysis software may have
 to be aware of which version of CC3x3 is installed for a given
 set of CC3x3 data. Please refer to the ACIS command generation
 system for the set of ACIS Software Version identifiers
 (telemetered in the BEP Startup Message and in each Software
 Housekeeping telemetry packet) corresponding to the different
 installed CC3x3 versions.

 This mode produces a new type of data product, consisting
 of 3x3 islands around accepted events in Continuous Clocking
 mode. This is intended to provide better spectral resolution
 and event detection performance when in Continuous Clocking
 mode.

 This mode will not report events on row 0 and row 511,
 leaving a 2-row timing gap with a period of 512 rows.

 As in other Continuous Clocking modes, no bias errors will
 be reported when in this mode, since the bias map is
 extremely redundant (there’s 512 copies of the bias value
 for any given column).

05/22/11
18:42:32 12../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: tlmio

Part Number: 36-58030.07
Version: 02
SCO: 36-1010
Environment: flight

Conflicts:
Depends On:
Size: 10312 bytes

Bcmd File: opt_tlmio.bcmd
Pkts File: opt_tlmio.pkts

Description:
 This patch provides basic standard I/O functions
 which emit TTAG_USER telemetry packets containing
 data written via calls to write().

 This patch stubs the functions open(), close() and
 read(), and implements the function write(), used
 by higher level I/O library functions, such as printf().

 The patch maintains a 1024 word telemetry buffer just
 at the end of bulk memory. write() appends data
 to this buffer until either the buffer fills, or
 until a newline is written. Once write() fills the
 buffer or a newline is encountered, the telemetry buffer
 is sent as follows:
 1. Interrupts are disabled
 2. The hardware is polled until the current packet
 is finished.
 3. The packet buffer header is filled in, and the
 first data word is set to 0 (a hook used to support
 different subtypes of TTAG_USER).
 4. Transfer the packet
 5. Wait for the transfer to complete
 6. If no transfer was in progress prior to the
 interrupt disable, clear the pending interrupt
 caused by the TTAG_USER packet transfer
 7. Reset the the buffer contents
 8. Reenable interrupts

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 If this patch is used by client code (this patch itself doesn’t

05/22/11
18:42:32 13../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 initiate any messages), it will emit telemetry packets consisting
 of the tag TTAG_USER. The format of these packets consist of the
 standard telemetry header, followed by 1 32-bit word containing a zero,
 followed by the number of data words indicated by the packet length.
 If the clients of the patch issue "printf" calls, the data will consist
 of a single null-terminated ascii string.

 Word 0: SYNC (0x736f4166)
 Word 1: [0..9] Length (3 + "n"/4)
 Word 1: [10..31] TTAG_USER
 Word 2: 0
 Word 3..Length: Data

Science Impact:
 Since this patch "plays" with the hardware and telemetry software,
 the use of this patch may interfere with the smooth operation of
 science runs.

05/22/11
18:42:32 14../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: compressall

Part Number: 36-58030.27
Version: A
SCO: 36-1027
Environment: flight

Conflicts:
Depends On:
Size: 2368 bytes

Bcmd File: opt_compressall.bcmd
Pkts File: opt_compressall.pkts

Description:
 This patch ensures that all raw mode packets are written to the
 telemetry stream without data loss. It eliminates the prior behavior
 in which, if a compressed pixel row was too long to fit into an output
 packet, the entire row was skipped and a zero-data-length was
 telemetered.

 In the new version, rows that are too long when compressed are written
 uncompressed, with the telemetry packet header fields rewritten to
 indicate that that particular packet is uncompressed.

Applicable Reports/Requests:
 SPR-134

 SER-none

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:
 PmCcRaw::digestRawRecord
 PmTeRaw::digestRawRecord

Command Impact:
 None.

Telemetry Impact:
 Ground software must examine the compressionTableSlotIndex and
 compressionTableIdentifier fields of all dataCcRaw and dataTeRaw
 packets. If their values are 255 and 0, respectively, the pixel
 array should not be decompressed.

Science Impact:
 None. Raw mode is intended for diagnostic purposes only.

05/22/11
18:42:32 15../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: ccignore

Part Number: 36-58030.10
Version: A
SCO: 36-1004
Environment: flight

Conflicts:
Depends On:
Size: 36 bytes

Bcmd File: opt_ccignore.bcmd
Pkts File: opt_ccignore.pkts

Description:
 This patch causes the FEP to ignore "ignoreInitialFrames"
 frames of data at the onset of Continuous Clocking data processing.

Applicable Reports/Requests:
 SER-PENDING

Test Results:
 smoke --> PASS

Replaced Functions:

Command Impact:
 This patch will cause the start up time of a Continuous
 Clocking run to increase by "ignoreInitialFrames" times
 the frame rate configured for the run. If "ignoreInitialFrames"
 is less than 2, the 2 frames will be skipped.

Telemetry Impact:
 When "ignoreInitialFrames" is greater than 2,
 the first telemetered Continous Clocking exposure number
 will be "ignoreInitialFrames", rather than "2".

Science Impact:
 This may reduce the amount of noise in the early
 telemetered frames of the Continuous Clocking run by
 running the CCDs longer before processing and sending the data.

05/22/11
18:42:32 16../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: eventhist

Part Number: 36-58030.05
Version: B
SCO: 36-1025
Environment: flight

Conflicts:
Depends On: smtimedlookup
Size: 5908 bytes

Bcmd File: opt_eventhist.bcmd
Pkts File: opt_eventhist.pkts

Description:
 This patch implements the Event Histogram Mode. In this mode, the
 instrument performs the standard timed exposure clocking, and event
 detection and filtering, but rather than send the events to telemetry,
 the instrument builds CCD quadrant specific histograms of the summed
 corrected pulse heights of the accepted events. These histograms
 contain bins 0 through 4095. Events with a pulse height above 4095 are
 counted in bin 4095 and events with a negative value are counted in
 bin 0. All histogram bin values consist of a 26-bit count, followed by
 5-bit of Hamming error detection/correction code, and 1 spare bit. The
 code is capable of detecting and correcting 1-bit errors in the count
 and hamming code bits.

 Important: This version of the eventhist patch will only run correctly
 if the smtimedlookup patch is also loaded.

Applicable Reports/Requests:

Test Results:
 smoke --> PASS
 smoke2 --> PASS

Replaced Functions:
 smTimedLookup3x3[3]
 smTimedLookup5x5[3]

Command Impact:
 As in normal Raw Histogram Mode, Event Histogram mode can only be used
 for Timed Exposure Science runs, and not in Continuous Clocking runs.

 This mode is invoked by using the FEP_TE_MODE_EV3x3 or
 FEP_TE_MODE_EV5x5 for the fepMode field of the Timed Exposure
 Parameter Block, in conjunction with the new BEP_TE_MODE_EVHIST (3)
 for the bepPackingMode field.

 Refer to the ACIS Software IP&CL Structure Definitions, Rev. M for
 details.

Telemetry Impact:
 This mode defines new telemetry formats, TTAG_SCI_TE_REC_EV_HIST for
 exposure records, and TTAG_SCI_TE_DAT_EV_HIST for histogram data

05/22/11
18:42:32 17../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 packets. This new mode now places the count of error corrections
 performed on the quadrant’s histogram bins within the previously
 unused "Variance Overclock High" of the exposure record,
 TTAG_SCI_TE_REC_EV_HIST. The Rev. M version of IP&CL renames this
 field accordingly.

 The size of these packets are the same as those for
 TTAG_SCI_TE_REC_HIST and TTAG_SCI_TE_DAT_HIST respectively.

 This mode always requires 10 telemetry buffers for each quadrant it
 accumulates (9 data buffers + 1 exposure record buffer per histogram).
 When accumulating histograms from all 4 quadrants on all 6 CCDs, the
 system requires 216 data buffers, and once the histograms are
 complete, it requires an additional 24 exposure record buffers. ACIS
 is configured for 400 science telemetry buffers, and as such, has
 enough buffering to accumulate only 1 complete set of histograms at a
 time. This will cause time gaps between sets of histograms when no
 events are accumulated. These gaps will consist of complete exposures,
 so partial exposures will not be accumulated in the histograms. As the
 previous buffers are telemetered and released back to the telemetry
 pool, eventually enough buffers (to be exact, 56) will be available to
 hold the 2nd set of histograms. At 24Kbps (format 2), this results in
 a time gap on the order of half a minute to a minute, and, at 500bps
 (format 1), a gap on the order of a half an hour to 45 minutes.

 The total transmission time for a set of histograms at 24Kbps is about
 3 minutes, whereas at 500bps, it starts approaching 2 hours.

 If only 5 CCDs are used, ACIS can double-buffer the histograms,
 eliminating this gap, assuming that the histogram count times the
 frame time (exposure time + overhead) is large enough to accommodate
 the transmission time of the histograms. The total transmission time
 for 5 CCDs at 24Kbps is about 2 minutes, and at 500bps, the
 transmission time approaches 1.5 hours.

 Details of these formats are described in the ACIS Software IP&CL
 Structure Definitions, Rev. M.

Science Impact:
 This mode produces a new type of data product, histograms of the
 corrected and summed pulse heights from filtered events.

05/22/11
18:42:32 18../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: printswhouse

Part Number: 36-58030.08
Version: 01
SCO: 36-986
Environment: flight

Conflicts:
Depends On: tlmio
Size: 7240 bytes

Bcmd File: opt_printswhouse.bcmd
Pkts File: opt_printswhouse.pkts

Description:
 This patch provides a diagnotic which prints software
 housekeeping reports to telemetry in real-time,
 using the tlmio package.

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:
 SwHousekeeper::report

Command Impact:
 None

Telemetry Impact:
 This patch will cause the system to emit TTAG_USER
 packets containing a null terminated string, which describes
 the software housekeeping element currently being reported.
 See a description of the tlmio patch, MIT 36-58030.07.

Science Impact:
 See the tlmio patch, 36-58030.07

05/22/11
18:42:32 19../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: dearepl

Part Number: 36-58030.12
Version: 02
SCO: 36-1010
Environment: engineering

Conflicts: deaeng
Depends On:
Size: 556 bytes

Bcmd File: opt_dearepl.bcmd
Pkts File: opt_dearepl.pkts

Description:
 This patch provides the basic capability to fake
 the existence of a DEA. This patch is used when
 no DEA box is available, or one wants to test
 without actually talking to the DEA.

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:
 DeaDevice::sendCmd
 DeaManager::writeData
 DeaManager::checkLoads
 DeaDevice::isReplyReady
 DeaCcdController::updateRegister
 DeaDevice::readReply
 DeaDevice::isCmdPortReady

Command Impact:
 This "fakes" the existence of the DEAs. Commands
 which read and write PRAM, SRAM or DEA hardware
 will not crash, but won’t work either.

Telemetry Impact:
 This will produce true fiction from the DEAs.

Science Impact:
 Can’t do any, since the patch replaces the
 interface to the real DEAs.

05/22/11
18:42:32 20../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: teignore

Part Number: 36-58030.09
Version: A
SCO: 36-1003
Environment: flight

Conflicts:
Depends On:
Size: 36 bytes

Bcmd File: opt_teignore.bcmd
Pkts File: opt_teignore.pkts

Description:
 This patch causes the FEP to ignore "ignoreInitialFrames"
 frames of data at the onset of Timed Exposure data processing.

Applicable Reports/Requests:
 SER-PENDING

Test Results:
 smoke --> PASS

Replaced Functions:

Command Impact:
 This patch will cause the start up time of a Timed Exposure
 run to increase by "ignoreInitialFrames" times the frame
 rate configured for the run. If "ignoreInitialFrames"
 is less than 2, the 2 frames will be skipped.

Telemetry Impact:
 When "ignoreInitialFrames" is greater than 2,
 the first telemetered exposure number will be
 "ignoreInitialFrames", rather than "2".

Science Impact:
 This may reduce the amount of noise in the early
 telemetered frames of the Timed Exposure run by running
 the CCDs longer before processing and sending the data.

05/22/11
18:42:32 21../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: smtimedlookup

Part Number: 36-58030.24
Version: A
SCO: 36-1025
Environment: flight

Conflicts:
Depends On:
Size: 3712 bytes

Bcmd File: opt_smtimedlookup.bcmd
Pkts File: opt_smtimedlookup.pkts

Description:
 This patch replaces several "switch" statements in SmTimedExposure
 class methods with a set of lookup tables indexed by the value of
 the BepMode and FepMode fields from the current TE parameter block.
 If a table slot is empty, the corresponding mode will be treated as
 unimplemented. With this patch, it is therefore possible to add more
 than one new TE mode via optional patches without the need to deliver
 a version of each patch for every possible combination of the other
 patches. The following methods, tables, and indices are used:

 +--------------------------------+-------------------+----------------+
 | Method | lookup table | index |
 +--------------------------------+-------------------+----------------+
 | SmTimedExposure::setupProcess | smTimedLookupMode | FepMode |
 | | smTimedLookup3x3 | BepPackingMode |
 | | smTimedLookup5x5 | BepPackingMode |
 +--------------------------------+-------------------+----------------+
 | SmTimedExposure::setupFepBlock | smTimedSetupFep | FepMode |
 +--------------------------------+-------------------+----------------+
 | SmTimedExposure::terminate | smTimedTerminate | FepMode |
 +--------------------------------+-------------------+----------------+

 These tables may be patched by an extension of the "func" directive
 in the *.pkg file used to describe an ACIS patch. Hence, the line

 func smTimedLookupMode[4] Test2_SmTimedExposure::setupCti1

 instructs the linker to insert the address of the setupCti1() method of
 the Test2_SmTimedExposure class into slot 4 of the smTimedLookupMode
 table, so that setupCti1() will be called when FepMode == 4.

Applicable Reports/Requests:

Test Results:
 smoke --> PASS

Replaced Functions:
 SmTimedExposure::terminate
 SmTimedExposure::setupProcess
 SmTimedExposure::setupFepBlock

Command Impact:

05/22/11
18:42:32 22../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 None.

Telemetry Impact:
 None.

Science Impact:
 None.

05/22/11
18:42:32 23../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: ctireport1

Part Number: 36-58030.25
Version: A
SCO: 36-1026
Environment: flight

Conflicts:
Depends On: smtimedlookup
Size: 5452 bytes

Bcmd File: opt_ctireport1.bcmd
Pkts File: opt_ctireport1.pkts

Description:
 This patch implements a variant of timed-exposure 3x3 faint event mode
 in which the presence of precursor charge in each of the three columns
 that can contribute to each event is encoded in the 16 "outlying" pixels
 of Te5x5 mode.

 FEP patches are loaded after the default code by two additional calls
 to fepManager.loadRunProgram from Test2_SmTimedExposure::setupCti1Fep.
 Once loaded, the FEPs are marked as having been reset, thereby causing
 the following run to reload their default code.

 Within the FEP, additional stack space is reserved for the cti1stk
 structure that holds the row indices and bias-subtracted pixel values
 of the most recently located precursor charge in each CCD column.

 The new FEPtestCti1 routine is called from an inline patch within
 FEPsciTimedEvent in advance of the FEPtestOddPixel or FEPtestEvenPixel
 routines. When a threshold crossing is detected, FEPtestCti1 clears
 the cti1stk array (if this is a new frame), calls FEPtestOddPixel or
 FEPtestEvenPixel, and then pushes the pixel value and row index onto
 cti1stk. If cti1stk is full, the most distant (by row) value is
 dropped.

 FEPappendCti1 is called by the patched FEP code in place of the
 original FEPappend5x5 routine. It determines the maximum bias-
 subtracted pixel value in each column, then inspects the cti1stk
 stacks for those columns, and packs up to 15 precursor charge values
 (adu and row) into elements 1 through 15 of the pe[] array:

 pe[i] = STORE_PIX(pixel - bias - delta_overclock, row_index)

 pe[0] contains three 4-bit fields, the number of successive pe[]
 precursor values corresponding to col-1, col, and col+1 of the event.

Applicable Reports/Requests:

Test Results:
 smoke --> PASS

Replaced Functions:
 smTimedLookupMode[4]

05/22/11
18:42:32 24../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 smTimedTerminate[4]
 smTimedSetupFep[4]

Command Impact:
 This patch requires that the smtimedlookup patch must also be loaded.
 Once loaded, it is invoked by setting fepMode = FEP_TE_MODE_CTI1 in a
 loadTeBlock packet, writing that packet to a parameter block slot, and
 then starting a timed-exposure science run from that slot. The uplink
 format is defined in the ACIS IP&CL document 36-53204.0204 Rev. N.

Telemetry Impact:
 The downlinked exposure and event data packets are identical in format
 to exposureTeFaint and dataTeVeryFaint except that their formatTag
 fields contain TTAG_SCI_TE_REC_CTI1 and TTAG_SCI_TE_DAT_CTI1,
 respectively. When a TTAG_SCI_TE_DAT_CTI1 is received, precursor
 charge data will be located in the dataTeVeryFaint.pulseHeights array,
 as follows:

 pulseHeights[0] - three 4-bit counters
 pulseHeights[1..5,9,10,14,15,19..24] - precursor ADU and row

 The sub-fields of pulseHeights[0] determine the contents of the
 other 15 fields:

 ncol[0] = (pulseHeights[0] >> 8) & 15 -
 ncol[1] = (pulseHeights[0] >> 4) & 15 -
 ncol[2] = pulseHeights & 15 -

 The fields from icol-1, if any, are written starting at pulseHeights[1],
 followed by those from icol, and finally those from icol+1. The ADU
 values are stored in the 7 most significant bits of pulseHeights[] and
 the row indices in the least significant 5 bits, and should be extracted
 as follows:

 adu = pulseHeights[i] & 0xfe0;
 row = (pulseheights[i] & 0x01f) << 5;

 Unused pulseHeights[] will be filled with zeroes.

Science Impact:
 This patch is intended for on-orbit diagnostic use only.

05/22/11
18:42:32 25../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: txings

Part Number: 36-58030.33
Version: A
SCO: none
Environment: flight

Conflicts:
Depends On:
Size: 3128 bytes

Bcmd File: opt_txings.bcmd
Pkts File: opt_txings.pkts

Description:
 With the continuing degradation of Chandra’s EPHIN radiation monitor,
 an alternative is needed to permit the observatory to take the actions
 necessary to preserve its instruments during times of high solar
 activity. A recent analysis [Grant et al., 2010] has shown that, in
 some circumstances, the signature of solar events can be detected
 within the counts of CCD threshold crossings that are included in
 downlinked telemetry.

 The txings patch monitors threshold crossings and uses ACIS bi-levels
 to communicate an alarm to the Chandra On-Board Computer (OBC). Event
 records are read from the FEP-BEP ring buffers by the processRecord()
 methods of the PmEvent, PmHist, and PmRaw classes. Each calls
 EventExposure::copyExpEnd() to parse the FEPexpEndRec records that
 contain thresholds, the count of threshold crossings, and expnum, the
 exposure number, but this routine doesn’t have access to the ccdId that
 labels the record and which is needed to accumulate the crossings from
 that particular CCD.

 The MIPS CPU architecture makes it relatively easy to make inline
 patches that permit additional arguments to be passed to subroutines.
 In the current case, we patch the routines that call copyExpEnd() in
 order to pass an extra argument. When processRecord() is called with a
 PmEvent object, this argument will be the address of the object, but
 for other callers, i.e., PmHist or PmRaw, the argument will be null to
 show that these modes don’t count threshold crossings. Since PmEvent is
 a subclass of ProcessMode, the ccdId value can then be determined by a
 call to getCcdId(). A replacement for copyExpEnd() is called with
 an object of class EventExposure, and it calls saveTXings() with a
 static TXings object named txings in which the threshold crossing
 accumulators are stored.

 The saveTXings() method is called once for each event-mode exposure
 frame. The first time that it is called in a science run, it
 determines the number of read-out rows, the maximum anticipated number
 of non-pathological threshold crossings per frame, and the frame
 exposure time in units of the FEP pixel clock (i.e., 10 us), and it
 increments the tx.threshold_accum and tx.exposure_accum accumulators.
 Integration times of less than 2000 seconds are guaranteed not to
 overflow either accumulator. Since the number of rows per frame and the
 frame exposure time are constant in continuous clocking mode, they are
 initialized in the TX structure, but in timed-exposure mode, the frame
 time depends on the dutyCycle, primaryExposure, and secondaryExposure
 parameters. These are extracted from the external pramTe object, where
 they were copied from the science run parameter block when the run
 started.

05/22/11
18:42:32 26../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 The radiation triggering algorithm is run in the triggerRadmon()
 routine It is called every 64 seconds whether or not a science run is
 in progress. If it isn’t, tx.count is set to zero until a subsequent
 call to saveTXings() from copyExpEnd() reloads the TX parameter
 structure from TXnext.

 After the TXings patch has been uploaded and the BEP warm-booted, the
 tx.count field will be initialized to zero by the patch loader. The
 first time an event-mode science run reads a FEPexpEndRec record from
 the FEP-BEP ring buffer, it will call saveTXings(), which will
 reinitialize the radiation filter parameters from the TXnext structure.
 This makes it easy to change the filter parameters for subsequent
 science runs. When a trigger occurs, triggerRadmon() sets tx.triggered
 to BoolTrue and commands the memory manager thread to send a
 bepReadReply packet to telemetry, reporting the values of the txings
 parameters and variables. Then Test_Leds::show() sets the software
 bi-level channels to LED_BOOT_SPARE1, which persists for the remainder
 of the science run. After the science run ends, the next call to
 Leds::show() calls triggerRadmon() which sets tx.count to zero and
 tx.triggered to BoolFalse, canceling the special bilevel value and
 preventing threshold crossing triggers until the next science task
 starts, calls saveTXings(), and reloads the TX structure.

 Once it is included in a patch load, and the BEP is warm-booted, the
 txings patch will be active during all subsequent science runs. When
 triggered by high and increasing threshold crossings, it sets the ACIS
 software bilevel values to LED_BOOT_SPARE1 until the science run ends,
 or until the tx.triggered field is explicitly cleared by a writeBep
 command. This guarantees that it will appear in Chandra major frame
 readouts (once per 32.4 seconds). The OBC should be patched to examine
 the ACIS bi-levels. It should safe the instruments if (a) RADMON is
 enabled, and (b) the bi-level channels (1STAT3ST-1STAT0ST) have the
 LED_BOOT_SPARE1 values (1, 1, 0, 1).

Applicable Reports/Requests:

Test Results:
 smoke --> PASS

Replaced Functions:
 EventExposure::copyExpEnd
 Leds::show

Command Impact:
 The default filter parameters can be overridden by sending single
 writeBep command to ACIS to change the contents of the TXinit
 structure, whose address will depend on the ACIS flight software patch
 level (e.g., 0x8003dc30 in the current level E-F-G version). The
 command

 write 0 0x8003dc30 {
 0
 }

 will, for instance, suspend the threshold crossing filter, and

 write 0 0x8003dc30 {
 5
 }

05/22/11
18:42:32 27../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 will turn it on again with an integration time of 5 minutes.

 After a trigger, the bi-levels are not reset until Leds::show() is
 called when a science run is not in process. In the unlikely event that
 there is less than 64 seconds between the end of the triggering run and
 the start of the next, the bi-levels will continue to report
 LED_BOOT_SPARE1. This can be prevented by issuing a writeBep command to
 clear the counters:

 write 0 0x8003dc90 {
 0 0
 }

 prior to the second startScience.

 In normal operation, most science runs can be conducted with txings
 enabled, but exceptionally bright targets observed by few CCDs may lead
 to false triggers. It might be best to disable txings for short runs
 where the risk of radiation damage is small, or turn on additional CCDs
 for longer runs to reduce the likelihood of a false trigger. To change
 the trigger parameters for the next science run only, a writeBep
 command should update the fields in TXnext rather than TXinit, and this
 must be done before the science run has started to report events. In
 the current level E-F-G version, TXnext is located at 0x8003dc50.

Telemetry Impact:
 When a threshold crossing trigger occurs, triggerRadmon() commands the
 BEPs memory manager to write a bepReadReply packet to telemetry,
 reporting the contents of the TX and tx structures. If this action is
 blocked for any reason, a SWSTAT_CMDECHO_DROPPED event will be reported
 in software housekeeping.

 The current version of the patch reports bepReadReply packets with a
 formatTag of TTAG_READ_BEP. If this causes confusion, a new
 TlmFormatTag value could be defined, but the CXC Data System would need
 to be reconfigured to handle it. Similarly, if SWSTAT_CMDECHO_DROPPED
 is confusing, a new SwStatistic value could be defined.

Science Impact:
 None

05/22/11
18:42:32 28../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

==

Patch Name: ctireport2

Part Number: 36-58030.26
Version: A
SCO: 36-1026
Environment: flight

Conflicts:
Depends On: smtimedlookup
Size: 2784 bytes

Bcmd File: opt_ctireport2.bcmd
Pkts File: opt_ctireport2.pkts

Description:
 This patch implements a variant of timed-exposure 3x3 faint event mode
 in which the presence of precursor charge in each of the three columns
 that can contribute to each event is encoded in the low-order bits of
 three of the corner pixels.

 FEP patches are loaded after the default code by two additional calls
 to fepManager.loadRunProgram from Test3_SmTimedExposure::setupCti1Fep.
 Once loaded, the FEPs are marked as having been reset, thereby causing
 the following run to reload their default code.

 Within the FEP, additional stack space is reserved for the cti2stk
 structure that holds the row indices of the most recently located
 precursor charge in each CCD column.

 The new FEPtestCti2 routine is called from an inline patch within
 FEPsciTimedEvent in advance of the FEPtestOddPixel or FEPtestEvenPixel
 routines. When a threshold crossing is detected, FEPtestCti2 clears
 the cti2stk array (if this is a new frame), calls FEPtestOddPixel or
 FEPtestEvenPixel, and then updates cti2stk to indicate that this
 column contains charge.

 FEPappendCti2 is called by the patched FEP code instead of the
 original FEPappend5x5. It finds the maximum of the 4 corner pixels
 of the event that is being reported. Then it determines whether
 any of the three contributing columns contained precursor charge.
 Finally, it encodes this information in the low order bytes of
 the three smallest corner pixels. (Since the low-order bit of
 each corner pixel may be replaced, only the 11 high-order bits
 are compared when determining the maximum value).

Applicable Reports/Requests:

Test Results:
 smoke --> PASS

Replaced Functions:
 smTimedLookupMode[5]
 smTimedTerminate[5]
 smTimedSetupFep[5]

Command Impact:

05/22/11
18:42:32 29../dist/options-release-E-opt-F.notes

Flight S/W Patches, Revision E-F-G

 The uplink format is defined in the ACIS IP&CL document 36-53204.0204
 Rev. N. The fepMode field in the loadTeBlock command packet must be
 set equal to FEP_TE_MODE_CTI2. Unless the smtimedlookup patch has
 also be loaded, this value will cause a subsequent startScience
 command that references this parameter block to fail.

Telemetry Impact:
 The downlinked exposure and event data packets are identical in format
 to exposureTeFaint and dataTeFaint. To process the precursor charge
 information, ground software must first inspect the loadTeBlock
 reported in the dumpedTeBlock packet that started the run. If the
 fepMode field is equal to FEP_TE_MODE_CTI2, subsequent dataTeFaint
 packets should be inspected. The following code fills ee[i] with
 one (zero) according to whether column (ccdColumn+i-1) did (did not)
 contain precursor charge:

 unsigned nn, mm, ii, ee[3];

 for (mm = 0, nn = 2; nn < 9; nn++) {
 if ((nn & 1) == 0 && nn != 4) {
 if ((pulseHeights[nn] & 0xffe) > (pulseHeights[mm] & 0xffe))
 mm = nn;
 }
 }
 for (nn = ii = 0; nn < 9; nn++) {
 if ((nn & 1) == 0 && nn != 4 && nn != mm) {
 ee[ii++] = pulseHeights[nn] & 1;
 }
 }

Science Impact:
 This patch is intended for on-orbit diagnostic use only.

ENGINEERING CHANGE ORDER
ECO No.
36–1046

CENTER FORSPACERESEARCH
MASSACHUSETTSINSTITUTE OFTECHNOLOGY

DWG. NO. NEW
REV. DRAWING TITLE

36-58021.04 G Flight Software Patch Release E-F-G Certification

REASON FORCHANGE:
Certification of standard patch release E with optional patch release F which includes thetx-
ings patch, along with the same optional patches that were certified in release E-E-F,i.e.,sm-
timedlookup,compressall, eventhist,cc3x3, anduntricklebias.

DESCRIPTION OFCHANGE:
Three optional patch combinations are certified as release E-F-G:
(a)smtimedlookup, eventhist, cc3x3, compressallandtxings.
(b) smtimedlookup, eventhist, cc3x3, compressall, untricklebiasandtxings.
The certification tests are taken from these specific combinations of the optional release F
patches, with the full set of standard patches, release E.

SIGNATURE DATE REMARKS:

ORIGINATOR RFG 03/02/11 Reviewed and signed-off.

MECHANICAL

ELECTRICAL

SOFTWARE

STRUCTURE

FABRICATION

SCIENCE

SYSTEMSENG.

QUALITY

PROJ. ENGINEER

DEPUTY PM

PROJ. MANAGER

MIT CSR

ACIS

07/28/11
18:52:17 1../../certsrc/cc3x3+eventhist+compressall+txings.notes

Flight S/W Patches, Revision E-F-G

TITLE: ACIS eventhist, cc3x3, txings, compressall, smtimedlookup Patch Certification Release
 Notes

DOCUMENT NUMBER: 36-58021.03 REVISION: G

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

G 36-1046 Certify Rev-E-Opt-F patches RFG 03/02/2011
G 36-1046 Rev. E Standard and Rev. F. Opti

07/28/11
18:52:17 2../../certsrc/cc3x3+eventhist+compressall+txings.notes

Flight S/W Patches, Revision E-F-G

==

Title: ACIS eventhist, cc3x3, txings, compressall, smtimedlookup Patch Certification Release
 Notes for Version G

Software Change Order: 36-1046

Build Date: Thu Jul 28 18:52:16 EDT 2011
Part Number: 36-58021.03
Version: G
CVS Tag: cc3x3+eventhist+compressall+txings-E-F-G

Std Number: 36-58010
Std Version: E
Std Tag: release-E
Std SCO: 36-1042

Opt Number: 36-58020
Opt Version: F
Opt Tag: release-E-opt-F
Opt SCO: 36-1044

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This certification verifies the operation of the Continuous Clocking
 3x3, Event Histogram, Compress All, Science Mode Timed Lookup, and
 Threshold Crossing Trigger Patches.

 The certification consists of six tests, copied from the original test
 run during the Options Release. The tests have been modified to load
 all four optional patches, rather than just one at a time, and to clean
 up some false failures due to timing/pattern matching issues in the
 tests.

 The tests verify that the patch modes run as they did during the
 original test when they are both installed into the system.

 The Continuous Clocking 3x3 (cc3x3) test consists of two parts. The
 first launches a CC3x3 run, whereas the second runs CC1x3. This suite
 performs CC1x3 tests to verify that the modifications to the existing
 BEP Continuous Clocking functions do not break the existing CC1x3
 functionality. Since the FEP software only contains CC3x3 code during
 CC3x3 runs (this is verified by the CC1x3 run), and no BEP functions
 used by Timed Exposure are modified by the patch, the Timed Exposure
 modes do not need to be re-tested as part of this certification.

 Each test sends a series of events on the right side of each quadrant
 (the original test was derived from the test for the rquad bug fix),
 and verifies that the mode runs nominally, and produces the expected
 event list. Since the "stop" critereon for the test is a little fuzzy,
 the runs tend to produce additional exposures that aren’t in the file
 used to check the run’s event output. "diff" used in the test produces
 mismatches on the additional exposures produced by the test run. Manual
 check of the run data shows that the event lists are replicated
 correctly by the run. Later, a "wrapping" comparison may be developed
 to eliminate this manual step.

 The Event Histogram test uses a similar strategy to the CC3x3 test. It
 starts an Event Histogram run, and sends in a series of standard

07/28/11
18:52:17 3../../certsrc/cc3x3+eventhist+compressall+txings.notes

Flight S/W Patches, Revision E-F-G

 events. It then compares the resulting quadrant histograms with an
 example file to verify the results.

 One caveat that arose during the review of the Optional patches is
 that, when the standard patch "zap1expo" is present, which it should
 always be, the first exposure of event histogram mode will not contain
 any events. This will cause the first histogram from each FEP quadrant
 to appear to have been integrated for 1 less frame time than subsequent
 quadrant histograms. This is different than Raw Histogram mode, which
 is not affected by the "zap1expo" patch. The histogram example file
 used for this certification assumes that no events are sent during
 exposure 2 (the first "real" exposure of the run).

 The smTimedExposure patch is tested by merely running a timed-exposure
 faint run, verifying that the bias and event detection phases have been
 invoked, and then stopping the run.

 The Compress All patch is tested by copying an image to the image
 loader that contains several very "noisy" rows that are known to be
 incompressible by the Huffman tables. A timed-exposure raw-mode run is
 executed and the pixelCount field of the dataTeRaw packets of a couple
 of raw frames is monitored. The test fails if pixelCount is ever zero.

 The Threshold Crossing Trigger patch, txings, conducts a series of
 science runs -- timed exposure 3x3, event histogram, and raw, and
 continuously clocked 3x3, 1x3, and raw, increasing the threshold
 crossing rate and monitoring the ACIS bi-levels for the trigger signal,
 accompanied by the appropriate bepReadReply packet.

--
Included Patches:
 eventhist
 cc3x3
 txings
 compressall
 smtimedlookup

--
Test Support Patches:
 printswhouse
 dearepl
 tlmio

--
Test Results:
 smtimedlookup --> PASS
 cc3x3 --> PASS
 eventhist --> PASS
 eventhist --> PASS
 compressall --> PASS
 txings --> PASS

07/29/11
00:15:28 1../../certsrc/cc3x3+eventhist+compressall+untricklebias+txings.notes

Flight S/W Patches, Revision E-F-G

TITLE: ACIS untricklebias, eventhist, cc3x3, txings, compressall, smtimedlookup Patch Certif
ication Release Notes

DOCUMENT NUMBER: 36-58021.03 REVISION: G

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

G 36-1046 Certify Rev-E-Opt-F patches RFG 03/02/2011
G 36-1046 Rev. E Standard and Rev. F Optio

07/29/11
00:15:28 2../../certsrc/cc3x3+eventhist+compressall+untricklebias+txings.notes

Flight S/W Patches, Revision E-F-G

==

Title: ACIS untricklebias, eventhist, cc3x3, txings, compressall, smtimedlookup Patch Certif
ication Release Notes for Version G

Software Change Order: 36-1046

Build Date: Fri Jul 29 00:15:27 EDT 2011
Part Number: 36-58021.03
Version: G
CVS Tag: cc3x3+eventhist+compressall+untricklebias-txings-E-F-G

Std Number: 36-58010
Std Version: E
Std Tag: release-E
Std SCO: 36-1042

Opt Number: 36-58020
Opt Version: F
Opt Tag: release-E-opt-F
Opt SCO: 36-1044

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This certification verifies the operation of the Continuous Clocking
 3x3, Event Histogram, Compress All, Untrickle Bias, Science Mode Timed
 Lookup, and Threshold Crossing Trigger Patches.

 The certification consists of seven tests, copied from the original
 test run during the Options Release. The tests have been modified to
 load all four optional patches, rather than just one at a time, and to
 clean up some false failures due to timing/pattern matching issues in
 the tests.

 The tests verify that the patch modes run as they did during the
 original test when they are both installed into the system.

 The Continuous Clocking 3x3 (cc3x3) test consists of two parts. The
 first launches a CC3x3 run, whereas the second runs CC1x3. This suite
 performs CC1x3 tests to verify that the modifications to the existing
 BEP Continuous Clocking functions do not break the existing CC1x3
 functionality. Since the FEP software only contains CC3x3 code during
 CC3x3 runs (this is verified by the CC1x3 run), and no BEP functions
 used by Timed Exposure are modified by the patch, the Timed Exposure
 modes do not need to be re-tested as part of this certification.

 Each test sends a series of events on the right side of each quadrant
 (the original test was derived from the test for the rquad bug fix),
 and verifies that the mode runs nominally, and produces the expected
 event list. Since the "stop" critereon for the test is a little fuzzy,
 the runs tend to produce additional exposures that aren’t in the file
 used to check the run’s event output. "diff" used in the test produces
 mismatches on the additional exposures produced by the test run. Manual
 check of the run data shows that the event lists are replicated
 correctly by the run. Later, a "wrapping" comparison may be developed
 to eliminate this manual step.

 The Event Histogram test uses a similar strategy to the CC3x3 test. It
 starts an Event Histogram run, and sends in a series of standard

07/29/11
00:15:28 3../../certsrc/cc3x3+eventhist+compressall+untricklebias+txings.notes

Flight S/W Patches, Revision E-F-G

 events. It then compares the resulting quadrant histograms with an
 example file to verify the results.

 One caveat that arose during the review of the Optional patches is
 that, when the standard patch "zap1expo" is present, which it should
 always be, the first exposure of event histogram mode will not contain
 any events. This will cause the first histogram from each FEP quadrant
 to appear to have been integrated for 1 less frame time than subsequent
 quadrant histograms. This is different than Raw Histogram mode, which
 is not affected by the "zap1expo" patch. The histogram example file
 used for this certification assumes that no events are sent during
 exposure 2 (the first "real" exposure of the run).

 The smTimedExposure patch is tested by merely running a timed-exposure
 faint run, verifying that the bias and event detection phases have been
 invoked, and then stopping the run.

 The Compress All patch is tested by copying an image to the image
 loader that contains several very "noisy" rows that are known to be
 incompressible by the Huffman tables. A timed-exposure raw-mode run is
 executed and the pixelCount field of the dataTeRaw packets of a couple
 of raw frames is monitored. The test fails if pixelCount is ever zero.

 The Untrickle Bias patch is tested by a pair of expect scripts, each of
 which performs 12 tests, one in TE mode, the other in CC mode. Each
 test starts a science run and then terminates it in one of the possible
 ways, viz:

 1: stopScience during bias map creation
 2: double stopScience during bias map creation
 3: startScience during bias map creation
 4: assert/deassert RADMON during bias map creation
 5: stopScience during bias map telemetering
 6: double stopScience during bias map telemetering
 7: startScience during bias map telemetering
 8: assert/deassert RADMON during bias map telemetering
 9: stopScience during event processing
 10: double stopScience during event processing
 11: startScience during event processing
 12: assert/deassert RADMON during event processing

 The tests fail unless all steps complete and return the anticipated
 scienceReport return codes.

 The Threshold Crossing Trigger patch, txings, conducts a series of
 science runs -- timed exposure 3x3, event histogram, and raw, and
 continuously clocked 3x3, 1x3, and raw, increasing the threshold
 crossing rate and monitoring the ACIS bi-levels for the trigger signal,
 accompanied by the appropriate bepReadReply packet.

--
Included Patches:
 untricklebias
 eventhist
 cc3x3
 txings
 compressall
 smtimedlookup

--
Test Support Patches:
 printswhouse
 dearepl

07/29/11
00:15:28 4../../certsrc/cc3x3+eventhist+compressall+untricklebias+txings.notes

Flight S/W Patches, Revision E-F-G

 tlmio

--
Test Results:
 smtimedlookup --> PASS
 cc3x3 --> PASS
 eventhist --> PASS
 eventhist --> PASS
 compressall --> PASS
 untricklebias --> PASS
 untricklebias --> PASS
 txings --> PASS

	ACIS Patch E-F-G
	ECO 36-1045
	Existing Patches
	Patch Status
	The txings Patch
	ECO 36-1044
	1. Introduction
	2. ACIS Threshold Counts
	3. Observed High Background Rates
	4. A Possible Trigger Algorithm
	5. Sending a Trigger to the OBC
	Patching the Flight Software
	7. Control Flow
	8. Inline Patches
	9. Operations
	10. Testing
	11. References
	12. Glossary
	Source Files
	txings.C
	txingsinline.S
	runtest.tcl
	runtest2.tcl
	makebias.pl
	makeimage.pl

	Standard Patches
	Release Notes
	tlmbusy
	fepbiasparity2
	biastiming
	histogramvar
	badpix
	zap1expo
	digestbiaserror
	corruptblock
	cornermean
	buscrash
	buscrash2
	rquad
	condoclk
	histogrammean

	Optional Patches
	Release Notes
	reportgrade1
	untricklebias
	deaeng
	cc3x3
	tlmio
	compressall
	ccgnore
	eventhist
	printswhouse
	dearepl
	teignore
	smtimedlookup
	ctireport1
	txings
	ctireport2

	Certification
	ECO 36-1046
	cc3x3+eventhist+compressall+txings
	cc3x3+eventhist+compressall+untricklebias+txings

