
ENGINEERING CHANGE ORDER
ECO No.

36–1042

CENTER FORSPACERESEARCH
MASSACHUSETTSINSTITUTE OFTECHNOLOGY

DWG. NO. NEW
REV. DRAWING TITLE

36-58010 E Flight Software Standard Patch Release E, Optional Release E

REASON FORCHANGE:
Update to standard patchebuscrash2 to operate correctly with the optionaluntricklebias
patch.

DESCRIPTION OFCHANGE:
The new set of standard—release E—patches is compiled and loaded into a common address
space so that each optional patch can be loaded independently of the others, provided the load
order defined inPatchRelease.spec is maintained. No change is made to the optional patches,
except for their release level, since the standard updates do not change the BEP load map.

Patcheseventhist, cc3x3, ctireport1, andctireport2 require thatsmtimedlookup is also loaded;
similarly, the engineering patchesdeaeng, dearepl, andprintswhouse require thetlmio patch.
deaeng anddearepl must not be loaded at the same time. The standard patches must be loaded
beforeuntricklebias.

SIGNATURE DATE REMARKS:

ORIGINATOR RFG 01/06/10 Released

MECHANICAL

ELECTRICAL

SOFTWARE

STRUCTURE

FABRICATION

SCIENCE

SYSTEMSENG.

QUALITY

PROJ. ENGINEER

DEPUTY PM

PROJ. MANAGER

MIT CSR

ACIS

ECO 36–1042

- 2 -

Existing ACIS Flight Software Patches

Name Rev Size Part ECO SPR

Standard Release E

1 corruptblock A 16 36–58030.01 994 113

2 digestbiaserror A 64 36–58030.02 995 116

3 histogramvar A 16 36–58030.03 999 115

4 biastiming A 112 36–58030.04 993 117

5 rquad A 16 36–58030.14 1000 121

6 histogrammean A 156 36–58030.15 996 123

7 zap1expo A 64 36–58030.16 997 122

8 condoclk A 640 36–58030.17 1012 127

9 fepbiasparity2 A 504 36–58030.19 1015 130

10 cornermean A 32 36–58030.21 1017 128

11 tlmbusy A 344 36–58030.29 1033 138

12 buscrash A 296 36–58030.30 1034 140

13 badpix A 60 36–58030.31 1037 141

14 buscrash2 B 428 36–58030.32 1041 142

Optional Release E

1 eventhist B 5908 36–58030.05 1025 N/A

2 cc3x3 B 4636 36–58030.06 1018 120,124,126

3 teignore A 36 36–58030.09 1003 N/A

4 ccignore A 36 36–58030.10 1004 N/A

5 smtimedlookup A 3712 36–58030.24 1025 N/A

6 ctireport1 A 5452 36–58030.25 1026 N/A

7 ctireport2 A 2784 36–58030.26 1026 N/A

8 compressall A 2368 36–58030.27 1027 134

9 untricklebias B 1740 36–58030.28 1028 133

10 reportgrade1 A 816 36–58030.22 1021 131,132

Under Development

1 hybrid 03 6104 36–58030.13 1010 N/A

2 fepbiasparity1 02 36–58030.18 1014 N/A

3 squeegy 06 4412 36-58030.23 1023 N/A

4 forcebiastrickle 01 N/A 36-58030.29 1024 133

Engineering Unit Utility Patches

1 tlmio 02 10312 36–58030.07 1010 N/A

2 printswhouse 01 7224 36–58030.08 986 N/A

3 deaeng 02 2604 36–58030.11 1010 N/A

4 dearepl 02 556 36–58030.12 1010 N/A

ECO 36–1042

- 3 -

Status of Patch Release E, Optional Revision E

a. typographical errors in the documentation

b. review item discrepancies—requiring changes to the patch code and/or test procedures

Name Part Number Description Typos a RIDsb Status

buscrash2 36–58030.32
(ECO 36-1041)

Prevent BEP bus crash on FEP
powerdown

S/W Review 36–58020
(ECO 36-1042)

Documentation accompanying
the individual patch ECOs

Certification 36–58021.04
(ECO 36-1043)

Documentation describing the
multi-patch certification tests

ENGINEERING CHANGE ORDER
ECO No.

36–1041

CENTER FORSPACERESEARCH
MASSACHUSETTSINSTITUTE OFTECHNOLOGY

DWG. NO. NEW
REV. DRAWING TITLE

36-58030.32 B Flight S/W patch to prevent BEP bus crash on FEP power-down

REASON FORCHANGE:

Testing multiple OBSIDs with thebuscrash2 anduntricklebias patches installed has resulted
in premature termination in ~10% of the runs. The fault has been traced to incorrect register
use inbuscrash2

DESCRIPTION OFCHANGE:

In theBiasThief class methodstrickleTeBias() andtrickleCcBias() ,savefepId
in registerR6 before callinggetBuffer() . Within getBuffer() , saveR6 in an unused
word in the stack, and load it back intoR5 before callingcheckMonitor() . This ECO begins
with a repetition of the originalbuscrash2 ECO 36-1038, and then describes the problem with
that patch (Section 4) and its correction (Section 5).

SIGNATURE DATE REMARKS:

ORIGINATOR RFG 01/06/10 Released

MECHANICAL

ELECTRICAL

SOFTWARE

STRUCTURE

FABRICATION

SCIENCE

SYSTEMSENG.

QUALITY

PROJ. ENGINEER

DEPUTY PM

PROJ. MANAGER

MIT CSR

ACIS

ECO 36–1041

- 2 -

1. REASONS FOR THE PATCH

When the observatory’s active CTU reset on 08/12/2008, ACIS was creating bias maps. The
telemetry format changed to FMT4, preventing ACIS from sending further science telemetry
to the RCTU. About 40 minutes later, SCS 107 was executed, in the course of which the FEPs
were powered down. When the telemetry format was changed back to FMT2, the BEP suf-
fered a bus error and watchdog reboot.

Subsequent tests and code analysis confirm that whenever ACIS is commanded to power-
down its FEPs while copying bias maps to telemetry, it will cause a reset on the interface bus
between the back-end processor (BEP) and the FEPs, causing the BEP to reboot without
flight software patches. Normal operations must be restored via ground command. Since the
observatory is usually in safe mode for several hours following the SCS 107, there is gener-
ally sufficient time to establish a real-time contact, set the BEP's warm-boot flag, and restart
it. However, this takes time and manpower.

The bus crash has been traced to a flaw in theBiasThief::trickleTeBias() and com-
panionBiasThief::trickleCcBias() methods. These routines are executed after the
FEP bias maps have been created in order to copy the maps to telemetry packets and enqueue
them to be written to the SI-RCTU. However, unlike other operations involving FEPs,
trickleTeBias() andtrickleCcBias() do not confirm that a FEP is powered up be-
fore reading from its bias memory. This causes the bus crash when the FEP isn’t powered or
is in a reset state.

2. DESCRIPTION OF THE ORIGINAL PATCH

Two instances have been identified in which the unpatched BEP code attempts to address
FEP memory via the memory-mapped interface without first checking that the FEP is pow-
ered up and is not in a reset state.

One instance is when updating new bias maps with the bad pixel and column lists. This is
performed by theFepManager::loadBadMaps() method called from theSmTimedExpo-
sure andSmContClocking classes. The problem was identified in 2006 and thebuscrash
patch was developed in which theloadBadMaps() method was replaced with a version that
checked whether a FEP was powered up and running before attempting to write into its bias
map.

The current patch fixes the second identified cause of bus crashes, which occurs within the
trickleTeBias() andtrickleCcBias() methods of theBiasThief class. This is more
difficult than patchingFepManager::loadBadMaps() because theBiasThief routines can
either execute in their ownbiasThief task or, if the optionaluntricklebias patch has been ap-
plied, as part of thescienceManager task.

As the 08/12/2008 anomaly showed, the bias copying routines can be held in code loops for
many hours waiting for telemetry buffers to become available and during that time they must
not be prevented from responding to “heartbeat” interrupts from the task manager.The bus
crash has been traced to a flaw in theBiasThief::trickleTeBias() and companion
BiasThief::trickleCcBias() methods. These routines are executed after the FEP bias
maps have been created in order to copy the maps to telemetry packets and enqueue them to
be written to the SI-RCTU. However, unlike other operations involving FEPs,trickleTe-
Bias() andtrickleCcBias() do not confirm that a FEP is powered up before reading

ECO 36–1041

- 3 -

from its bias memory. This causes the bus crash when the FEP isn’t powered, or is in a reset
state.

The trickleTeBias() andtrickleCcBias() methods are quite lengthy, and if they
were entirely rewritten, the resulting patch would be several kilobytes long and in danger
of using up the remaining BEP storage available for patches. It is more economical to re-
place the minimum number of methods, and use inline patches where possible, although
this makes the job of preparing and reviewing the changes more difficult. Sorry.

Somewhat simplified, thetrickleTeBias() method looks as follows:

Boolean BiasThief::trickleTeBias(FepId fepid)
{
 RowPacker packer; // Bias row packing object
 Tf_Data_Te_Bias_Map form; // Telemetry packet object
 unsigned rownum = fepinfo[fepnum].rowcnt;

 while (rownum > 0) {
 // --- Yield and check monitor queries ---
 yield ();
 if (checkMonitor() == BoolFalse) return BoolFalse;

 // --- Ensure packet has buffer ---
 if (form.hasBuffer() == BoolFalse) {
 if (getBuffer() == BoolFalse) return BoolFalse;
 setupTeForm();
 packer.setOutputBuffer();
 }

 Boolean postit = BoolTrue; // Assume the packet is full

 // --- Append bias pixels to telemetry packet ---
 if (packer.startRow() == BoolTrue) {
 if (packer.packSegment() == BoolTrue) {
 loadRowBuffer();
 postit = BoolFalse;
 }
 }

 // --- If full, release the packet to telemetry ---
 if (postit == BoolTrue) form.post();
 }

 // --- Flush out any partially filled packet ---
 if (form.hasBuffer() == BoolTrue) form.post();
 return BoolTrue;
}

The procedure is called for each FEP whose bias map is to be copied to telemetry. It creates
two temporary objects,packer to assist in compressing the maps, andform to control the
output packet format. Since we want to change this code so that it breaks out of thewhile
loop when a FEP is unpowered, we must make the test (using theisEnabled(fepid)
method ofFepManager) and, if this returnsBoolFalse , we must returnBoolFalse from
trickleTeBias() and, in the process, invoke the destructors ofpacker andform . The
obvious replacement candidate ischeckMonitor() , but there are two problems: it isn’t
passed the currentfepid value, and this routine is also called fromgetBuffer() , which
isn’t passedfepid either.

Boolean BiasThief::getBuffer(TlmForm&form)
{
 // ---- Wait for form to get a telemetry buffer ----

ECO 36–1041

- 4 -

 while (form.waitForBuffer() == BoolFalse) {
 // --- Every so often, check monitor or aborts ---
 if (checkMonitor() == BoolFalse) return BoolFalse;
 }
 // ---- Got telemetry packet buffer ----
 return BoolTrue;
}

Nevertheless, it is possible to patch bothgetBuffer() andtrickleTeBias() (and the
companiontrickleCcBias()) so thatfepid is passed as an argument tocheckMoni-
tor() , which must itself be changed from its original version:

Boolean BiasThief::checkMonitor()
{
 Boolean retval = BoolTrue; // Assume no abort
 unsigned caught = requestEvent(EV_TASKQUERY | EV_ABORT);

 if (caught & EV_TASKQUERY) taskMonitor.respond();
 if (caught & EV_ABORT) retval = BoolFalse;

 // ---- Return BoolFalse if abort, else BoolTrue ----
 return retval;
}

to

Boolean Test2_BiasThief::checkMonitor(FepId fepid)
{
 Boolean retval = BoolTrue; // Assume no abort

 if (fepid >= FEP_COUNT ||
 fepManager.isEnabled(fepid) == BoolFalse) {
 swHousekeeper.report(SWSTAT_FEPREC_POWEROFF, fepid);
 retval = BoolFalse;
 } else {
 unsigned caught = requestEvent(EV_TASKQUERY|EV_ABORT);
 if (caught & EV_TASKQUERY) taskMonitor.respond();
 if (caught & EV_ABORT) retval = BoolFalse;
 }

 // ---- Return BoolFalse if abort, else BoolTrue ----
 return retval;
}

While this change preventscheckMonitor() from responding toEV_TASKQUERY events
if the “if ” clause is true, this will inevitably result in control passing to the outer loop of
thegoTaskEntry() procedure, which will always respond to these events.

TheTest2_BiasThief class (notTest_BiasThief since this has already been defined in the
untricklebias patch) is declared as a public child of the existingBiasThief class and we use
a naughty#define trick to force theFepManager::isEnabled() to be publicly call-
able from “outside” its class. This is done to avoid proliferating the original “biasThief.H”.

#include "filesscience/biasthief.H"
#define private public
#include "filesprotocols/fepmanager.H"
#undef private
#include "filesswhouse/swhousekeeper.H"

class Test2_BiasThief : public BiasThief
{

ECO 36–1041

- 5 -

public:
 Boolean checkMonitor(FepId fepid);
};

We have left the hard part until last: patching the binary instructions ingetBuffer() ,
trickleTeBias() andtrickleCcBias() so that they pass thefepid argument to the
new version ofcheckMonitor() . To understand how this is done requires a short tutorial
in some features of the architecture of the BEP’s CPU, an R3000 RISC processor using
MIPS standards, and of register usage by the GNU C++ compiler.

1. Function values are returned in hardware registers $2 and $3.

2. Function arguments are passed in registers $4 through $7. (In class methods, $4 points
to the object, $5 contains the first argument, $6 the second, etc.)

3. Registers $16 through $23 are preserved within functions: on entry, they are saved in
the execution stack, and restored on exit. $29 (aka $sp) points to the stack.

4. On entry to a function, register $31 points to the return address.

5. After executing a branch or function call instruction, the CPUalso executes the
instruction that immediately follows it,before taking the branch.

6. When data is loaded into a register from memory (but not from another register), it is
not available for further computations until thenext instruction has executed.

Because of this last feature, the compiler is forced to insert rather frequent “nop ” (no op-
eration) instructions, especially when loading the arguments of function calls into registers.
We can replace thesenops with instructions that pass thefepid value. From the source
listing of the newcheckMonitor() routine above, it is clear that $5 must be made to con-
tain the value offepid . The way this is done differs between the cases in which the routine
is called bytrickleTeBias() andtrickleCcBias() on the one hand, and byget-
Buffer() on the other. In the first case,fepid is declared in the caller, and is readily load-
ed into $5. For instance, in the unpatchedtrickleTeBias() , checkMonitor() is
called as follows:

lw $2,8($16) // load $2 with BiasThief method table
nop // wait for address to load into $2
lw $2,64($2) // load address of checkMonitor method
nop // wait for address to load into $2
jal $31,$2 // call checkMonitor, return address in $31
move $4,$16 // load address of BiasThief object into $4

To patch this, we replace one of thenop instructions with the following:

lw $5,104($sp) // load $5 with the value of fepid

The corresponding change totrickleCcBias() is even simpler since, by inspecting the
assembler listings, the compiler keeps thefepid value in register $18:

move $5,$18 // load $5 with the value of fepid

Passingfepid to thecheckMonitor() call withingetBuffer() is trickier since it must
be passed through one routine into the other. However,getBuffer() is a very simple pro-
cedure. Before callingcheckMonitor() , it calls onlyform.waitForBuffer() , which
itself only calls the nucleus functionNU_Alloc_Partition() that preserves all regis-
ters:

void* MemoryPool::waitForBuffer(unsigned timeout)
{

ECO 36–1041

- 6 -

 int result;// RTX Result
 unsigned* memPtr;// Obtained memory pointer
 void* retval;// Return Value

 result = NU_Alloc_Partition(rtxPoolId, &memPtr, timeout);

 if (result == NU_SUCCESS) {
ASSERT(memPtr != 0);// Ensure valid ptr
retval = memPtr;// Copy to return variable

 } else {
retval = 0; // Indicate nothing left

 }
 return (retval);// Return 0 (timeout) or memory pointer
}

SinceNU_Alloc_Partition() is a simple function, not a class method, its three calling
arguments use registers $4, $5, and $6. An inspection of the assembler code shows that the
remaining registers $7 through $29 are unused. If $7 is loaded with thefepid value by
trickleTeBias() or trickleCcBias() before they callgetBuffer() , it will still be
there whengetBuffer() callscheckMonitor() (as verified by inspecting the assem-
bler listings) so we insert the following into a convenientnop preceding thegetBuffer()
call in trickleTeBias() :

lw $7,104($sp) // load $7 with the value of fepid

and make the corresponding update totrickleCcBias() :

move $7,$18 // load $7 with the value of fepid

We’re almost there. It remains only to replace anop in getBuffer() just before it calls
checkMonitor() with

move $5,$7 // load $5 with the value of fepid

The full text of the assembler patch reads as follows. Global names refer to the 4-byte in-
structions in assembler listings. The syntax is “module_lst_start_stop”, wheremodule re-
fers to the assembler listing file “module.lst”, and “start” and “stop” are the beginning and
ending hex addresses of the code to be replaced, as relative offsets to the start of the text
segment in that listing.

 .set noreorder
 .set nomacro
 .set noat
 .text

Pass fepid for call to checkMonitor() from getBuffer().
This relies on $7 not changing during the waitForBuffer() call.

 .globl biasthief_lst_0360_0360
 .ent biasthief_lst_0360_0360
biasthief_lst_0360_0360:
 move $5,$7 # $5 = fepid
 .end biasthief_lst_0360_0360

Load fepid for call to checkMonitor() from trickleTeBias().

 .globl biasthief_lst_04d4_04d4
 .ent biasthief_lst_04d4_04d4
biasthief_lst_04d4_04d4:
 lw $5,104($sp) # $5 = fepid
 .end biasthief_lst_04d4_04d4

Load fepid for call to getBuffer() from trickleTeBias().

ECO 36–1041

- 7 -

 .globl biasthief_lst_050c_050c
 .ent biasthief_lst_050c_050c
biasthief_lst_050c_050c:
 lw $7,104($sp) # $7 = fepid
 .end biasthief_lst_050c_050c

Load fepid for call to checkMonitor() from trickleCcBias().

 .globl biasthief_lst_07b0_07b0
 .ent biasthief_lst_07b0_07b0
biasthief_lst_07b0_07b0:
 move $5,$18 # $5 = fepid
 .end biasthief_lst_07b0_07b0

Load fepid for call to getBuffer() from trickleCcBias().

 .globl biasthief_lst_07f4_07f4
 .ent biasthief_lst_07f4_07f4
biasthief_lst_07f4_07f4:
 move $7,$18 # $7 = fepid
 .end biasthief_lst_07f4_07f4

3. CHANGE TO THE UNTRICKLE BIAS PATCH

Since theuntricklebias patch also replaces theBiasThief::checkMonitor() method,
this too must be updated to be compatible withbuscrash2. The updated routine is as fol-
lows:

Boolean Test_BiasThief::checkMonitor(FepId fepid)
{
 Boolean retval = BoolTrue;

 // test if FEP powered up
 if (fepid >= FEP_COUNT ||
 fepManager.isEnabled(fepid)==BoolFalse) {
 swHousekeeper.report(SWSTAT_FEPREC_POWEROFF, fepid);
 return BoolFalse; // FEP not available or powered
 }

 // get science task event mask
 unsigned mask = EV_TASKQUERY | EV_SM_BIAS_ABORT_RUN;
 unsigned caught =
 taskManager.queryCurrentTask()->requestEvent(mask);

 // respond to task poll
 if (caught & EV_TASKQUERY) taskMonitor.respond();

 // abort sent by stopScience or RADMON inhibit
 if (caught & EV_SM_BIAS_ABORT_RUN) retval = BoolFalse;

 // ---- Return BoolFalse on abort, else BoolTrue ----
 return retval;
}

Comparing this with the originalcheckMonitor() method on page 4, note the 2 changes:

1. The call tofepManager.isEnabled() and return if the FEP isn’t accessible.

2. The call torequestEvent() from the current (ScienceManager) task, rather than
from theBiasThief task.

ECO 36–1041

- 8 -

4. PROBLEM WITH THE ORIGINAL PATCH

Although the patch was thoroughly tested, reviewed and certified by the ACIS instrument
team, it failed two tests performed by the Chandra Science Operations Team. In both in-
stances, theuntricklebias batch was also loaded. Subsequent testing shows that runs that
call for bias maps to be copied to telemetry and which use both thebuscrash2 and theun-
tricklebias patches result in premature termination in ~10% of the runs. Whenbuscrash2
was used alone, no error was seen in tests using a total of 150 science runs.

In each case, the errors occurred when a bias map was about to be copied from a FEP to the
BEP’s output buffer. The error condition would strike at random: if multiple maps were to
be copied, it would strike the last as often as the first, but always at the start of the map,
never in the middle. In each case, software housekeeping reported the following:

swStatisticId = 84 # SWSTAT_FEPREC_POWEROFF
count = 1
value = nnnn
swStatisticId = 71 # SWSTAT_SCI_BIASFAILED
count = 1
value = 0

where “nnnn” varied from run to run. This pointed to the
BiasThief::checkMonitor() method, which was replaced both inbuscrash2 and also
in untricklebias. The major change in both versions described in Sections 2 and 3,
respectively, was to pass the value offepId to checkMonitor() which tests it and, if
found invalid (i.e., outside the range 0 through 5), reports the bad value in a
SWSTAT_FEPREC_POWEROFF message and then halts the bias thief and the science run.

SincecheckMonitor() is called before each bias packet is formatted, it is unexpected
that the error should occur only on the first packet of a map. However,checkMonitor()
is also called when a new packet buffer is needed, and this call is made from the
getBuffer() method which is itself called bytrickleTeBias() and
trickleCcBias() . The original inlinebuscrash2 patches passfepId through
getBuffer() in registerR7. The contents of this register appeared to be preserved across
the call toTlmForm::waitForBuffer() in getBuffer() (see Section 2) but it appears
that this is not always the case, at least when theBiasThief methods are executed in the
science task, which is the case when theuntricklebias patches are installed.

5. UPDATE TO THE BUSCRASH2 PATCH

The full assembler language text of the new patch reads as follows. Changes to the original
in Section 2 are colored red. The first change is on entry intogetBuffer() , when the con-
tents of registerR6 are stored in the 10th fullword in that routine’s execution stack, a loca-
tion that is unused within that routine (and its callers). The MIPS compiler always allocates
stack space in 8-byte segments, but this particular routine only uses 9 fullwords of stack,
leaving 4 bytes available at offset 36 bytes from$sp , the stack pointer register. The remain-
ing changes ensure thatR6 contains the fepId value on entry togetBuffer() and, within
that routine, reloadfepId from the stack into R5 for the call tocheckMonitor() .

ECO 36–1041

- 9 -

 .set noreorder
 .set nomacro
 .set noat
 .text

Save fepId in stack on entry to getBuffer()

 .globl biasthief_lst_0340_0340
 .ent biasthief_lst_0340_0340
biasthief_lst_0340_0340:
 sw $6,36($sp) # 36($sp) = fepid
 .end biasthief_lst_0340_0340

Pass fepid for call to checkMonitor() from getBuffer().

 .globl biasthief_lst_0360_0360
 .ent biasthief_lst_0360_0360
biasthief_lst_0360_0360:
 lw $5,36($sp) # $5 = fepid
 .end biasthief_lst_0360_0360

Load fepid for call to checkMonitor() from trickleTeBias().

 .globl biasthief_lst_04d4_04d4
 .ent biasthief_lst_04d4_04d4
biasthief_lst_04d4_04d4:
 lw $5,104($sp) # $5 = fepid
 .end biasthief_lst_04d4_04d4

Load fepid for call to getBuffer() from trickleTeBias().

 .globl biasthief_lst_050c_050c
 .ent biasthief_lst_050c_050c
biasthief_lst_050c_050c:
 lw $6,104($sp) # $6 = fepid
 .end biasthief_lst_050c_050c

Load fepid for call to checkMonitor() from trickleCcBias().

 .globl biasthief_lst_07b0_07b0
 .ent biasthief_lst_07b0_07b0
biasthief_lst_07b0_07b0:
 move $5,$18 # $5 = fepid
 .end biasthief_lst_07b0_07b0

Load fepid for call to getBuffer() from trickleCcBias().

 .globl biasthief_lst_07f4_07f4
 .ent biasthief_lst_07f4_07f4
biasthief_lst_07f4_07f4:
 move $6,$18 # $6 = fepid
 .end biasthief_lst_07f4_07f4

No change is necessary for the replacementcheckMonitor() method, nor to any part of
theuntricklebias patch.

ECO 36–1041

- 10 -

6. CONTROLLED SOURCES

7. TESTING

All tests are performed on the ACIS Engineering Unit using one FEP, an image loader, and
an L-RCTU interface. After setting up ashim process to handle I/O between UNIX and the
L-RCTU, the tests were controlled by scripts written in theexpect dialect of TCL.

Because of the relatively low probability of occurrence of the problem described in Section
4, these tests have not been changed. Instead, additional “stress” tests have been added dur-
ing the patch load certification stage.

7.1. Reproduce Test

An expect procedure, “bug-hw/runtest.tcl”, performs a timed-exposure science run with the
opt_tlmio, opt_printswhouse, andopt_dearepl patches. The following steps are performed:

1. A command pipe is spawned down which ACIS commands will be written.

2. A telemetry pipe is spawned, terminating in the “psci -m -u” packet monitoring func-
tion with expect examining the standard output.

3. ACIS is cold-booted.

4. Software housekeeping, DEA replacement, and standard flight patches are applied.

5. ACIS is warm-booted.

6. FEPs 0 through 5 are powered up.

buscrash2

Makefile Generate a stand-alonebuscrash2.bcmd file

buscrash2.C Source code for theTest2_BiasThief class

buscrash2.mak Makefile script to generate test patch

buscrash2.pkg Script to generate patch release

buscrash2inline.S Assembler code to generate inline patches

eco-1041.doc Engineering change order describing thebuscrash2 patch

spr142.pdf Originating software problem report

buscrash2/testsuite

makebias Generate a bias image and copy it to the image loader

buscrash2/testsuite/bug-hw

Makefile Run a test without thebuscrash2 patch

runtest.tcl expect script to demonstrate a BEP bus crash

buscrash2/testsuite/fix-hw

Makefile Run a test with thebuscrash2 patch

buscrash2.bcmd Stand-alonebuscrash2patch

runtest.tcl expect script to demonstrate prevention of BEP bus crash in TE mode

runtest2.tcl expect script to demonstrate prevention of BEP bus crash in CC mode

ECO 36–1041

- 11 -

7. A bias map containing the same value in each pixel of a given quadrant is written to
the image loader.

8. A te_3x3 parameter block is sent to ACIS. It calls for 6 FEPs to be run in faint mode,
calling for 3.3 second full-frame exposures.

9. A science run is started. Its telemetry is monitored by theexpect script.

10. Once adataTeBiasMap packet is received, three commands are sent to ACIS: two
stopScience commands at 2-second intervals, followed by a 10-second delay and a
command to power down all FEPs and DEAs.

11. The script waits until one of three events occurs: (1) abepStartupMessage packet is
received, indicating that the BEP has crashed; (2) ascienceReport packet is received,
indicating that the run ended normally without a crash; (3) neither packet has been
received after 1 minute.

12. The test is passed if case (1) occurs; otherwise, the test fails.

7.2. Fix Test in TE Mode

This test, controlled by theexpect procedure “fix-hw/runtestcc.tcl”. is identical to the Re-
produce Test except in two respects:

1. In step 4,buscrash2.bcmd is added to the patch load.

2. In step 12, the test passes if case (2) occurs; otherwise it fails.

7.3. Fix Test in CC Mode

This test, controlled by theexpect procedure “fix-hw/runtestcc2.tcl”. is identical to the Re-
produce Test except in two respects:

1. In step 4,buscrash2.bcmd is added to the patch load.

2. In step 8, acc_1x3 parameter block is sent.

3. In step 10, the script waits for adataCcBiasMap packet.

4. In step 12, the test passes if case (2) occurs; otherwise it fails.

01/14/10
14:44:30 1../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

TITLE: ACIS Flight Software Standard Patch Component Release Notes

DOCUMENT NUMBER: 36-58010 REVISION: E

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

01 36-984 Initial numeric release jimf 10/27/1998
A 36-1006 Bug fixes, incorporate tests RFG 05/11/1999
B 36-1019 Add new patches, retest RFG 12/16/1999
C 36-1035 Add new patches, retest RFG 08/09/2007
D 36-1039 Add new patches, retest RFG 09/29/2009
E 36-1042 Update buscrash2, retest RFG 01/06/2010

01/14/10
14:44:30 2../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Title: ACIS Patch Release Notes for Version E

Software Change Order: 36-1042

Build Date: Wed Nov 4 19:15:19 EST 2009
Part Number: 36-58010
Version: E
CVS Tag: release-E

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

Load Size: 2660 bytes

--
Description:
 This is the fifth letter release of the standard patch set for the
 ACIS Flight Software.

 The purpose of this release is to update the buscrash2 optional patch.

 This release consists of the following bug fix/system modification
 patches, where * indicates the new or modified patches since the
 previous release:

 biastiming - Fixes SPR 117
 corruptblock - Fixes SPR 113
 digestbiaserror - Fixes SPR 116
 histogramvar - Fixes SPR 115
 rquad - Fixes SPR 121
 histogrammean - Fixes SPR 123
 zap1expo - Addresses SPR 122
 condoclk - Addresses SPR 127
 fepbiasparity2 - Addresses SPR 130
 cornermean - Fixes SPR 128
 tlmbusy - Fixes SPR 138
 buscrash - Fixes SPR 140
 badpix - Fixes SPR 141
 * buscrash2 - Fixes SPR 142

 For archival purposes, this document contains two attachments. The
 first contains ASCII command inputs to the ACIS command generator,
 "bcmd", used to generate the binary patch commands corresponding to
 this release. The second attachment contains the linker map listing
 for the ACIS Flight Software, and the patches built by this release.

 The following documentation identifies these patches, provides a brief
 justification for each patch, and briefly describes the contents of
 these patches and their command, telemetry and science impacts.

--
Addressed Problem Reports:
 SPR-142
 SPR-128
 SPR-123
 SPR-127
 SPR-130
 SPR-138
 SPR-122

01/14/10
14:44:30 3../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 SPR-141
 SPR-115
 SPR-113
 SPR-140
 SPR-117
 SPR-116
 SPR-121

--
Included Patches:
 tlmbusy
 fepbiasparity2
 biastiming
 histogramvar
 badpix
 zap1expo
 digestbiaserror
 corruptblock
 cornermean
 buscrash
 buscrash2
 rquad
 condoclk
 histogrammean

--
Additional Release Level Tests:

01/14/10
14:44:30 4../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: tlmbusy

Part Number: 36-58030.29
Version: A
SCO:

Description:
 This standard patch prevents the BEP from writing anomalous telemetry
 output when the TlmManager::post() method is called from one task while
 it is still enqueuing a packet from another task.

 The BEP will not drop the occasional packet (usually a housekeeping
 packet), and will be prevented from writing garbage in its stead.
 This will prevent the ground system from mis-processing science runs
 in which the garbage consists of correctly formatted, but unexpected,
 packets.

Applicable Reports/Requests:
 SPR-138
 SER-None

Test Results:
 smoke --> PASS

Replaced Functions:
 TlmManager::post

Command Impact:
 None.

Telemetry Impact:
 The occasional packet drop-out or garbling will no longer occur, so the
 impact should be wholly favorable.

Science Impact:
 None.

01/14/10
14:44:30 5../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: fepbiasparity2

Part Number: 36-58030.19
Version: A
SCO: 36-1015

Description:
 In TE mode, this patch causes FEP_0 to bypass the upper half of each
 image map (rows 512 through 1023) if the bias parity errors in any one
 frame reported by the firmware exceed a threshold value (10). In
 addition, the 10 bias values, and their corresponding pixel values,
 are copied to a static location from which they can be dumped at a
 later time. In CC mode, the patch copies the lower half of the FEP_0
 bias map into the upper half whenever 10 or more bias errors have been
 detected.

 The patch has no effect on other FEPs.

Applicable Reports/Requests:
 SPR-130

Test Results:
 bugTe --> PASS
 bugCc --> PASS
 fixTe --> PASS
 patchCc --> PASS

Replaced Functions:

Command Impact:
 Once the patch is installed and FEP_0 powered up and running, it is
 advisable to clear its static save area via the following command:

 write ‘c’ fep 0 0x80000210 {
 0
 }

 Then, either on a regular basis, or when it is noticed that 10
 parity errors have been reported from a single FEP_0 exposure frame,
 the following command should be executed to dump the contents of the
 static save area:

 read ‘c’ fep 0 0x80000210 20

Telemetry Impact:
 If 10 or more bias parity errors are detected in FEP_0 during a
 timed-exposure science run, fepbiasparity2 will prevent more from
 being reported in telemetry. Once the threshold is reached, no further
 events will be reported from rows 512-1023. In 5x5 mode, a few
 additional parity errors may be reported from row 512.

 In continuous clocking mode, when 10 or more bias parity errors are
 detected in FEP_0, fepbiasparity2 will copy the entire contents of the
 lower half of the bias map, i.e., 512 rows x 1024 pixels, to the upper
 half, thereby (hopefully) restoring the original contents. Occasional

01/14/10
14:44:30 6../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 parity errors will be corrected in the usual manner, i.e., by
 searching through the bias map, starting at row 0, for a pair of
 undamaged values.

Science Impact:
 When this patch is triggered in timed-exposure modes, no further
 parity errors will be reported from rows 513-1023 of the CCD attached
 to FEP_0. In 3x3 mode, no events will be reported from rows 511-1023;
 in 5x5 mode, none will be reported from 510-1023. Ground software must
 be prepared to sense this condition, e.g., by examining the
 biasParityErrors fields in exposure packets, or by recognizing the
 absense of events above row 512, and updating the exposure maps
 accordingly.

 The patch should have less impact in continuous clocking mode. When
 the 10-error threshold is triggered, FEP_0 may skip an exposure frame
 while replacing the upper half of its bias map, but otherwise, event
 processing will continue, taking advantage of the full area of the
 CCD.

01/14/10
14:44:30 7../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: biastiming

Part Number: 36-58030.04
Version: A
SCO: 36-993

Description:

 Reason:
 This patch fixes a software problem which was first
 encountered during AXAF thermal vacuum testing at TRW.

 Symptom:
 At TRW thermal vacuum testing, someone observed that the
 instrument sent a science report in the middle of trickled
 bias map data. Bev has subsequently observed one case where
 the instrument started sending science data while trickling
 the bias maps.

 Symptom Impact:
 This symptom opens the possibility that the FEP threshold
 plane will lock up during a science run if the event rate
 is high enough (on the order of 5K events/sec/CCD).

 Symptom Cause:
 When the science manager tells the bias thief to start,
 by calling biasReady(), it set the thief’s busy flag prior
 to signaling the task to start. If the task monitor
 sneaks in, the bias thief’s main loop, goTaskEntry() ends
 up re-clearing the busyFlag, but then later picks up
 the start event and starts trickling the bias map. Since
 the busyFlag is clear at this point, the science manager
 assumes that the bias has been sent, and proceeds on to the
 data processing portion of the run (or if it’s a bias only
 run or the run has been told to stop, the terminate the run).

 Fix Description:
 This patch replaces the BiasThief::biasReady() function
 with one that re-orders the setting of the busyFlag. In
 the patched version, the busyFlag is set AFTER the
 notification to the thief to start sending the bias.
 If the task monitor sneaks in, the thief will clear
 the flag, but once we return to the biasReady() function,
 the flag will be correctly asserted.

Applicable Reports/Requests:
 SPR-117

Test Results:
 unit --> PASS
 fix --> PASS

Replaced Functions:
 BiasThief::biasReady

Command Impact:

01/14/10
14:44:30 8../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 None

Telemetry Impact:
 When this patch is not installed, it is possible, but rare, for bias maps
 to be telemetered while data processing is running and telemetering
 event data and exposure records, and even for a science report to
 be issued while the bias maps continue to be telemetered.

 Once the patch is installed, the instrument will reliably wait until
 all of the bias maps have been telemetered before proceeding with
 the data processing portion of the run.

Science Impact:
 Without this patch, it is possible, but extremely unlikely, that the
 FEP hardware threshold plane may lockup. This results in unreasonably
 low energy events being reported in the same set of positions, where ever
 there was a threshold crossing at the point where the threshold hardware
 locked up. This occurrence has only been seen with high event rates,
 on the order of 3000-5000 per exposure.

 With this patch, this situation will not occur.

01/14/10
14:44:30 9../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: histogramvar

Part Number: 36-58030.03
Version: A
SCO: 36-999

Description:
 This patch fixes a software problem, SPR-115.

 Symptom:
 The Raw Histogram Mode occassionally produces anomalously large
 values for the low word of the overclock variances.

 Symptom Impact:
 This slightly degrades the science analysis of histogram
 mode data by very occassionally providing bad variance values
 for the overclocks.

 Symptom Cause:
 The error is cause by an unsigned integer divide which should
 have been a signed integer divide. If the low order word ends up negative
 this produces an incorrectly high value for the variance.

 Fix Description:
 This inline patch modifies the FEP to use a signed divide instead
 of unsigned divide.

Applicable Reports/Requests:
 SPR-115

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 None

Science Impact:
 This patch affects Histogram Mode Only.
 Without this patch, the overclock variances in histogram mode may
 occassionally be incorrect. Once this patch is installed, the
 Flight Software correctly computes overclock variances.

01/14/10
14:44:30 10../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: badpix

Part Number: 36-58030.21
Version: A
SCO: 36-1037

Description:
 Reason:
 This patch fixes software problem report SPR-141.

 Symptom:
 The known bad pixels and columns supplied to ACIS through its bad
 pixel and column lists are not always being flagged in the correct
 locations in the FEP bias maps. The symptom only appears when the
 instrument is running in timed-exposure mode using sub-arrays whose
 initial row number is greater than zero.

 Symptom Impact:
 In most timed-exposure sub-array runs, when the sub-array starts
 after the first CCD row, bad pixel will be mis-located; the truly
 bad pixels will be accepted as valid and good pixels will be
 treated as bad. In practice, this will have little effect since
 bad pixels will be recognized by the bias map creation algorithm.

 Symptom Cause:
 The BEP maintains a list of known bad pixels and columns in each CCD.
 After a bias map is created, the BEP’s loadBadMaps procedure will set
 the appropriate entries in the FEPs bias maps to 4095, telling the FEP
 software to ignore the corresponding image pixel, i.e., treat it as if
 it had zero value. This is in addition to any saturated pixels found
 during bias map creation, which will also be assigned the bias value
 4095.

 The code in SmTimedExposure::loadBadMaps() contains an error. It
 assumes that sub-arrays will be processed in the same relative location
 in a FEP’s image and bias memory as on the CCD from which the pixels
 originated. This is not so--the first row of a sub-array is always
 written into row 0 of a FEP’s image map, and the corresponding bias
 values are saved in row 0 of its bias map.

 SmTimedExposure::loadBadMaps() must be patched in two places, one to
 correct bad pixels, the other bad columns. The bad pixel correction
 is applied as follows:

 while (badPixelMap.getPixel (index, ccd, row, col) == BoolTrue) {
 if ((row >= start) && (row < end)) {
 row /= sum;
 col /= sum;
 for (FepId fep = FEP_0; fep < FEP_COUNT; fep = FepId(fep+1)) {
 if (fepCcd[fep] == ccd) {
 fepManager.loadBadPixel (fep, row, col);
 }
 }
 }
 index++;
 }

 and we want to change the "row /= sum" to "row = (row-start) / sum".
 This can best be done by recognizing that "sum" has only two values,
 1 or 2, and the MIPS takes 32 bytes of code to perform an unsigned
 integer divide, but only 4 bytes to perform a logical right shift.

01/14/10
14:44:30 11../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 The original assembler code

 1774 2400A28F lw $2,36($sp)
 1778 00000000 divu $2,$2,$18
 177C 1B005200
 1780 02004016
 1784 00000000
 1788 0D000700
 1798 2400A2AF sw $2,36($sp)

 can simply be modified as follows:

 1774 2400A28F lw $2,36($sp)
 1778 FFFF4326 addu $3,$18,-1
 177c 23105600 subu $2,$2,$22
 1780 06106200 srl $2,$2,$3
 1784 00000000 nop
 1788 00000000 nop
 178C 00000000 nop
 1790 00000000 nop
 1794 00000000 nop
 1798 2400A2AF sw $2,36($sp)

 The second patch sets the starting value of the row loop to zero:

 while (badTeColumnMap.getColumn (index, ccd, col) == BoolTrue) {
 col /= sum;
 for (FepId fep = FEP_0; fep < FEP_COUNT; fep = FepId(fep+1)) {
 if (fepCcd[fep] == ccd) {
 for (unsigned row = start; row < end; row++) {
 fepManager.loadBadPixel (fep, row, col);
 }
 }
 }
 index++;
 }

 The existing assembler code is

 $LM1578:
 18cc 0000043C la $4,fepManager
 18d0 00008424
 18d4 21282002 move $5,$17
 18d8 3000A78F lw $7,48($sp)
 18dc 00000000 nop
 18e0 0000000C jal loadBadPixel
 18e4 21300002 move $6,$16
 18e8 01001026 addu $16,$16,1
 18ec 2B101402 sltu $2,$16,$20
 18f0 F6FF4014 bne $2,$0,$L1578

 and the patch replaces the row in the loadBadPixel(fepId, row, col)
 call with row-start. (In the MIPS architecture, the instruction
 after a branch or call is executed before the branch is taken).

 18e4 23301602 subu $6,$16,$22

Applicable Reports/Requests:
 SPR-141

Test Results:

01/14/10
14:44:30 12../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None.

Telemetry Impact:
 None.

Science Impact:
 Without this patch, the BEP’s bad pixel and bad column lists will be
 applied incorrectly in timed-exposure sub-array mode when the sub-array
 begins on any but the first row of the CCD. Since almost all science
 runs are made in dithered mode, the impact once the patch is in place
 will be slight.

01/14/10
14:44:30 13../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: zap1expo

Part Number: 36-58030.16
Version: A
SCO: 36-997

Description:
 Reason:
 In event-finding mode, the FEP thresholds are adjusted using delta-overclock
 values, which are calculated from difference between the average overclock
 values from the preceding frame and the average overclock values from the
 initial bias frame. The delta-overclocks for the initial data frame are set
 to zero, i.e., it is assumed that the mean bias levels haven’t drifted
 since the first exposure frame used to compute the bias map. This is
 often a poor assumption, and can lead to a very large number of events
 being reported within the first exposure.

 Fix Description:
 Inhibit the FEP from finding any threshold crossings within the first
 examined exposure frame. This is performed at science run initialization
 time within the "fepSciTimed.c":FEPsciTimedInit function (TE mode) and
 the "fepSciCClk.c":FEPsciCClkInit function (CC mode) by storing 4095 in
 the FEP threshold registers. Thus,

 186:fepSciTimed.c **** for (iquad = 0; iquad < 4; iquad++) {
 925 0290 21200000 move $4,$0
 926 0294 0000053C la $5,stageThresh
 926 0000A524
 187:fepSciTimed.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 929 029c 40100400 sll $2,$4,1
 930 $L90:
 931 02a0 21105000 addu $2,$2,$16
 932 02a4 A0024394 lhu $3,672($2)
 933 02a8 00000000
 934 02ac 100043A4 sh $3,16($2)
 188:fepSciTimed.c **** fp->ex.dOclk[iquad] = 0;
 937 02b0 180040A4 sh $0,24($2)
 189:fepSciTimed.c **** FIOsetThresholdRegister(iquad, (short)(fp->tp.thresh[iqu
ad]));
 944 02b4 80180400 sll $3,$4,2
 945 02b8 21107000 addu $2,$3,$16
 948 02bc 21186500 addu $3,$3,$5
 949 02c0 4C004284 lh $2,76($2)
 950 02c4 00000000
 951 02c8 000062AC sw $2,0($3)
 958 02cc 01008424 addu $4,$4,1
 959 02d0 0400822C sltu $2,$4,4
 960 .set noreorder
 961 .set nomacro
 962 02d4 F2FF4014 bne $2,$0,$L90
 963 02d8 40100400 sll $2,$4,1
 964 .set macro
 965 .set reorder
 190:fepSciTimed.c **** }

 becomes

 186:fepSciTimed.c **** for (iquad = 0; iquad < 4; iquad++) {
 925 0290 21200000 move $4,$0
 926 0294 0000053C la $5,stageThresh
 926 0000A524

01/14/10
14:44:30 14../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 187:fepSciTimed.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 929 029c 40100400 sll $2,$4,1
 930 $L90:
 931 02a0 21105000 addu $2,$2,$16
 932 02a4 A0024394 lhu $3,672($2)
 933 02a8 00000000
 934 02ac 100043A4 sh $3,16($2)
 188:fepSciTimed.c **** fp->ex.dOclk[iquad] = 0xfff;
 937 02b0 FF0F0324 li $3,0x00000fff
 944 02b4 180043A4 sh $3,24($2)
 189:fepSciTimed.c **** FIOsetThresholdRegister(iquad, 0xfff);
 945 02b8 80180400 sll $3,$4,2
 948 02bc 21186500 addu $3,$3,$5
 949 02c0 FF0F0224 li $2,0x00000fff
 950 02c4 00000000
 951 02c8 000062AC sw $2,0($3)
 958 02cc 01008424 addu $4,$4,1
 959 02d0 0400822C sltu $2,$4,4
 960 .set noreorder
 961 .set nomacro
 962 02d4 F2FF4014 bne $2,$0,$L90
 963 02d8 40100400 sll $2,$4,1
 964 .set macro
 965 .set reorder
 190:fepSciTimed.c **** }

 and

 174:fepSciCClk.c **** for (iquad = 0; iquad < 4; iquad++) {
 774 01fc 21200000 move $4,$0
 775 0200 0000053C la $5,stageThresh
 775 0000A524
 175:fepSciCClk.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 778 0208 40100400 sll $2,$4,1
 779 $L83:
 780 020c 21105000 addu $2,$2,$16
 781 0210 A0024394 lhu $3,672($2)
 782 0214 00000000
 783 0218 100043A4 sh $3,16($2)
 176:fepSciCClk.c **** fp->ex.dOclk[iquad] = 0;
 786 021c 180040A4 sh $0,24($2)
 177:fepSciCClk.c **** FIOsetThresholdRegister(iquad, (short)(fp->tp.thresh[iqu
ad]));
 793 0220 80180400 sll $3,$4,2
 794 0224 21107000 addu $2,$3,$16
 797 0228 21186500 addu $3,$3,$5
 798 022c 4C004284 lh $2,76($2)
 799 0230 00000000
 800 0234 000062AC sw $2,0($3)
 807 0238 01008424 addu $4,$4,1
 808 023c 0400822C sltu $2,$4,4
 809 .set noreorder
 810 .set nomacro
 811 0240 F2FF4014 bne $2,$0,$L83
 812 0244 40100400 sll $2,$4,1
 813 .set macro
 814 .set reorder
 178:fepSciCClk.c **** }

 becomes

 174:fepSciCClk.c **** for (iquad = 0; iquad < 4; iquad++) {
 774 01fc 21200000 move $4,$0
 775 0200 0000053C la $5,stageThresh

01/14/10
14:44:30 15../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 775 0000A524
 175:fepSciCClk.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 778 0208 40100400 sll $2,$4,1
 779 $L83:
 780 020c 21105000 addu $2,$2,$16
 781 0210 A0024394 lhu $3,672($2)
 782 0214 00000000
 783 0218 100043A4 sh $3,16($2)
 176:fepSciCClk.c **** fp->ex.dOclk[iquad] = 0xfff;
 786 021c FF0F0324 li $3,0x00000fff
 787 0220 180043A4 sh $3,24($2)
 177:fepSciCClk.c **** FIOsetThresholdRegister(iquad, 0xfff);
 793 0224 80180400 sll $3,$4,2
 797 0228 21186500 addu $3,$3,$5
 798 022c FF0F0224 li $2,0x00000fff
 799 0230 00000000
 800 0234 000062AC sw $2,0($3)
 807 0238 01008424 addu $4,$4,1
 808 023c 0400822C sltu $2,$4,4
 809 .set noreorder
 810 .set nomacro
 811 0240 F2FF4014 bne $2,$0,$L83
 812 0244 40100400 sll $2,$4,1
 813 .set macro
 814 .set reorder
 178:fepSciCClk.c **** }

Applicable Reports/Requests:
 SPR-122

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 No events will be generated for the first examined exposure, i.e.,
 the frame with exposureNumber == 2 (unless the teignore or ccignore
 patches are loaded, in which case it will be the frame with
 exposureNumber == ignoreInitialFrames).

 To determine whether this patch was in effect during a particular
 science run, telemetry processing software should examine the 4 values
 in the deltaOverclocks array in exposure packets with exposureNumber
 == 2 (or with exposureNumber == ignoreInitialFrames if the relevant
 teignore or ccignore patch is installed). If they are all equal to
 4095, the patch was installed and this exposure frame should not be
 included in the good time interval (GTI); if they are all zero, the
 patch was omitted.

Science Impact:
 With this patch installed, the frame with exposureNumber == 2 (or with
 exposureNumber == ignoreInitialFrames if the relevant teignore or

01/14/10
14:44:30 16../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 ccignore patch is installed) should not be included in the GTI maps.

01/14/10
14:44:30 17../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: digestbiaserror

Part Number: 36-58030.02
Version: A
SCO: 36-995

Description:
 This patch fixes software problem SPR-116.

 Symptom:
 When a parity error is detected, the FEP produces a pair of bias
 values with a flag indicating if one or both are corrupt.
 The BEP mishandles this when telemetering the error.
 If the error occurs at an odd column position, the BEP reports
 the wrong column position of the error.

 Symptom Impact:
 This has the potential to degrade the science analysis by providing
 ambiguous knowledge of which bias map values have been
 corrupted.

 Symptom Cause:
 In PmEvent::digestBiasError, it assumes that only one of pair
 of bias values is corrupt and that the FEP reported column
 indicates which of the two is corrupt. This is WRONG.

 Fix Description:
 This inline patch provides a new representation of the bias error event
 and modifies the telemetry format tag to indicate the new format.
 Rather than telemeter the corrupt value (which is fairly useless),
 the 12-bit value field is as follows, where bit 0 is the
 least-significant bit:

 Bits 0 - 3: The top 4 bits of the bias value at the column position
 Bits 4 - 7: The top 4 bits of the bias value at column + 1
 Bits 8 - 11: Unused

 These bits contain the results of the hardware parity check
 of the corresponding pixel bias value.
 The format of these 4 bits are as follows:

 Bit 0 (H/W bit 12) - Always zero
 Bit 1 (H/W bit 13) - H/W computed parity of bias map value
 Bit 2 (H/W bit 14) - Parity bit stored in parity plane
 Bit 3 (H/W bit 15) - Parity error bit (0 - no parity error, 1 - parity error)

 The bit definition information is derived from the
 "DPA Hardware Specification and System Description",
 MIT 36-02104 Rev. C., Section 2.2.2.5.5 "Bias Map Parity Detection".

Applicable Reports/Requests:
 SPR-116

Test Results:
 reproduce --> PASS
 fix --> PASS

01/14/10
14:44:30 18../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 This patch affects the telemetry Pixel Bias Map Error records.
 Without this patch, the error records will be incorrect if the
 error occurs on an odd column.
 With this patch installed, the instrument will telemetry bias
 errors using a new telemetry format, TTAG_SCI_PATCHED_BIAS_ERROR,
 defined by the "Patch Data Bias Error" format in the IP&CL Software
 Structures Definitions, MIT 36-53204.0204 Rev. L.

Science Impact:
 Without the patch installed, there is an ambiguity whether a bias
 error is in the reported pixel, or in the adjacent, odd column.
 Once the patch is installed, the ground can determine exactly which
 pixel was upset.

01/14/10
14:44:30 19../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: corruptblock

Part Number: 36-58030.01
Version: A
SCO: 36-994

Description:
 Reason:
 This patch fixes software problem report SPR-113.

 Symptom:
 If a parameter block is corrupt, the flight software
 may use nonsense parameters, if just powered on, or run
 the previous run mode’s parameter block.

 Symptom Impact:
 If the original parameter block was corrupt and if this was
 the first run since the instrument was powered, the nonsense
 parameters may cause the instrument to crash and reset, preventing
 any science activity during that observation’s time period.
 The system will recover, although without patches, at the onset
 of the next observation. If there was an earlier run of
 the same type, Timed Exposure or Continuous Clocking, the
 previous run’s parameter will be used, which may or may not
 be ideal.

 Symptom Cause:
 The flight software start run routine, ChStartSciRun::processCmd(),
 declares an "alternate" parameter block variable, which is filled
 in by the science mode’s checkBlock() routine if the original
 parameter block is corrupt. processCmd() then erroneously passes
 this "alternate", and a reference to the "alternate" back to
 checkBlock() to verify that the alternate is not also corrupt.
 The called checkBlock() initializes the 2nd reference to INVALID,
 which ends up overwriting the desired alternate block id. This propagates
 through to the run, preventing the mode from loading the parameter
 block, and using, instead, what it had already staged from an earlier run.

 Fix Description:
 This inline patch modifies 2nd parameter to refer to a dummy
 variable when checking the default backup block. This prevents
 the id from being overridden and provides the proper default
 parameter block selection behavior when the selected block
 has been corrupted.

 The original line from chstartscirun.C is:
 if (mode.checkBlock (blockid, alternate) == BoolTrue)
 {
 result = CMDRESULT_OK;
 }
 <<< else if (mode.checkBlock (alternate, alternate) == BoolTrue)
 {
 blockid = alternate;
 usedAlternate = BoolTrue;
 }
 else
 {
 return CMDRESULT_CORRUPT_IDLE;
 }

 The effect of the patch changes this to:

01/14/10
14:44:30 20../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 if (mode.checkBlock (blockid, alternate) == BoolTrue)
 {
 result = CMDRESULT_OK;
 }
 >>> else if (mode.checkBlock (alternate, dummy) == BoolTrue)
 {
 blockid = alternate;
 usedAlternate = BoolTrue;
 }
 else
 {
 return CMDRESULT_CORRUPT_IDLE;
 }

 The stack frame of the modified patch will appear as follows, where
 the offsets in the left-hand column are relative to the stack pointer
 at the time the jump is made to the called subroutine mode.checkBlock(),
 the symbols in the center column indicate the "conventional" locations
 for various registers, and the right column indicates if the assembler
 actually put anything into that stack slot. If "unassigned" then
 the assembler didn’t explicitly store anything into that stack slot.
 If blank, then the "convention"
 (NOTE: In the MIPS processors, calls don’t explicitly push anything
 on the stack. The return address is maintained in "ra" at the time of
 the call and the caller is then required to save it if needed):
 *
 * ChStartSciRun::processCmd() - Stack Frame
 * Convention described in Section 2.3 of
 * MIPS programmers handbook, by Farquahar and Bunce
 *
 * 60 pad unassigned
 * 56 ra ra ($31)
 * 52 s3 s3 ($19)
 * 48 s2 s2 ($18)
 * 44 s1 s1 ($17)
 * 40 s0 s0 ($16)
 * 36 f23 unassigned (patch uses as local "dummy")
 * 32 f22 alternate (local variable)
 * 28 f21 unassigned
 * 24 f20 unassigned
 * 20 pad unassigned
 * 16 arg biasonly argument (arg4) to scienceManager.startRun()
 * 12 a3 unassigned
 * 8 a2 unassigned
 * 4 a1 unassigned
 * 0 a0 unassigned

Applicable Reports/Requests:
 SPR-113

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 Without this patch, corruptions (if any are actually ever encountered)
 may cause an previous parameter block to be used for an observation, or

01/14/10
14:44:30 21../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 at worst, a reset of the instrument.
 When the patch is installed, the instrument will use the appropriate
 default parameter block (slot 0 or slot 1) instead of the corrupted
 parameter block, or will skip the observation if the defaults are
 also corrupt.

Telemetry Impact:
 None.
 Although, without this patch, the instrument may select
 an inappropriate parameter block, the parameter blocks dumped
 to telemetry at the start of a science run will always be the
 the ones actually used for the run.

Science Impact:
 None

01/14/10
14:44:30 22../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: cornermean

Part Number: 36-58030.21
Version: A
SCO: 36-1017

Description:
 Reason:
 This patch fixes software problem report SPR-128.

 Symptom:
 In Timed Exposure Graded Telemetry mode, when some of
 the corner pixels have a small negative corrected pulse
 height, the system reports an incorrect, extremely large
 negative value for the mean corrected pulse height of
 the corner pixels. Additionally, the algorithm rounds
 incorrectly when the mean pulse height is negative (not
 mentioned in the SPR).

 Symptom Impact:
 Barring corrective ground analysis and action, the incorrectly
 reported corner mean value may confuse the science analysis
 process, and at worst, lead to incorrect conclusions about
 the science, or the state of the instrument data processing.

 Symptom Cause:
 The flight software routine, Pixel3x3:computePhGrade() divides
 a signed integer value, cornersum, with an unsigned integer value,
 sumcount (see filesscience/pixel3x3.H). In "C" and "C++", this
 division is performed as an unsigned divide, preventing any sign
 extension, hence the "signedness" of the cornersum is lost.
 The result is stored into a signed value, cornermean, which is
 later converted to a signed 13-bit value for telemetry. When the
 ground software extracts the 13-bit signed value, it will sign-extend
 the value. The effect of losing the sign in the divide, sometimes
 yields incorrect results, some of which appear as large negative values
 when processed by the ground.

 The rounding problem is due to incorrect coding of the integer
 rounding for negative values:
 mean = (sum + (count/2))/count
 should be:
 mean = (sum + (sign(sum) * int(count)/2))/int(count)

 Fix Description:
 This patch implements the fix to the loss of "signedness"
 problem and the rounding using an inline assembler patch.

 To fix the loss of "signedness" problem the patch replaces
 the existing unsigned divide instruction (divu) with a signed
 divide (div).

 In order to fix the rounding problem, more work was needed.

 The coded formula is:
 mean = (sum + (count/2))/count

 In practice, the MIPS assembler implements divides as an
 embedded assembler macro which performs a divide by zero
 check. In the case of Pixel3x3 it is as
 follows:

01/14/10
14:44:30 23../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 0370 2000638E lw $3,32($19)
 0374 00000000
 0378 42100300 srl $2,$3,1
 037c 2400648E lw $4,36($19)
 0380 00000000

 ---- Code we’re going to muck with ----
 0384 21104400 addu $2,$2,$4
 0388 1B004300 divu $2,$2,$3
 02006014
 00000000
 0D000700
 ---- End of code we’re going to muck with ----
 0398 12100000
 039c 00000000
 00000000
 03a4 280062AE sw $2,40($19)

 ...

 Since the C++ code already has an earlier zero check on the
 denominator, the patch re-codes this portion function as follows:

 0370 2000638E lw $3,32($19)
 0374 00000000
 0378 42100300 srl $2,$3,1
 037c 2400648E lw $4,36($19)
 0380 00000000

 ---- Start of change ----
 0384 bgez $4,positive
 0388 add $2,$2,$4
 038c sub $2,$2,$3
 positive:
 0390 div $0,$2,$3
 0394 nop
 ---- End of change ----

 0398 12100000
 039c 00000000
 00000000
 03a4 280062AE sw $2,40($19)

Applicable Reports/Requests:
 SPR-128

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None.

Telemetry Impact:

01/14/10
14:44:30 24../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 None.

Science Impact:
 Without this patch, the corner mean values in Graded Telemetry
 mode may occasionally be invalid. There is a deterministic ground
 algorithm which can detect and and correct for this effect, but
 without the flight patch or the ground algorithm, the corner mean
 values may be grossly incorrect in some cases.

 Once the patch is in place, the corner mean values should be
 within 1/2 an ADU of the true mean, regardless if sign, without
 further action needed by the ground science software.

01/14/10
14:44:30 25../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: buscrash

Part Number: 36-58030.30
Version: A
SCO:

Description:

 Reason:
 If ACIS is computing bias maps when commanded to power down its front-end
 processors (FEPs), it is likely to crash the back-end processor (BEP)
 interface bus, causing the BEP to reboot without flight software patches.
 Normal operations must be restored via ground com mand. The cause of the
 problem has been traced to a design flaw in the BEP flight software and
 this ECO describes a small patch that will fix it.

 Symptom:
 During execution of SCS107, typically due to high background radiation,
 ACIS is powered down. Science telemetry reports that the flight s/w
 version number is 11, whereas typical values (depending in the patch
 combination) are 30 or higher, indicating that the BEP rebooted itself.
 Subsequent inspection of the recorded telemetry shows no scienceReport
 packet from the last science run, but a bepStartupMessage packet with
 lastFatalCode=7 and watchdogFlag=1.

 Symptom Impact:
 Since the observatory is usually in safe mode for several hours following
 the SCS107, there is generally sufficient time to establish a realtime
 contact, set the BEP’s warm-boot flag, and restart it. However, this
 takes time and manpower.

 Symptom Cause:
 The bus crash has been traced to a flaw in the FepManager::loadBadPixel()
 method. This routine is executed after the FEP bias maps have been
 created and before they are (optionally) reported in telemetry. It
 uses the memory-mapped interface between BEP and FEP to change those
 locations in the FEP bias maps that correspond to "bad" pixels or whole
 columns. However, unlike all other FepManager operations, loadBadPixel()
 does not confirm that a FEP is powered up before it writes to its map.
 This causes the bus crash.

 Fix Description:
 Call the FepManeger::isEnabled() method to check if the FEP is powered
 up before writing to a FEP’s bias memory (and parity plane).

Applicable Reports/Requests:
 SPR-140

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:
 FepManager::loadBadPixel

Command Impact:

01/14/10
14:44:30 26../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 None.

Telemetry Impact:
 None.

Science Impact:
 None.

01/14/10
14:44:30 27../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: buscrash2

Part Number: 36-58030.30
Version: B
SCO:

Description:

 Reason:
 If ACIS is copying bias maps to telemetry when commanded to power down its
 front-end processors (FEPs), it is likely to crash the back-end processor
 (BEP) interface bus, causing the BEP to reboot without flight software
 patches. Normal operations must be restored via ground com mand. The cause
 of the problem has been traced to a design flaw in the BEP flight software
 and this ECO describes a small patch that will fix it.

 Symptom:
 During execution of SCS107, typically due to high background radiation,
 ACIS is powered down. Science telemetry reports that the flight s/w
 version number is 11, whereas typical values (depending in the patch
 combination) are 30 or higher, indicating that the BEP rebooted itself.
 Subsequent inspection of the recorded telemetry shows no scienceReport
 packet from the last science run, but a bepStartupMessage packet with
 lastFatalCode=7 and watchdogFlag=1.

 Symptom Impact:
 Since the observatory is usually in safe mode for several hours following
 the SCS107, there is generally sufficient time to establish a realtime
 contact, set the BEP’s warm-boot flag, and restart it. However, this
 takes time and manpower.

 Symptom Cause:
 The bus crash has been traced to a flaw in the BiasThief::checkMonitor()
 method. This routine is executed after the FEP bias maps have been
 created and it copies them to telemetry. It uses the memory-mapped
 interface between BEP and FEP to access the maps but, unlike other
 FepManager operations, it does not confirm that a FEP is powered up before
 it reads the maps. This causes the bus crash.

 Fix Description:
 Call the FepManeger::isEnabled() method to check if the FEP is powered
 up before reading from a FEP’s bias memory. This is done by patching
 BiasThief::checkMonitor() as follows:

 class Test2_BiasThief : public BiasThief
 {
 public:
 Boolean checkMonitor(FepId fepid);
 };

 Boolean Test2_BiasThief::checkMonitor(FepId fepid)
 {
 DebugProbe probe;
 Boolean retval = BoolTrue; // Assume no abort

 if (fepid >= FEP_COUNT ||
 fepManager.isEnabled (fepid) == BoolFalse) {
 swHousekeeper.report(SWSTAT_FEPREC_POWEROFF, fepid);
 retval = BoolFalse; // FEP not available or powered
 } else {
 unsigned caught = requestEvent (EV_TASKQUERY | EV_ABORT);

01/14/10
14:44:30 28../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 if (caught & EV_TASKQUERY) {
 taskMonitor.respond ();
 }
 if (caught & EV_ABORT) {
 retval = BoolFalse;
 }
 }
 // ---- Return BoolTrue if no abort, BoolFalse if aborted ----
 return retval;
 }

 To pass the fepId as an argument to this version of checkMonitor(),
 other BiasThief methods are patched inline, as follows:

 biasthief+0x0340:
 sw $6,36($sp)

 biasthief+0x0360:
 lw $5,36($sp)

 biasthief+0x04d4:
 lw $5,104($sp)

 biasthief+0x050c:
 lw $6,104($sp)

 biasthief+0x07b0:
 move $5,$18

 biasthief+0x07f4:
 move $6,$18

Applicable Reports/Requests:
 SPR-142

Test Results:
 reproduce --> PASS
 fixTe --> PASS
 fixCc --> PASS

Replaced Functions:
 BiasThief::checkMonitor

Command Impact:
 None.

Telemetry Impact:
 None.

Science Impact:
 None.

01/14/10
14:44:30 29../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

01/14/10
14:44:30 30../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: rquad

Part Number: 36-58030.14
Version: A
SCO: 36-1000

Description:
 Reason:
 This patch fixes software problem report SPR-121.

 Symptom:
 If the center pixel of a 3x3 event is in the last
 column of any but the right-most quadrant (i.e. in FULL mode,
 quadrants A, B or C, but not D), the flight software will
 inappropriately use the delta overclock and split threshold
 for the center pixel’s quadrant on the pixels on the right
 edge of the event. The instrument is supposed to use the
 delta overclock and split thresholds for the next quadrant
 on these pixels.

 Symptom Impact:
 This may lead to an incorrect estimate of the
 event’s total pulse height and grade, possibly
 leading to inappropriate pulse height and grade
 filtering of these events, or, when using Graded
 Event formats, incorrect pulse height and grade
 code values.

 Symptom Cause:
 The flight software is fetching the quadrant identifier
 for the wrong column position for the right edge pixels:

 quad = exposure->getQuadrant (col);
 doclk[1] = exposure->getOverclockDelta (quad);
 split[1] = exposure->getSplitThreshold (quad);

 WRONG---> quad = exposure->getQuadrant (col);
 doclk[2] = exposure->getOverclockDelta (quad);
 split[2] = exposure->getSplitThreshold (quad);

 computePhGrade (doclk, split);

 This should be:

 quad = exposure->getQuadrant (col);
 doclk[1] = exposure->getOverclockDelta (quad);
 split[1] = exposure->getSplitThreshold (quad);

 CORRECT---> quad = exposure->getQuadrant (col+1);
 doclk[2] = exposure->getOverclockDelta (quad);
 split[2] = exposure->getSplitThreshold (quad);

 computePhGrade (doclk, split);

 Fix Description:
 The patch increments the column register variable using
 an "nop" slot of an earlier instruction following
 the previous call to exposure->getQuadrant() and prior
 to the last call to exposure->getQuadrant().

01/14/10
14:44:30 31../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 This is the last time the register is used in the function,
 so it won’t corrupt subsequent code, and the "nop"
 was inserted by the compiler after a "lw", which allows
 for increments of registers unrelated to the "lw".

 05cc 2C00A2AF sw $2,44($sp)
 $LM84:
 210:../filesscience/pixel3x3.C ****
 211:../filesscience/pixel3x3.C **** quad = exposure->getQ
uadrant (col);
 05d0 5400028E lw $2,84($16)
 "addu $18,$18,1" --->> 05d4 00000000
 05d8 0800428C lw $2,8($2)
 00000000
 05e0 21200002 move $4,$16
 .set noreorder
 .set nomacro
 "col" is passed in 05e4 09F84000 jal $31,$2
 a delay slot --->>05e8 21284002 move $5,$18
 .set macro
 .set reorder

 05ec 21884000 move $17,$2
 $LM85:
 ../filesscience/pixel3x3.C **** doclk[2] = exposure->getO
verclockDelta (quad);
 05f0 5400028E lw $2,84($16)
 05f4 00000000
 05f8 0400428C lw $2,4($2)
 00000000
 0600 21200002 move $4,$16
 .set noreorder
 .set nomacro
 0604 09F84000 jal $31,$2
 0608 21282002 move $5,$17
 .set macro
 .set reorder

 060c 2000A2AF sw $2,32($sp)
 $LM86:
 ../filesscience/pixel3x3.C **** split[2] = exposure->getS
plitThreshold (quad);
 .stabn 68,0,213,$LM86
 0610 5400028E lw $2,84($16)
 0614 00000000
 0618 0C00428C lw $2,12($2)
 00000000
 0620 21200002 move $4,$16
 .set noreorder
 .set nomacro
 0624 09F84000 jal $31,$2
 0628 21282002 move $5,$17
 .set macro
 .set reorder

 062c 3000A2AF sw $2,48($sp)
 $LM87:
 ../filesscience/pixel3x3.C ****
 ../filesscience/pixel3x3.C **** computePhGrade (doclk, sp
lit);
 .stabn 68,0,215,$LM87
 0630 1000828E lw $2,16($20)
 0634 00000000
 0638 1C00428C lw $2,28($2)

01/14/10
14:44:30 32../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 00000000
 0640 21208002 move $4,$20
 0644 1800A527 addu $5,$sp,24
 .set noreorder
 .set nomacro
 0648 09F84000 jal $31,$2
 064c 2800A627 addu $6,$sp,40
 .set macro
 .set reorder

 $LBB29:
 $LM88:
 $LBB30:
 $LBE30:
 $LM89:
 $LBE29:
 $LM90:
 ../filesscience/pixel3x3.C ****
 ../filesscience/pixel3x3.C **** //
 ../filesscience/pixel3x3.C **** }
 $LBE26:
 0650 4C00BF8F lw $31,76($sp)
 00000000
 0658 4800B48F lw $20,72($sp)
 00000000
 0660 4400B38F lw $19,68($sp)
 00000000
 0668 4000B28F lw $18,64($sp)
 00000000
 0670 3C00B18F lw $17,60($sp)
 00000000
 0678 3800B08F lw $16,56($sp)
 00000000
 0680 5000BD27 addu $sp,$sp,80
 0684 0800E003 j $31
 00000000
 .end Pixel3x3::attachData(FEPeven
tRec3x3 const *, EventExposure *)
 $LM91:

Applicable Reports/Requests:
 SPR-121

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 See SCIENCE IMPACT.

Science Impact:
 Without this patch, all Timed Exposure and CC3x3 events on the left
 edge of a quadrant boundary may have incorrect pulse heights and

01/14/10
14:44:30 33../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 grades, and events which impact at these positions may be inappropriately
 filter out or telemetered if pulse height and grade filters are used.

01/14/10
14:44:30 34../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: condoclk

Part Number: 36-58030.17
Version: A
SCO: 36-1012

Description:
 Reason:
 The first timed exposure frames received during OAC (e.g.,
 SOP_61052_DARK_CUR) showed sporadic increases in the overclock
 averages, and anomalous dark patches within bias maps. Once raw frames
 were examined (in SOP_61054_RAW_DATA and SAP_61079_RAW_BIAS), the
 effect was seen to be caused by charged particle background "leaking"
 into the overclocks.

 Fix Description:
 Patch the FEP overclock processing function, fepOclkProc in
 fep/fepCtl.c, to "condition" the overclock sum on a row-by-row
 basis. The patch, which will not apply to OC_RAW or OC_HIST modes,
 will ignore the overclock sum of particular row and node if it exceeds
 the previous sum by some suitable threshold. This entails replacing
 the following fepOclkProc() code:

 for (ioclk = 0; ioclk < fp->tp.noclk; ioclk++) {
 unsigned p0 = *fp->oc.optr++;
 unsigned p1 = *fp->oc.optr++;
 switch (fp->tp.quadcode) {
 case FEP_QUAD_AC:
 fp->oc.osum[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.osum[1] += PIXEL0(p1) & PIXEL_MASK;
 break;
 case FEP_QUAD_BD:
 fp->oc.osum[0] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.osum[1] += PIXEL1(p1) & PIXEL_MASK;
 break;
 default:
 fp->oc.osum[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.osum[1] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.osum[2] += PIXEL0(p1) & PIXEL_MASK;
 fp->oc.osum[3] += PIXEL1(p1) & PIXEL_MASK;
 break;
 } /* end switch */
 } /* end for ioclk */

 with an inline patch that saves R9-R12:

 condoclkCtl(fp);

 subu $sp,$sp,16
 sw $9,0($sp)
 sw $10,4($sp)
 sw $11,8($sp)
 sw $12,12($sp)
 jal condoclkCtl
 move $4,$16
 lw $9,0($sp)
 lw $10,4($sp)
 lw $11,8($sp)
 lw $12,12($sp)
 j fepCtl+0x0f74
 addu $sp,$sp,16

01/14/10
14:44:30 35../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 and adding the condoclkCtl function:

 void condoclkCtl(FEPparm *fp)
 {
 unsigned dsum = OCLK_COND * fp->tp.noclk;
 unsigned ioclk, iquad;

 /* clear local accumulator */
 for (iquad = 0; iquad < 4; iquad++) {
 fp->oc.ossql[iquad] = 0;
 /* clear saved row sum at start of frame */
 if (fp->oc.osum[iquad] == 0) {
 fp->oc.ossqh[iquad] = 0;
 }
 } /* end for iquad */

 /* accumulate the overclock sums */
 for (ioclk = 0; ioclk < fp->tp.noclk; ioclk++) {
 unsigned p0 = *fp->oc.optr++;
 unsigned p1 = *fp->oc.optr++;
 switch (fp->tp.quadcode) {
 case FEP_QUAD_AC:
 fp->oc.ossql[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.ossql[1] += PIXEL0(p1) & PIXEL_MASK;
 break;
 case FEP_QUAD_BD:
 fp->oc.ossql[0] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.ossql[1] += PIXEL1(p1) & PIXEL_MASK;
 break;
 default:
 fp->oc.ossql[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.ossql[1] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.ossql[2] += PIXEL0(p1) & PIXEL_MASK;
 fp->oc.ossql[3] += PIXEL1(p1) & PIXEL_MASK;
 break;
 } /* end switch */
 } /* end for ioclk */

 /* condition the sums */
 for (iquad = 0; iquad < 4; iquad++) {
 if (fp->oc.ossqh[iquad] == 0) {
 /* always save first row sum */
 fp->oc.ossqh[iquad] = fp->oc.ossql[iquad];
 } else if (fp->oc.osum[iquad] == fp->oc.ossqh[iquad] &&
 fp->oc.ossqh[iquad] > fp->oc.ossql[iquad] + dsum) {
 /* if second row sum much less than first, replace the
 total sum by twice the second sum */
 fp->oc.osum[iquad] = fp->oc.ossqh[iquad] = fp->oc.ossql[iquad];
 } else if (fp->oc.ossql[iquad] <= fp->oc.ossqh[iquad] + dsum) {
 /* save row sum if not much greater than the saved sum */
 fp->oc.ossqh[iquad] = fp->oc.ossql[iquad];
 }
 /* increment overclock accumulator */
 fp->oc.osum[iquad] += fp->oc.ossqh[iquad];
 } /* end for iquad */
 }

 The algorithm uses the oc.ossql[4] and oc.ossqh[4] fields which would
 not otherwise participate in OC_SUM mode, and whose prior contents may
 be safely overwritten. The oc.ossql fields are used to accumulate the
 overclocks of the current row, and the current "best" value of this

01/14/10
14:44:30 36../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 sum is saved from row to row in oc.ossqh. If the current row sum
 exceeds the current best sum by a constant OCLK_COND times the number
 of overclocks in the row, the current best sum will be used in its
 place; otherwise, the sum of the current row will replace the current
 best. The first two rows of each frame receive special treatment: the
 first row sum is used to initialize oc.ossqh -- the "best" sum -- and,
 if the sum of the second row is anomalously LOWER than this, the best
 row sum and the running total sum are corrected.

Applicable Reports/Requests:
 SPR-127

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 None

Science Impact:
 With this patch installed, the effect of background events on
 overclock averages will be greatly reduced, directly reducing
 systematic errors within bias maps and increasing the accuracy of
 photon energy determination.

01/14/10
14:44:30 37../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: histogrammean

Part Number: 36-58030.15
Version: A
SCO: 36-996

Description:
 Reason:
 In raw TE histogram mode, the FEPs report the mean of each CCD
 quadrant’s overclocks. This is done in two steps: first, the
 overclocks of each quadrant of each frame are summed into fields
 "oc.osum" in the FEPparm structure, and these are then averaged over
 the separate "histogramCount" frames and reported to the BEP in
 "omean" fields in FEPeventRecHist structures. The error is caused by
 using the 16-bit "omean" fields as accumulators, as well as final
 values, since, if the mean overclock value multiplied by
 "histogramCount" exceeds 65535, overflow will occur.

 Fix Description:
 The patch adds 8 32-bit integer fields to the end of the D-cache stack
 employed by the fepCtl function. Within FEPsciTimedHist, machine
 instructions are altered to initialize these fields to zero, to use
 them to accumulate the intermediate sums, and hence to form the means
 which are stored into "omean".

 (a) increase fepCtl stack length by an extra 32 bytes

 .globl fepCtl_lst_0000_0000
 .ent fepCtl_lst_0000_0000
 fepCtl_lst_0000_0000:

 0000 88FABD27 subu $sp,$sp,1368+32
 0004 5405BFAF

 .end fepCtl_lst_0000_0000

 (b) decrease fepCtl stack length by an extra 32 bytes

 .globl fepCtl_lst_012c_012c
 .ent fepCtl_lst_012c_012c
 fepCtl_lst_012c_012c:
 0128 00000000
 012c 7805BD27 addu $sp,$sp,1368+32
 0130 0800E003
 .end fepCtl_lst_012c_012c

 (c) set mean and variance sums to zero

 .globl fepSciTimed_lst_1858_1864
 .ent fepSciTimed_lst_1858_1864
 fepSciTimed_lst_1858_1864:
 1854 80180B00
 1858 21187000 addu $3,$3,$16
 185c 480560AC sw $0,1368-16($3)
 1860 580560AC sw $0,1368($3)
 1864 140040A4 sh $0,20($2)
 1868 0C0044A4
 .end fepSciTimed_lst_1858_1864

 (d) increment mean sum

01/14/10
14:44:30 38../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 .globl fepSciTimed_lst_1acc_1adc
 .ent fepSciTimed_lst_1acc_1adc
 fepSciTimed_lst_1acc_1adc:
 1ab0 1B006A00
 02004015
 00000000
 0D000700
 12180000
 1acc 34050925 addu $9,$8,1368-36
 1ad0 4805028D lw $2,1368-16($8)
 1ad4 00000000 nop
 1ad8 21104300 addu $2,$2,$3
 1adc 480502AD sw $2,1368-16($8)
 1ae0 1B00AA01
 1ae4 02004015
 1ae8 00000000
 1aec 0D000700
 1af0 12200000
 .end fepSciTimed_lst_1acc_1adc

 (e) save stack pointer in R9

 .globl fepSciTimed_lst_1c38_1c38
 .ent fepSciTimed_lst_1c38_1c38
 fepSciTimed_lst_1c38_1c38:
 1c34 1403028E
 1c38 48050926 addu $9,$16,1368-16
 1cec 22004010
 .end fepSciTimed_lst_1c38_1c38

 (f) load overclock mean sum

 .globl fepSciTimed_lst_1c50_1c50
 .ent fepSciTimed_lst_1c50_1c50
 fepSciTimed_lst_1c50_1c50:
 1c4c 21187200
 1c50 0000228D lw $2,0($9)
 1c54 00000000
 .end fepSciTimed_lst_1c50_1c50

 (g) load overclock variance sum

 .globl fepSciTimed_lst_1c84_1c84
 .ent fepSciTimed_lst_1c84_1c84
 fepSciTimed_lst_1c84_1c84:
 1c80 21187200
 1c84 1000228D lw $2,16($9)
 1c88 00000000
 .end fepSciTimed_lst_1c84_1c84

 (h) increment R9

 .globl fepSciTimed_lst_1cb8_1cb8
 .ent fepSciTimed_lst_1cb8_1cb8
 fepSciTimed_lst_1cb8_1cb8:
 1cb4 1403028E
 1cb8 04002925 addu $9,$9,4
 1cbc 2B106201
 .end fepSciTimed_lst_1cb8_1cb8

Applicable Reports/Requests:

01/14/10
14:44:30 39../dist/standard-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 SPR-123

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 None. It should be pointed out that an alternative approach to
 fixing this problem is to add the following code to the downlink
 raw histogram software, although this algorithm may fail for very
 large values of "histogramCount".

 if (fs->meanOverclock[node] < fs->minimumOverclock[node] ||
 fs->meanOverclock[node] > fs->maximumOverclock[node]) {
 unsigned hh = loadTeBlock_histogramCount(param);
 double dmlim = 8192.0*hh*loadTeBlock_overclockPairsPerNode(param);
 unsigned mm, mlim = (dmlim < 0x7fffffff) ? dmlim : 0x7fffffff;
 for (mm = 0; mm < mlim; mm += 65536) {
 unsigned nn = fs->meanOverclock[node]+(mm+hh/2)/hh;
 if (nn >= fs->minimumOverclock[node] &&
 nn <= fs->maximumOverclock[node]) {
 fs->meanOverclock[node] = nn;
 break;
 }
 }
 }

Science Impact:
 None -- raw histogram mode is not necessary for science processing.

01/14/10
14:32:00 1../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

TITLE: ACIS Flight Software Optional Patch Component Release Notes

DOCUMENT NUMBER: 36-58020 REVISION: E

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

01 36-987 Initial numeric release jimf 11/12/1998
A 36-1007 Bug fixes, incorporate tests RFG 05/12/1999
B 36-1019 Add new patches, retest RFG 12/16/1999
C 36-1022 Add new patches, retest RFG 03/21/2003
D 36-1040 Add new patches, retest RFG 09/29/2009
E 36-1042 No new patches, retest RFG 01/06/2010

01/14/10
14:32:00 2../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Title: ACIS Optional Patch Release Notes for Version E

Software Change Order: 36-1042

Build Date: Thu Nov 5 01:08:57 EST 2009
Part Number: 36-58020
Version: E
CVS Tag: release-E-opt-E

Std Number: 36-58010
Std Version: E
Std Tag: release-E
Std SCO: 36-1042

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This is the fifth letter release of the optional patch set for the
 ACIS Flight Software. The purpose of this release is test these
 patches with the updated Rev. E Standard Patch release.

 Although the patches listed in this release have been tested in
 combination with the standard patch release, they have NOT been tested
 in various combinations with each other as part of this release. Each
 needed combination will be provided a distinct part number, and will
 be released invidually, based on the patches provided in this release.

 This release consists of the following optional flight patches:

 cc3x3 - Continuous Clocking 3x3 Event Mode
 ccignore - Ignore Continuous Clocking data frames
 compressall - Fixes SPR 134
 ctireport1 - Reports precursor charge
 ctireport2 - Reports precursor charge
 eventhist - Timed Exposure Event Histogram Mode
 reportgrade1 - Addresses SPR 132
 smtimedlookup - Supports eventhist and ctireport
 teignore - Ignore Timed Exposure data frames
 untricklebias - Fixes SPR 133

 This release also contains a set of informally controlled engineering
 patches, used for ground testing, debugging and experimentation:

 hybrid - Prototype of a hybrid clocking mode
 squeegy - Prototype of a squeegee clocking mode
 fepbiasparity1 - Prototype of the fepbiasparity2 patch
 forcebiastrickle - Patch to set trickleBias flag
 tlmio - Telemetry Standard I/O Utility Routines
 printswhouse - Print S/W Housekeeping reports in realtime
 deaeng - Detect/configure for DEA Engineering video boards
 dearepl - Stubs for use when a DEA is not attache

--
Addressed Problem Reports:
 SPR-134
 SPR-126
 SPR-132
 SPR-133

01/14/10
14:32:00 3../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 SPR-120
 SPR-124

--
Included Patches:
 cc3x3 (4636 bytes)
 ccignore (36 bytes)
 compressall (2368 bytes)
 ctireport1 (5452 bytes, depends on smtimedlookup)
 ctireport2 (2784 bytes, depends on smtimedlookup)
 deaeng (2604 bytes, depends on tlmio, conflicts with dearepl)
 dearepl (556 bytes, conflicts with deaeng)
 eventhist (5908 bytes, depends on smtimedlookup)
 printswhouse (7224 bytes, depends on tlmio)
 reportgrade1 (816 bytes)
 smtimedlookup (3712 bytes)
 teignore (36 bytes)
 tlmio (10312 bytes)
 untricklebias (1740 bytes, depends on buscrash2)

01/14/10
14:32:00 4../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: reportgrade1

Part Number: 36-58030.22
Version: A
SCO: 36-1021
Environment: flight

Conflicts:
Depends On:
Size: 816 bytes

Bcmd File: opt_reportgrade1.bcmd
Pkts File: opt_reportgrade1.pkts

Description:
 This patch reports per-FEP event filtering statistics via software
 housekeeping. The SwHousekeeper constructor is patched in order to
 add an extra 54 housekeeping codes, 9 per FEP, as follows:

 SW_FILT_NONE, /* events unfiltered */
 SW_FILT_ENERGY, /* events filtered by energy */
 SW_FILT_GRADE1, /* events filtered by SW_GRADE_CODE1 */
 SW_FILT_GRADE2, /* events filtered by SW_GRADE_CODE2 */
 SW_FILT_GRADE3, /* events filtered by SW_GRADE_CODE3 */
 SW_FILT_GRADE4, /* events filtered by SW_GRADE_CODE4 */
 SW_FILT_GRADE5, /* events filtered by SW_GRADE_CODE5 */
 SW_FILT_OTHER, /* events filtered by other grade */
 SW_FILT_WIN, /* events filtered by window */

 These SwStatistic codes begin at a value of SWSTAT_FILTER_BASE. They
 are defined in "acis_h/interface.h", along with the 5 special grade
 codes:

 SW_GRADE_CODE1 = 24,
 SW_GRADE_CODE2 = 66,
 SW_GRADE_CODE3 = 107,
 SW_GRADE_CODE4 = 214,
 SW_GRADE_CODE5 = 255

 Thus, the number of grade 214 events rejected by FEP_3 during the
 current housekeeping interval will be reported in swHousekeeping
 packets with a "statistics[].swStatisticId" value of
 SWSTAT_FILTER_BASE+SW_FILT_GRADE4+(9*FEP_3). The corresponding
 "statistics[].count" field will contain the number of events in this
 particular class from this particular FEP during the current ˜64 sec
 housekeeping interval. As an aide to synchronizing housekeeping data
 and event packets, the "statistics[].value" field will contain the
 most recent exposure number read from this FEP during this interval.

Applicable Reports/Requests:
 SPR-132

Test Results:
 testTe --> PASS
 testCc --> PASS

01/14/10
14:32:00 5../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

Replaced Functions:
 PmEvent::filterEvent

Command Impact:
 None.

Telemetry Impact:
 No reduction of telemetry throughput is anticipated. To identify the
 new housekeeping fields, ground software must recognize the new
 SwStatistic codes. Refer to the ACIS Software IP&CL Release Notes,
 Rev. L or later, for details

Science Impact:
 None.

01/14/10
14:32:00 6../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: untricklebias

Part Number: 36-58030.28
Version: B
SCO: 36-1028
Environment: flight

Conflicts:
Depends On: buscrash2
Size: 1740 bytes

Bcmd File: opt_untricklebias.bcmd
Pkts File: opt_untricklebias.pkts

Description:
 For reasons unknown, the BEP has occasionally run the science and bias
 thief tasks simultaneously. This causes the FEPs to start searching
 for x-ray events while the BEP is copying their bias maps to
 telemetry. If the threshold crossing freqency is sufficiently high,
 this can trigger an error in the FEP firmware leading to a "T-plane
 latchup" condition.

 The untricklebias patch prevents this behavior by ensuring that the
 FEP bias maps are never accessed by the BiasThief task. Instead, the
 science task is given these functions.

 The main routine of the bias thief task is repaced by
 Test_BiasThief::goTaskEntry, which does nothing beyond waking up
 whenever the task monitor tells it to, but goes back to sleep again
 immediately.

 Where necessary, the remaining BiasThief methods that are called from
 the science task are replaced by methods that do not notify the bias
 thief task that a change has been made. The trickleTeBias and
 trickleCcBias do not need to be patched, but the checkMonitor method
 must be replaced with a version that is appropriate for being called
 from the science task. Note that it tests the EV_SM_BIAS_ABORT_RUN in
 the event mask: this is the value appropriate for a science task
 abort.

 When used with Standard Patch Release D or higher, containing the
 buscrash2 patch, the BiasThief::checkMonitor() method has been updated
 to test whether the fepId is powered up. This method must therefore
 overrides both the original checkMonitor() and the updated version
 loaded by the buscrash2 patch.

Applicable Reports/Requests:
 SPR-133

Test Results:
 patchTe --> PASS
 patchAll --> PASS
 patchCc --> PASS

Replaced Functions:
 BiasThief::abort

01/14/10
14:32:00 7../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 ScienceMode::waitForBiasTrickle
 BiasThief::goTaskEntry
 BiasThief::biasReady
 BiasThief::checkMonitor

Command Impact:
 None.

Telemetry Impact:
 None.

Science Impact:
 None.

01/14/10
14:32:00 8../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: deaeng

Part Number: 36-58030.11
Version: 02
SCO: 36-1010
Environment: engineering

Conflicts: dearepl
Depends On: tlmio
Size: 2604 bytes

Bcmd File: opt_deaeng.bcmd
Pkts File: opt_deaeng.pkts

Description:
 This patch provides the basic capability to detect
 and communicate with the engineering version of the
 DEA CCD controller boards. For historical reasons,
 these boards have a different interface than
 the flight CCD controllers.

 This patch relies on printf() being installed
 (see tlmio).

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:
 DeaCcdController::updateRegister
 DeaCcdController::powerOn
 DeaCcdController::writeData

Command Impact:
 This patch will determine the type of video boards
 installed in the system. Due to the interface differences
 between boards, high-speed tap commands will not work
 on engineering video boards, but will continue to work
 on "flight-like" video boards.

Telemetry Impact:
 Since this patch calls printf(), it will result
 in TTAG_USER telemetry packets.

Science Impact:
 N/A

01/14/10
14:32:00 9../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: cc3x3

Part Number: 36-58030.06
Version: B
SCO: 36-1018
Environment: flight

Conflicts:
Depends On:
Size: 4636 bytes

Bcmd File: opt_cc3x3.bcmd
Pkts File: opt_cc3x3.pkts

Description:
 This patch implements the Continuous Clocking 3x3
 Event Mode. In this mode, the instrument performs the
 standard continuous clocking manipulation of the CCDs,
 but rather than accept and telemetry 1x3 events, the mode
 processes 3x3 event islands, improving the spectral performance
 of the mode and reducing the problems associated with vertically
 split events.

 Because the Continuous Clocking parameter block only provides
 4 bits for defining the grade selection for the mode (in 1x3, only
 4 bits were necessary), this patch provides table which maps
 the 4-bit code into a set of pre-built 256-bit grade selection
 masks. In this release, the grade selection map is populated with
 masks provided by Fred Baganoff. Refer to grade_table.html for
 a description of the grade families. The following table summarizes
 the selections:

 Code 0 - Reject all grades
 Code 1 - Reject ASCA grades 1,2,3,4,5,6,7
 Code 2 - Reject ASCA grades 1,5,6,7
 Code 3 - Reject ASCA grades 1,5,7
 Code 4 - Undefined (currently rejects all grades)
 Code 5 - Undefined (currently rejects all grades)
 Code 6 - Undefined (currently rejects all grades)
 Code 7 - Reject ACIS flight grades 24,66,107,127,214,223,248,251,254,255
 Code 8 - Reject ACIS flight grades 24,107,127,214,223,248,251,254,255
 Code 9 - Reject ACIS flight grades 24,66,107,214,248,255
 Code 10 - Reject ACIS flight grades 24,66,107,214,255
 Code 11 - Reject ACIS flight grades 24,107,214,248,255
 Code 12 - Reject ACIS flight grades 24,107,214,255
 Code 13 - Reject ASCA grade 7
 Code 14 - Reject ACIS flight grade 255
 Code 15 - Accept all grades

 NOTE: CC3x3 Codes 0 and 15 have the same effect
 as their numerical equivalents in CC1x3, where 0
 will reject all events, and 15 will accept events
 with any grade code.

Applicable Reports/Requests:
 SPR-126
 SPR-120
 SPR-124

01/14/10
14:32:00 10../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

Test Results:
 unit --> PASS
 smoke --> PASS

Replaced Functions:
 SmContClocking::setupFepBlock
 SmContClocking::setupProcess
 SmContClocking::terminate

Command Impact:
 This version of CC3x3 uses different grade sets than the
 previous version. This may have an impact on the grade selection
 field of CC Parameter Block command packets already built
 built for CC3x3 observations.

 This mode is invoked by using the FEP_CC_MODE_EV3x3 (2) in the
 fepMode field of the Continuous Clocking Parameter block, in
 conjunction with any of the BEP_CC event processing modes for
 the bepPackingMode field. This restricts the use of this mode
 to CC Faint and CC Graded modes. This patch does NOT support
 other Timed Exposure derived modes, such as Faint with Bias,
 5x5, nor any of the exisiting nor patched histogram modes.

 At the onset of a CC3x3 science run, the run will force two
 resets and reloads of the FEP software, the first to ensure
 that the boot-strap code is in the FEPs, and the second to
 load the patch code into the FEPs. This will always add up
 to 14 seconds per FEP to the start-up time of the run, compared
 to runs where the FEPs were already loaded and running.

 To ensure that the patch is not present at the start of the
 next run, which may or may not be a CC3x3 run, a CC3x3 science
 run will always force the FEPs into a reset state at the end
 of the run. This will add another 7 seconds per FEP to the
 start up time of the run following a CC3x3 run, relative to
 the normal start up time, where the FEPs were already loaded
 and running.

 These resets will also impact the power consumption of ACIS,
 where the system will draw up to 16 watts less than normal (with
 all 6 on and running) while the FEPs are held a reset state.

 Refer to the ACIS Software IP&CL Structure Definitions, Rev. L
 or later for details.

Telemetry Impact:
 This mode defines 4 new telemetry packet types.

 When configured for FEP_CC_MODE_EV3x3 and BEP_CC_MODE_FAINT,
 the patch produces TTAG_SCI_CC_REC_FAINT3x3 exposure records
 and TAG_SCI_CC_DAT_FAINT3x3 event data packets.
 When configured for FEP_CC_MODE_EV3x3 and BEP_CC_MODE_GRADED,
 it produces TTAG_SCI_CC_REC_GRADED3x3 exposure records and
 TTAG_SCI_CC_DAT_GRADED3x3 event data packets.

 The size of and overhead of these packets are the same as
 their Timed Exposure counterparts, TTAG_SCI_TE_REC_FAINT3x3,
 TTAG_SCI_TE_DAT_FAINT3x3, TTAG_SCI_TE_REC_GRADED3x3 and
 TTAG_SCI_TE_DAT_GRADED3x3.

01/14/10
14:32:00 11../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 When used, a CC3x3 science run will produce additional
 Software Housekeeping counts to the FEP write and execute
 statistics, reflecting the additional resets and reloads
 of the FEPs. Runs immediately following a CC3x3 run will also
 produce additional FEP related counts, as they load and run
 the reset FEPs.

 Refer to the ACIS Software IP&CL Structure Definitions, Rev. L
 or later for details

Science Impact:
 This version of CC3x3 uses different grade sets than the
 previous version. The ground data analysis software may have
 to be aware of which version of CC3x3 is installed for a given
 set of CC3x3 data. Please refer to the ACIS command generation
 system for the set of ACIS Software Version identifiers
 (telemetered in the BEP Startup Message and in each Software
 Housekeeping telemetry packet) corresponding to the different
 installed CC3x3 versions.

 This mode produces a new type of data product, consisting
 of 3x3 islands around accepted events in Continuous Clocking
 mode. This is intended to provide better spectral resolution
 and event detection performance when in Continuous Clocking
 mode.

 This mode will not report events on row 0 and row 511,
 leaving a 2-row timing gap with a period of 512 rows.

 As in other Continuous Clocking modes, no bias errors will
 be reported when in this mode, since the bias map is
 extremely redundant (there’s 512 copies of the bias value
 for any given column).

01/14/10
14:32:00 12../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: tlmio

Part Number: 36-58030.07
Version: 02
SCO: 36-1010
Environment: flight

Conflicts:
Depends On:
Size: 10312 bytes

Bcmd File: opt_tlmio.bcmd
Pkts File: opt_tlmio.pkts

Description:
 This patch provides basic standard I/O functions
 which emit TTAG_USER telemetry packets containing
 data written via calls to write().

 This patch stubs the functions open(), close() and
 read(), and implements the function write(), used
 by higher level I/O library functions, such as printf().

 The patch maintains a 1024 word telemetry buffer just
 at the end of bulk memory. write() appends data
 to this buffer until either the buffer fills, or
 until a newline is written. Once write() fills the
 buffer or a newline is encountered, the telemetry buffer
 is sent as follows:
 1. Interrupts are disabled
 2. The hardware is polled until the current packet
 is finished.
 3. The packet buffer header is filled in, and the
 first data word is set to 0 (a hook used to support
 different subtypes of TTAG_USER).
 4. Transfer the packet
 5. Wait for the transfer to complete
 6. If no transfer was in progress prior to the
 interrupt disable, clear the pending interrupt
 caused by the TTAG_USER packet transfer
 7. Reset the the buffer contents
 8. Reenable interrupts

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 If this patch is used by client code (this patch itself doesn’t

01/14/10
14:32:00 13../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 initiate any messages), it will emit telemetry packets consisting
 of the tag TTAG_USER. The format of these packets consist of the
 standard telemetry header, followed by 1 32-bit word containing a zero,
 followed by the number of data words indicated by the packet length.
 If the clients of the patch issue "printf" calls, the data will consist
 of a single null-terminated ascii string.

 Word 0: SYNC (0x736f4166)
 Word 1: [0..9] Length (3 + "n"/4)
 Word 1: [10..31] TTAG_USER
 Word 2: 0
 Word 3..Length: Data

Science Impact:
 Since this patch "plays" with the hardware and telemetry software,
 the use of this patch may interfere with the smooth operation of
 science runs.

01/14/10
14:32:00 14../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: compressall

Part Number: 36-58030.27
Version: A
SCO: 36-1027
Environment: flight

Conflicts:
Depends On:
Size: 2368 bytes

Bcmd File: opt_compressall.bcmd
Pkts File: opt_compressall.pkts

Description:
 This patch ensures that all raw mode packets are written to the
 telemetry stream without data loss. It eliminates the prior behavior
 in which, if a compressed pixel row was too long to fit into an output
 packet, the entire row was skipped and a zero-data-length was
 telemetered.

 In the new version, rows that are too long when compressed are written
 uncompressed, with the telemetry packet header fields rewritten to
 indicate that that particular packet is uncompressed.

Applicable Reports/Requests:
 SPR-134

 SER-none

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:
 PmCcRaw::digestRawRecord
 PmTeRaw::digestRawRecord

Command Impact:
 None.

Telemetry Impact:
 Ground software must examine the compressionTableSlotIndex and
 compressionTableIdentifier fields of all dataCcRaw and dataTeRaw
 packets. If their values are 255 and 0, respectively, the pixel
 array should not be decompressed.

Science Impact:
 None. Raw mode is intended for diagnostic purposes only.

01/14/10
14:32:00 15../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: ccignore

Part Number: 36-58030.10
Version: A
SCO: 36-1004
Environment: flight

Conflicts:
Depends On:
Size: 36 bytes

Bcmd File: opt_ccignore.bcmd
Pkts File: opt_ccignore.pkts

Description:
 This patch causes the FEP to ignore "ignoreInitialFrames"
 frames of data at the onset of Continuous Clocking data processing.

Applicable Reports/Requests:
 SER-PENDING

Test Results:
 smoke --> PASS

Replaced Functions:

Command Impact:
 This patch will cause the start up time of a Continuous
 Clocking run to increase by "ignoreInitialFrames" times
 the frame rate configured for the run. If "ignoreInitialFrames"
 is less than 2, the 2 frames will be skipped.

Telemetry Impact:
 When "ignoreInitialFrames" is greater than 2,
 the first telemetered Continous Clocking exposure number
 will be "ignoreInitialFrames", rather than "2".

Science Impact:
 This may reduce the amount of noise in the early
 telemetered frames of the Continuous Clocking run by
 running the CCDs longer before processing and sending the data.

01/14/10
14:32:00 16../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: eventhist

Part Number: 36-58030.05
Version: B
SCO: 36-1025
Environment: flight

Conflicts:
Depends On: smtimedlookup
Size: 5908 bytes

Bcmd File: opt_eventhist.bcmd
Pkts File: opt_eventhist.pkts

Description:
 This patch implements the Event Histogram Mode. In this mode, the
 instrument performs the standard timed exposure clocking, and event
 detection and filtering, but rather than send the events to telemetry,
 the instrument builds CCD quadrant specific histograms of the summed
 corrected pulse heights of the accepted events. These histograms
 contain bins 0 through 4095. Events with a pulse height above 4095 are
 counted in bin 4095 and events with a negative value are counted in
 bin 0. All histogram bin values consist of a 26-bit count, followed by
 5-bit of Hamming error detection/correction code, and 1 spare bit. The
 code is capable of detecting and correcting 1-bit errors in the count
 and hamming code bits.

 Important: This version of the eventhist patch will only run correctly
 if the smtimedlookup patch is also loaded.

Applicable Reports/Requests:

Test Results:
 smoke --> PASS
 smoke2 --> PASS

Replaced Functions:
 smTimedLookup3x3[3]
 smTimedLookup5x5[3]

Command Impact:
 As in normal Raw Histogram Mode, Event Histogram mode can only be used
 for Timed Exposure Science runs, and not in Continuous Clocking runs.

 This mode is invoked by using the FEP_TE_MODE_EV3x3 or
 FEP_TE_MODE_EV5x5 for the fepMode field of the Timed Exposure
 Parameter Block, in conjunction with the new BEP_TE_MODE_EVHIST (3)
 for the bepPackingMode field.

 Refer to the ACIS Software IP&CL Structure Definitions, Rev. M for
 details.

Telemetry Impact:
 This mode defines new telemetry formats, TTAG_SCI_TE_REC_EV_HIST for
 exposure records, and TTAG_SCI_TE_DAT_EV_HIST for histogram data

01/14/10
14:32:00 17../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 packets. This new mode now places the count of error corrections
 performed on the quadrant’s histogram bins within the previously
 unused "Variance Overclock High" of the exposure record,
 TTAG_SCI_TE_REC_EV_HIST. The Rev. M version of IP&CL renames this
 field accordingly.

 The size of these packets are the same as those for
 TTAG_SCI_TE_REC_HIST and TTAG_SCI_TE_DAT_HIST respectively.

 This mode always requires 10 telemetry buffers for each quadrant it
 accumulates (9 data buffers + 1 exposure record buffer per histogram).
 When accumulating histograms from all 4 quadrants on all 6 CCDs, the
 system requires 216 data buffers, and once the histograms are
 complete, it requires an additional 24 exposure record buffers. ACIS
 is configured for 400 science telemetry buffers, and as such, has
 enough buffering to accumulate only 1 complete set of histograms at a
 time. This will cause time gaps between sets of histograms when no
 events are accumulated. These gaps will consist of complete exposures,
 so partial exposures will not be accumulated in the histograms. As the
 previous buffers are telemetered and released back to the telemetry
 pool, eventually enough buffers (to be exact, 56) will be available to
 hold the 2nd set of histograms. At 24Kbps (format 2), this results in
 a time gap on the order of half a minute to a minute, and, at 500bps
 (format 1), a gap on the order of a half an hour to 45 minutes.

 The total transmission time for a set of histograms at 24Kbps is about
 3 minutes, whereas at 500bps, it starts approaching 2 hours.

 If only 5 CCDs are used, ACIS can double-buffer the histograms,
 eliminating this gap, assuming that the histogram count times the
 frame time (exposure time + overhead) is large enough to accommodate
 the transmission time of the histograms. The total transmission time
 for 5 CCDs at 24Kbps is about 2 minutes, and at 500bps, the
 transmission time approaches 1.5 hours.

 Details of these formats are described in the ACIS Software IP&CL
 Structure Definitions, Rev. M.

Science Impact:
 This mode produces a new type of data product, histograms of the
 corrected and summed pulse heights from filtered events.

01/14/10
14:32:00 18../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: printswhouse

Part Number: 36-58030.08
Version: 01
SCO: 36-986
Environment: flight

Conflicts:
Depends On: tlmio
Size: 7224 bytes

Bcmd File: opt_printswhouse.bcmd
Pkts File: opt_printswhouse.pkts

Description:
 This patch provides a diagnotic which prints software
 housekeeping reports to telemetry in real-time,
 using the tlmio package.

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:
 SwHousekeeper::report

Command Impact:
 None

Telemetry Impact:
 This patch will cause the system to emit TTAG_USER
 packets containing a null terminated string, which describes
 the software housekeeping element currently being reported.
 See a description of the tlmio patch, MIT 36-58030.07.

Science Impact:
 See the tlmio patch, 36-58030.07

01/14/10
14:32:00 19../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: dearepl

Part Number: 36-58030.12
Version: 02
SCO: 36-1010
Environment: engineering

Conflicts: deaeng
Depends On:
Size: 556 bytes

Bcmd File: opt_dearepl.bcmd
Pkts File: opt_dearepl.pkts

Description:
 This patch provides the basic capability to fake
 the existence of a DEA. This patch is used when
 no DEA box is available, or one wants to test
 without actually talking to the DEA.

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:
 DeaDevice::sendCmd
 DeaManager::writeData
 DeaManager::checkLoads
 DeaDevice::isReplyReady
 DeaCcdController::updateRegister
 DeaDevice::readReply
 DeaDevice::isCmdPortReady

Command Impact:
 This "fakes" the existence of the DEAs. Commands
 which read and write PRAM, SRAM or DEA hardware
 will not crash, but won’t work either.

Telemetry Impact:
 This will produce true fiction from the DEAs.

Science Impact:
 Can’t do any, since the patch replaces the
 interface to the real DEAs.

01/14/10
14:32:00 20../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: teignore

Part Number: 36-58030.09
Version: A
SCO: 36-1003
Environment: flight

Conflicts:
Depends On:
Size: 36 bytes

Bcmd File: opt_teignore.bcmd
Pkts File: opt_teignore.pkts

Description:
 This patch causes the FEP to ignore "ignoreInitialFrames"
 frames of data at the onset of Timed Exposure data processing.

Applicable Reports/Requests:
 SER-PENDING

Test Results:
 smoke --> PASS

Replaced Functions:

Command Impact:
 This patch will cause the start up time of a Timed Exposure
 run to increase by "ignoreInitialFrames" times the frame
 rate configured for the run. If "ignoreInitialFrames"
 is less than 2, the 2 frames will be skipped.

Telemetry Impact:
 When "ignoreInitialFrames" is greater than 2,
 the first telemetered exposure number will be
 "ignoreInitialFrames", rather than "2".

Science Impact:
 This may reduce the amount of noise in the early
 telemetered frames of the Timed Exposure run by running
 the CCDs longer before processing and sending the data.

01/14/10
14:32:00 21../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: smtimedlookup

Part Number: 36-58030.24
Version: A
SCO: 36-1025
Environment: flight

Conflicts:
Depends On:
Size: 3712 bytes

Bcmd File: opt_smtimedlookup.bcmd
Pkts File: opt_smtimedlookup.pkts

Description:
 This patch replaces several "switch" statements in SmTimedExposure
 class methods with a set of lookup tables indexed by the value of
 the BepMode and FepMode fields from the current TE parameter block.
 If a table slot is empty, the corresponding mode will be treated as
 unimplemented. With this patch, it is therefore possible to add more
 than one new TE mode via optional patches without the need to deliver
 a version of each patch for every possible combination of the other
 patches. The following methods, tables, and indices are used:

 +--------------------------------+-------------------+----------------+
 | Method | lookup table | index |
 +--------------------------------+-------------------+----------------+
 | SmTimedExposure::setupProcess | smTimedLookupMode | FepMode |
 | | smTimedLookup3x3 | BepPackingMode |
 | | smTimedLookup5x5 | BepPackingMode |
 +--------------------------------+-------------------+----------------+
 | SmTimedExposure::setupFepBlock | smTimedSetupFep | FepMode |
 +--------------------------------+-------------------+----------------+
 | SmTimedExposure::terminate | smTimedTerminate | FepMode |
 +--------------------------------+-------------------+----------------+

 These tables may be patched by an extension of the "func" directive
 in the *.pkg file used to describe an ACIS patch. Hence, the line

 func smTimedLookupMode[4] Test2_SmTimedExposure::setupCti1

 instructs the linker to insert the address of the setupCti1() method of
 the Test2_SmTimedExposure class into slot 4 of the smTimedLookupMode
 table, so that setupCti1() will be called when FepMode == 4.

Applicable Reports/Requests:

Test Results:
 smoke --> PASS

Replaced Functions:
 SmTimedExposure::terminate
 SmTimedExposure::setupProcess
 SmTimedExposure::setupFepBlock

Command Impact:

01/14/10
14:32:00 22../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 None.

Telemetry Impact:
 None.

Science Impact:
 None.

01/14/10
14:32:00 23../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: ctireport1

Part Number: 36-58030.25
Version: A
SCO: 36-1026
Environment: flight

Conflicts:
Depends On: smtimedlookup
Size: 5452 bytes

Bcmd File: opt_ctireport1.bcmd
Pkts File: opt_ctireport1.pkts

Description:
 This patch implements a variant of timed-exposure 3x3 faint event mode
 in which the presence of precursor charge in each of the three columns
 that can contribute to each event is encoded in the 16 "outlying" pixels
 of Te5x5 mode.

 FEP patches are loaded after the default code by two additional calls
 to fepManager.loadRunProgram from Test2_SmTimedExposure::setupCti1Fep.
 Once loaded, the FEPs are marked as having been reset, thereby causing
 the following run to reload their default code.

 Within the FEP, additional stack space is reserved for the cti1stk
 structure that holds the row indices and bias-subtracted pixel values
 of the most recently located precursor charge in each CCD column.

 The new FEPtestCti1 routine is called from an inline patch within
 FEPsciTimedEvent in advance of the FEPtestOddPixel or FEPtestEvenPixel
 routines. When a threshold crossing is detected, FEPtestCti1 clears
 the cti1stk array (if this is a new frame), calls FEPtestOddPixel or
 FEPtestEvenPixel, and then pushes the pixel value and row index onto
 cti1stk. If cti1stk is full, the most distant (by row) value is
 dropped.

 FEPappendCti1 is called by the patched FEP code in place of the
 original FEPappend5x5 routine. It determines the maximum bias-
 subtracted pixel value in each column, then inspects the cti1stk
 stacks for those columns, and packs up to 15 precursor charge values
 (adu and row) into elements 1 through 15 of the pe[] array:

 pe[i] = STORE_PIX(pixel - bias - delta_overclock, row_index)

 pe[0] contains three 4-bit fields, the number of successive pe[]
 precursor values corresponding to col-1, col, and col+1 of the event.

Applicable Reports/Requests:

Test Results:
 smoke --> PASS

Replaced Functions:
 smTimedLookupMode[4]

01/14/10
14:32:00 24../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 smTimedTerminate[4]
 smTimedSetupFep[4]

Command Impact:
 This patch requires that the smtimedlookup patch must also be loaded.
 Once loaded, it is invoked by setting fepMode = FEP_TE_MODE_CTI1 in a
 loadTeBlock packet, writing that packet to a parameter block slot, and
 then starting a timed-exposure science run from that slot. The uplink
 format is defined in the ACIS IP&CL document 36-53204.0204 Rev. N.

Telemetry Impact:
 The downlinked exposure and event data packets are identical in format
 to exposureTeFaint and dataTeVeryFaint except that their formatTag
 fields contain TTAG_SCI_TE_REC_CTI1 and TTAG_SCI_TE_DAT_CTI1,
 respectively. When a TTAG_SCI_TE_DAT_CTI1 is received, precursor
 charge data will be located in the dataTeVeryFaint.pulseHeights array,
 as follows:

 pulseHeights[0] - three 4-bit counters
 pulseHeights[1..5,9,10,14,15,19..24] - precursor ADU and row

 The sub-fields of pulseHeights[0] determine the contents of the
 other 15 fields:

 ncol[0] = (pulseHeights[0] >> 8) & 15 -
 ncol[1] = (pulseHeights[0] >> 4) & 15 -
 ncol[2] = pulseHeights & 15 -

 The fields from icol-1, if any, are written starting at pulseHeights[1],
 followed by those from icol, and finally those from icol+1. The ADU
 values are stored in the 7 most significant bits of pulseHeights[] and
 the row indices in the least significant 5 bits, and should be extracted
 as follows:

 adu = pulseHeights[i] & 0xfe0;
 row = (pulseheights[i] & 0x01f) << 5;

 Unused pulseHeights[] will be filled with zeroes.

Science Impact:
 This patch is intended for on-orbit diagnostic use only.

01/14/10
14:32:00 25../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

==

Patch Name: ctireport2

Part Number: 36-58030.26
Version: A
SCO: 36-1026
Environment: flight

Conflicts:
Depends On: smtimedlookup
Size: 2784 bytes

Bcmd File: opt_ctireport2.bcmd
Pkts File: opt_ctireport2.pkts

Description:
 This patch implements a variant of timed-exposure 3x3 faint event mode
 in which the presence of precursor charge in each of the three columns
 that can contribute to each event is encoded in the low-order bits of
 three of the corner pixels.

 FEP patches are loaded after the default code by two additional calls
 to fepManager.loadRunProgram from Test3_SmTimedExposure::setupCti1Fep.
 Once loaded, the FEPs are marked as having been reset, thereby causing
 the following run to reload their default code.

 Within the FEP, additional stack space is reserved for the cti2stk
 structure that holds the row indices of the most recently located
 precursor charge in each CCD column.

 The new FEPtestCti2 routine is called from an inline patch within
 FEPsciTimedEvent in advance of the FEPtestOddPixel or FEPtestEvenPixel
 routines. When a threshold crossing is detected, FEPtestCti2 clears
 the cti2stk array (if this is a new frame), calls FEPtestOddPixel or
 FEPtestEvenPixel, and then updates cti2stk to indicate that this
 column contains charge.

 FEPappendCti2 is called by the patched FEP code instead of the
 original FEPappend5x5. It finds the maximum of the 4 corner pixels
 of the event that is being reported. Then it determines whether
 any of the three contributing columns contained precursor charge.
 Finally, it encodes this information in the low order bytes of
 the three smallest corner pixels. (Since the low-order bit of
 each corner pixel may be replaced, only the 11 high-order bits
 are compared when determining the maximum value).

Applicable Reports/Requests:

Test Results:
 smoke --> PASS

Replaced Functions:
 smTimedLookupMode[5]
 smTimedTerminate[5]
 smTimedSetupFep[5]

Command Impact:

01/14/10
14:32:00 26../dist/options-release-E-opt-E.notes

Flight S/W Patches, Revision E-E-F

 The uplink format is defined in the ACIS IP&CL document 36-53204.0204
 Rev. N. The fepMode field in the loadTeBlock command packet must be
 set equal to FEP_TE_MODE_CTI2. Unless the smtimedlookup patch has
 also be loaded, this value will cause a subsequent startScience
 command that references this parameter block to fail.

Telemetry Impact:
 The downlinked exposure and event data packets are identical in format
 to exposureTeFaint and dataTeFaint. To process the precursor charge
 information, ground software must first inspect the loadTeBlock
 reported in the dumpedTeBlock packet that started the run. If the
 fepMode field is equal to FEP_TE_MODE_CTI2, subsequent dataTeFaint
 packets should be inspected. The following code fills ee[i] with
 one (zero) according to whether column (ccdColumn+i-1) did (did not)
 contain precursor charge:

 unsigned nn, mm, ii, ee[3];

 for (mm = 0, nn = 2; nn < 9; nn++) {
 if ((nn & 1) == 0 && nn != 4) {
 if ((pulseHeights[nn] & 0xffe) > (pulseHeights[mm] & 0xffe))
 mm = nn;
 }
 }
 for (nn = ii = 0; nn < 9; nn++) {
 if ((nn & 1) == 0 && nn != 4 && nn != mm) {
 ee[ii++] = pulseHeights[nn] & 1;
 }
 }

Science Impact:
 This patch is intended for on-orbit diagnostic use only.

08/27/08
14:48:53 1../../buscrash2/buscrash2.C

Flight S/W Patches, Revision E-E-F

/* ==
 *
 * $$Source: /acis/h3/acisfs/configcntl/patches/buscrash2/buscrash2.C,v $$
 *
 * Patch Name: Bus Crash Prevention, Part II
 *
 * Description:
 * This defines C++ replacement functions for
 * BiasThief::checkMonitor() and BiasThief::getBuffer()
 *
 * References:
 *
 * $$Log: buscrash2.C,v $
 * $Revision 1.2 2008/08/27 18:48:53 pgf
 * $Rename Test_BiasThief class to Test2_BiasThief.
 * $
 * $Revision 1.1 2008/08/27 17:25:39 pgf
 * $Initial release.
 * $$
 * === */

#include "filesscience/biasthief.H"
#define private public
#include "filesprotocols/fepmanager.H"
#undef private
#include "filesswhouse/swhousekeeper.H"

class Test2_BiasThief : public BiasThief
{
public:
 Boolean checkMonitor(FepId fepid);
};

Boolean Test2_BiasThief::checkMonitor(FepId fepid)
{
 DebugProbe probe;
 Boolean retval = BoolTrue; // Assume no abort

 if (fepid >= FEP_COUNT || fepManager.isEnabled (fepid) == BoolFalse) {
 swHousekeeper.report(SWSTAT_FEPREC_POWEROFF, fepid);
 retval = BoolFalse; // FEP not available or powered
 } else {
 unsigned caught = requestEvent (EV_TASKQUERY | EV_ABORT);
 if (caught & EV_TASKQUERY) {
 taskMonitor.respond ();
 }
 if (caught & EV_ABORT) {
 retval = BoolFalse;
 }
 }
 // ---- Return BoolTrue if no abort, BoolFalse if aborted ----
 return retval;
}

11/03/09
09:32:42 1../../buscrash2/buscrash2inline.S

Flight S/W Patches, Revision E-E-F

/*===
//
// $Source: /acis/h3/acisfs/configcntl/patches/buscrash2/buscrash2inline.S,v $
//
// MODULE NAME: Patch to filesscience/biasthief.C
//
// PURPOSE: Prevent bus crash on FEP powerdown
//
// REFERENCES:
//
// $Log: buscrash2inline.S,v $
// Revision 1.3 2009/11/03 14:32:42 pgf
// Preserve R6 (fepId) through call to TlmForm::waitForBuffer()
//
// Revision 1.2 2009/10/01 15:21:24 pgf
// Update for Standard-D Release
//
// Revision 1.1 2008/08/27 17:25:40 pgf
// Initial release.
//
// COPYRIGHT: Massachusetts Institute of Technology 2008
//
===*/

 .set noreorder
 .set nomacro
 .set noat
 .text

#####################
#
save fepid in stack on entry to getBuffer()
#
#####################

 .globl biasthief_lst_0340_0340
 .ent biasthief_lst_0340_0340
biasthief_lst_0340_0340:
 sw $6,36($sp) # 36($sp) = fepid
 .end biasthief_lst_0340_0340

#####################
#
pass fepid for call to checkMonitor() from getBuffer()
#
#####################

 .globl biasthief_lst_0360_0360
 .ent biasthief_lst_0360_0360
biasthief_lst_0360_0360:
 lw $5,36($sp) # $5 = fepid
 .end biasthief_lst_0360_0360

#####################
#
load fepid for call to checkMonitor() from trickleTeBias()
#
#####################

 .globl biasthief_lst_04d4_04d4
 .ent biasthief_lst_04d4_04d4
biasthief_lst_04d4_04d4:
 lw $5,104($sp) # $5 = fepid
 .end biasthief_lst_04d4_04d4

11/03/09
09:32:42 2../../buscrash2/buscrash2inline.S

Flight S/W Patches, Revision E-E-F

#####################
#
load fepid for call to getBuffer() from trickleTeBias()
#
#####################

 .globl biasthief_lst_050c_050c
 .ent biasthief_lst_050c_050c
biasthief_lst_050c_050c:
 lw $6,104($sp) # $6 = fepid
 .end biasthief_lst_050c_050c

#####################
#
load fepid for call to checkMonitor() from trickleCcBias()
#
#####################

 .globl biasthief_lst_07b0_07b0
 .ent biasthief_lst_07b0_07b0
biasthief_lst_07b0_07b0:
 move $5,$18 # $5 = fepid
 .end biasthief_lst_07b0_07b0

#####################
#
load fepid for call to getBuffer() from trickleCcBias()
#
#####################

 .globl biasthief_lst_07f4_07f4
 .ent biasthief_lst_07f4_07f4
biasthief_lst_07f4_07f4:
 move $6,$18 # $6 = fepid
 .end biasthief_lst_07f4_07f4

08/27/08
01:02:05 1../../buscrash2/testsuite/bug-hw/runtest.tcl

Flight S/W Patches, Revision E-E-F

#! /bin/env expect

puts "Welcome to buscrash2/testsuite/bug-hw/runtest.tcl"

---- Split off the command arguments ----
set basedir [lindex $argv 0]
set tools [lindex $argv 1]
set patchdir [lindex $argv 2]

---- Launch the command and telemetry server processes ----
set first_fep 0 ; # first FEP under test
set last_fep 5 ; # last FEP under test
set quad_mode "0 \# QUAD_ABCD" ; # desired outputRegisterMode
set ccd_list "4 5 6 7 8 9" ; # desired fepCcdSelect

---- Embed procedure library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Sleep while reporting packets ----
proc gotosleep { secs } {
 set timeout $secs
 expect { timeout { } }
}

---- Start command pipe ----
spawn $basedir/$tools/bin/cmdclient $env(ACISSERVER)
set cmd_id $spawn_id

---- Start telemetry pipe ----
spawn $basedir/$tools/bin/tlmclient $env(ACISSERVER)
gotosleep 1

---- Select Input from Image Loader ----
system make loaderselect

---- Apply patches ----
cold_boot
load_patch_list "$basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_dearepl.bcmd"
warm_boot

---- Power on FEPs and CCDs ----
power_on_boards "$ccd_list"

---- Wait for FEPs to finish powering ----
expect {
 -re ".*SWSTAT_FEPMAN_ENDLOAD: $last_fep\[\r\n]" { }
 timeout { fail "Power-up Failure" }
}

---- Load Pblock for Faint Timed-Exposure Mode ----
send -i $cmd_id "load 0 te 4 {
 parameterBlockId = 0x00000014
 fepCcdSelect = $ccd_list
 fepMode = 2 # FEP_TE_MODE_EV3x3
 bepPackingMode = 2 # BEP_TE_MODE_GRADED
 onChip2x2Summing = 0
 ignoreBadPixelMap = 0
 ignoreBadColumnMap = 0
 recomputeBias = 1
 trickleBias = 1
 subarrayStartRow = 0
 subarrayRowCount = 1023

08/27/08
01:02:05 2../../buscrash2/testsuite/bug-hw/runtest.tcl

Flight S/W Patches, Revision E-E-F

 overclockPairsPerNode = 8
 outputRegisterMode = $quad_mode
 ccdVideoResponse = 0 0 0 0 0 0
 primaryExposure = 33
 secondaryExposure = 0
 dutyCycle = 0
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 50 50 50 50
 fep1SplitThreshold = 50 50 50 50
 fep2SplitThreshold = 50 50 50 50
 fep3SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 fep4SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 lowerEventAmplitude = 0
 eventAmplitudeRange = 65535
 gradeSelections = 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 windowSlotIndex = 65535
 histogramCount = 0
 biasCompressionSlotIndex = 3 3 1 1 1 1
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasArg0 = 2 2 2 2 2 2
 biasArg1 = 5 5 5 5 5 5
 biasArg2 = 20 20 20 20 20 20
 biasArg3 = 26 26 50 50 50 50
 biasArg4 = 20 20 20 20 20 20
 fep0VideoOffset = 65 65 65 65
 fep1VideoOffset = 65 65 65 65
 fep2VideoOffset = 65 65 65 65
 fep3VideoOffset = 65 65 65 65
 fep4VideoOffset = 65 65 65 65
 fep5VideoOffset = 65 65 65 65
 deaLoadOverride = 0
 fepLoadOverride = 0
}
"
command_echo 1 9 "load te"
system make bias

puts ""
puts "# Starting test 1"
puts ""
send -i $cmd_id "start 0 te 4\n"
command_echo 1 14 "start science run"
set timeout 3600
expect {
 -re "dataTeBiasMap.*\[\r\n]" { }
 timeout { fail "Bias Failure" }
}
gotosleep 2

puts "# stopScience"
send -i $cmd_id "stop 0 science\n"
command_echo 1 19 "stop science run"
gotosleep 2

08/27/08
01:02:05 3../../buscrash2/testsuite/bug-hw/runtest.tcl

Flight S/W Patches, Revision E-E-F

puts "# stopScience"
send -i $cmd_id "stop 0 science\n"
command_echo 1 19 "stop science run"
gotosleep 10

puts "# powering boards off"
send -i $cmd_id "change 0 systemConfig {
 entries = {
 itemId = 0
 itemValue = 0x0
 }
 entries = {
 itemId = 1
 itemValue = 0x0
 }
}
"
set timeout 60
expect {
 -re "SWSTAT_FEPMAN_POWEROFF.*\[\r\n]" { }
 timeout { fail "Power-down Failure" }
}
puts "# Powered off"

set timeout 60
expect {
 -re "bepStartupMessage.*\[\r\n]" {
 pass "Bus crash reproduced"
 }
 -re "scienceReport.*\[\r\n]" {
 fail "Science run ends without bus crash"
 }
 timeout {
 fail "No crash or scienceReport"
 }
}

puts "Done"

08/27/08
01:22:33 1../../buscrash2/testsuite/fix-hw/runtest.tcl

Flight S/W Patches, Revision E-E-F

#! /bin/env expect

puts "Welcome to buscrash2/testsuite/fix-hw/runtest.tcl"

---- Split off the command arguments ----
set basedir [lindex $argv 0]
set tools [lindex $argv 1]
set patchdir [lindex $argv 2]

---- Launch the command and telemetry server processes ----
set first_fep 0 ; # first FEP under test
set last_fep 5 ; # last FEP under test
set quad_mode "0 \# QUAD_ABCD" ; # desired outputRegisterMode
set ccd_list "4 5 6 7 8 9" ; # desired fepCcdSelect

---- Embed procedure library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Sleep while reporting packets ----
proc gotosleep { secs } {
 set timeout $secs
 expect { timeout { } }
}

---- Start command pipe ----
spawn $basedir/$tools/bin/cmdclient $env(ACISSERVER)
set cmd_id $spawn_id

---- Start telemetry pipe ----
spawn $basedir/$tools/bin/tlmclient $env(ACISSERVER)
gotosleep 1

---- Select Input from Image Loader ----
system make loaderselect

---- Apply patches ----
cold_boot
load_patch_list "$basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_dearepl.bcmd\
 buscrash2.bcmd"
warm_boot

---- Power on FEPs and CCDs ----
power_on_boards "$ccd_list"

---- Wait for FEPs to finish powering ----
expect {
 -re ".*SWSTAT_FEPMAN_ENDLOAD: $last_fep\[\r\n]" { }
 timeout { fail "Power-up Failure" }
}

---- Load Pblock for Faint Timed-Exposure Mode ----
send -i $cmd_id "load 0 te 4 {
 parameterBlockId = 0x00000014
 fepCcdSelect = $ccd_list
 fepMode = 2 # FEP_TE_MODE_EV3x3
 bepPackingMode = 2 # BEP_TE_MODE_GRADED
 onChip2x2Summing = 0
 ignoreBadPixelMap = 0
 ignoreBadColumnMap = 0
 recomputeBias = 1
 trickleBias = 1
 subarrayStartRow = 0

08/27/08
01:22:33 2../../buscrash2/testsuite/fix-hw/runtest.tcl

Flight S/W Patches, Revision E-E-F

 subarrayRowCount = 1023
 overclockPairsPerNode = 8
 outputRegisterMode = $quad_mode
 ccdVideoResponse = 0 0 0 0 0 0
 primaryExposure = 33
 secondaryExposure = 0
 dutyCycle = 0
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 50 50 50 50
 fep1SplitThreshold = 50 50 50 50
 fep2SplitThreshold = 50 50 50 50
 fep3SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 fep4SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 lowerEventAmplitude = 0
 eventAmplitudeRange = 65535
 gradeSelections = 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 windowSlotIndex = 65535
 histogramCount = 0
 biasCompressionSlotIndex = 3 3 1 1 1 1
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasArg0 = 2 2 2 2 2 2
 biasArg1 = 5 5 5 5 5 5
 biasArg2 = 20 20 20 20 20 20
 biasArg3 = 26 26 50 50 50 50
 biasArg4 = 20 20 20 20 20 20
 fep0VideoOffset = 65 65 65 65
 fep1VideoOffset = 65 65 65 65
 fep2VideoOffset = 65 65 65 65
 fep3VideoOffset = 65 65 65 65
 fep4VideoOffset = 65 65 65 65
 fep5VideoOffset = 65 65 65 65
 deaLoadOverride = 0
 fepLoadOverride = 0
}
"
command_echo 1 9 "load te"
system make bias

puts ""
puts "# Starting test 1"
puts ""
send -i $cmd_id "start 0 te 4\n"
command_echo 1 14 "start science run"
set timeout 3600
expect {
 -re "dataTeBiasMap.*\[\r\n]" { }
 timeout { fail "Bias Failure" }
}
gotosleep 2

puts "# stopScience"
send -i $cmd_id "stop 0 science\n"
command_echo 1 19 "stop science run"
gotosleep 2

08/27/08
01:22:33 3../../buscrash2/testsuite/fix-hw/runtest.tcl

Flight S/W Patches, Revision E-E-F

puts "# stopScience"
send -i $cmd_id "stop 0 science\n"
command_echo 1 19 "stop science run"
gotosleep 10

puts "# powering boards off"
send -i $cmd_id "change 0 systemConfig {
 entries = {
 itemId = 0
 itemValue = 0x0
 }
 entries = {
 itemId = 1
 itemValue = 0x0
 }
}
"
set timeout 60
expect {
 -re "SWSTAT_FEPMAN_POWEROFF.*\[\r\n]" { }
 timeout { fail "Power-down Failure" }
}
puts "# Powered off"

set timeout 60
expect {
 -re "bepStartupMessage.*\[\r\n]" {
 fail "Bus crash"
 }
 -re "scienceReport.*\[\r\n]" {
 pass "Science run ends without bus crash"
 }
 timeout {
 fail "No crash or scienceReport"
 }
}

puts "Done"

08/27/08
11:36:39 1../../buscrash2/testsuite/fix-hw/runtest2.tcl

Flight S/W Patches, Revision E-E-F

#! /bin/env expect

puts "Welcome to buscrash2/testsuite/fix-hw/runtest2.tcl"

---- Split off the command arguments ----
set basedir [lindex $argv 0]
set tools [lindex $argv 1]
set patchdir [lindex $argv 2]

---- Launch the command and telemetry server processes ----
set first_fep 0 ; # first FEP under test
set last_fep 5 ; # last FEP under test
set quad_mode "0 \# QUAD_ABCD" ; # desired outputRegisterMode
set ccd_list "4 5 6 7 8 9" ; # desired fepCcdSelect

---- Embed procedure library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Sleep while reporting packets ----
proc gotosleep { secs } {
 set timeout $secs
 expect { timeout { } }
}

---- Start command pipe ----
spawn $basedir/$tools/bin/cmdclient $env(ACISSERVER)
set cmd_id $spawn_id

---- Start telemetry pipe ----
spawn $basedir/$tools/bin/tlmclient $env(ACISSERVER)
gotosleep 1

---- Select Input from Image Loader ----
system make loaderselect

---- Apply patches ----
cold_boot
load_patch_list "$basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_dearepl.bcmd\
 buscrash2.bcmd"
warm_boot

---- Power on FEPs and CCDs ----
power_on_boards "$ccd_list"

---- Wait for FEPs to finish powering ----
expect {
 -re ".*SWSTAT_FEPMAN_ENDLOAD: $last_fep\[\r\n]" { }
 timeout { fail "Power-up Failure" }
}

---- Load Pblock for Faint Timed-Exposure Mode ----
send -i $cmd_id "load 0 cc 4 {
 parameterBlockId = 0x00000014
 fepCcdSelect = $ccd_list
 fepMode = 1 # FEP_CC_MODE_EV1x3
 bepPackingMode = 0 # BEP_CC_MODE_FAINT
 ignoreBadColumnMap = 0
 recomputeBias = 1
 trickleBias = 1
 rowSum = 0
 columnSum = 0
 overclockPairsPerNode = 8

08/27/08
11:36:39 2../../buscrash2/testsuite/fix-hw/runtest2.tcl

Flight S/W Patches, Revision E-E-F

 outputRegisterMode = $quad_mode
 ccdVideoResponse = 0 0 0 0 0 0
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 50 50 50 50
 fep1SplitThreshold = 50 50 50 50
 fep2SplitThreshold = 50 50 50 50
 fep3SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 fep4SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 lowerEventAmplitude = 0
 eventAmplitudeRange = 24000
 gradeSelections = 0x000f
 windowSlotIndex = 65535
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 0 0 0 0 0 0
 biasRejection = 5 5 5 5 5 5
 fep0VideoOffset = 65 65 65 65
 fep1VideoOffset = 65 65 65 65
 fep2VideoOffset = 65 65 65 65
 fep3VideoOffset = 65 65 65 65
 fep4VideoOffset = 65 65 65 65
 fep5VideoOffset = 65 65 65 65
 deaLoadOverride = 0
 fepLoadOverride = 0
}
"
command_echo 1 10 "load cc"
system make bias

puts ""
puts "# Starting test 1"
puts ""
send -i $cmd_id "start 0 cc 4\n"
command_echo 1 16 "start science run"
set timeout 3600
expect {
 -re "dataCcBiasMap.*\[\r\n]" { }
 timeout { fail "Bias Failure" }
}

puts "# powering boards off"
send -i $cmd_id "change 0 systemConfig {
 entries = {
 itemId = 0
 itemValue = 0x0
 }
 entries = {
 itemId = 1
 itemValue = 0x0
 }
}
"
set timeout 60
expect {
 -re "bepStartupMessage.*\[\r\n]" {
 fail "Unexpected bus crash"
 }

08/27/08
11:36:39 3../../buscrash2/testsuite/fix-hw/runtest2.tcl

Flight S/W Patches, Revision E-E-F

 -re "SWSTAT_FEPMAN_POWEROFF.*\[\r\n]" {
 }
 timeout {
 fail "Power-down Failure"
 }
}
puts "# Powered off"

puts "# stopScience"
set timeout 60
send -i $cmd_id "stop 0 science\n"
command_echo 1 19 "stop science run"

set timeout 60
expect {
 -re "bepStartupMessage.*\[\r\n]" {
 fail "Unexpected bus crash"
 }
 -re "scienceReport .*\[\r\n]" {
 pass "Science run ends without bus crash"
 }
 timeout {
 fail "No crash or scienceReport"
 }
}

puts "Done"

ENGINEERING CHANGE ORDER
ECO No.

36–1043

CENTER FORSPACERESEARCH
MASSACHUSETTSINSTITUTE OFTECHNOLOGY

DWG. NO. NEW
REV. DRAWING TITLE

36-58021.04 F Flight Software Patch Release E-E-F Certification

REASON FORCHANGE:
Certification of standard patch release E, which includes the updatedbuscrash2 patche, along
with the same optional patches that were certified in release D-D-E,i.e., smtimedlookup, com-
pressall, eventhist, cc3x3, anduntricklebias.

DESCRIPTION OFCHANGE:
Three optional patch combinations are certified as release E-E-F:
(a)cc3x3, eventhist, and smtimedlookup.
(b) cc3x3, eventhist, compressall, andsmtimedlookup.
(c) cc3x3, eventhist, compressall, untricklebias, andsmtimedlookup.
The certification tests are taken from these specific combinations of the optional release E
patches, with the full set of standard patches, release E.

SIGNATURE DATE REMARKS:

ORIGINATOR RFG 01/06/10 Released

MECHANICAL

ELECTRICAL

SOFTWARE

STRUCTURE

FABRICATION

SCIENCE

SYSTEMSENG.

QUALITY

PROJ. ENGINEER

DEPUTY PM

PROJ. MANAGER

MIT CSR

ACIS

01/14/10
14:37:02 1../../certsrc/cc3x3+eventhist.notes

Flight S/W Patches, Revision E-E-F

TITLE: ACIS eventhist, cc3x3, smtimedlookup Patch Certification Release Notes

DOCUMENT NUMBER: 36-58021.03 REVISION: F

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

D 36-1036 Certify CC3x3/EventHist/smTimedL RFG 08/09/2007
E 36-1039 Certify Rev. D Standard and Rev. RFG 09/29/2009
F 36-1043 Certify Rev-E-Opt-E patches RFG 01/06/2010

01/14/10
14:37:02 2../../certsrc/cc3x3+eventhist.notes

Flight S/W Patches, Revision E-E-F

==

Title: ACIS eventhist, cc3x3, smtimedlookup Patch Certification Release Notes for Version F

Software Change Order: 36-1043

Build Date: Fri Nov 6 14:53:35 EST 2009
Part Number: 36-58021.03
Version: F
CVS Tag: cc3x3+eventhist-E-E-F

Std Number: 36-58010
Std Version: E
Std Tag: release-E
Std SCO: 36-1042

Opt Number: 36-58020
Opt Version: E
Opt Tag: release-E-opt-E
Opt SCO: 36-1042

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This certification verifies the operation of
 Continuous Clocking 3x3 Patch in conjunction with
 the Event Histogram and smTimedLookup Patches.

 The certification consists of three tests, copied
 from the original test runs during the Options
 Release. The tests have been modified to load all
 three optional patches, rather than just one of
 them, and to clean up some false failures due
 to timing/pattern matching issues in the tests.

 The tests verify that the patch modes run as they
 did during the original test when they are
 both installed into the system.

 The Continuous Clocking 3x3 (cc3x3) test consists of two
 parts. The first launches a CC3x3 run, whereas the second
 runs CC1x3. This suite performs CC1x3 tests to verify that
 the modifications to the existing BEP Continuous Clocking
 functions do not break the existing CC1x3 functionality. Since
 the FEP software only contains CC3x3 code during CC3x3 runs (this
 is verified by the CC1x3 run), and no BEP functions used by Timed Exposure
 are modified by the patch, the Timed Exposure modes do not need to
 be re-tested as part of this certification.

 Each test sends a series of events on the right side of each quadrant
 (the original test was derived from the test for the rquad
 bug fix), and verifies that the mode runs nominally, and
 produces the expected event list. Since the "stop" critereon
 for the test is a little fuzzy, the runs tend to produce
 additional exposures that aren’t in the file used to check
 the run’s event output. "diff" used in the test produces
 mismatches on the additional exposures produced by the test
 run. Manual check of the run data shows that the event lists
 are replicated correctly by the run. Later, a "wrapping"

01/14/10
14:37:02 3../../certsrc/cc3x3+eventhist.notes

Flight S/W Patches, Revision E-E-F

 comparison may be developed to eliminate this manual step.

 The Event Histogram test uses a similar strategy to
 the CC3x3 test. It starts an Event Histogram run, and
 sends in a series of standard events. It then compares
 the resulting quadrant histograms with an example file
 to verify the results.

 One caveat that arose during the review of the Optional
 patches is that, when the standard patch "zap1expo" is
 present, which it should always be, the first exposure
 of event histogram mode will not contain any events.
 This will cause the first histogram from each FEP quadrant
 to appear to have been integrated for 1 less frame time than
 subsequent quadrant histograms. This is different than Raw
 Histogram mode, which is not affected by the "zap1expo"
 patch. The histogram example file used for this certification
 assumes that no events are sent during exposure 2 (the
 first "real" exposure of the run).

 The smTimedExposure patch is tested by merely running a
 timed-exposure faint run, verifying that the bias and event
 detection phases have been invoked, and then stopping the run.

--
Included Patches:
 eventhist
 cc3x3
 smtimedlookup

--
Test Support Patches:
 printswhouse
 dearepl
 tlmio

--
Test Results:
 smtimedlookup --> PASS
 cc3x3 --> PASS
 eventhist --> PASS
 eventhist --> PASS

01/14/10
14:37:15 1../../certsrc/cc3x3+eventhist+compressall.notes

Flight S/W Patches, Revision E-E-F

TITLE: ACIS eventhist, cc3x3, compressall, smtimedlookup Patch Certification Release Notes

DOCUMENT NUMBER: 36-58021.03 REVISION: F

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

D 36-1036 Certify CC3x3/EventHist/smTimedL RFG 08/09/2007
E 36-1039 Certify Rev. D Standard and Rev. RFG 09/29/2009
F 36-1043 Certify Rev-E-Opt-E patches RFG 01/06/2010

01/14/10
14:37:15 2../../certsrc/cc3x3+eventhist+compressall.notes

Flight S/W Patches, Revision E-E-F

==

Title: ACIS eventhist, cc3x3, compressall, smtimedlookup Patch Certification Release Notes f
or Version F

Software Change Order: 36-1043

Build Date: Fri Nov 6 16:37:18 EST 2009
Part Number: 36-58021.03
Version: F
CVS Tag: cc3x3+eventhist+compressall-E-E-F

Std Number: 36-58010
Std Version: E
Std Tag: release-E
Std SCO: 36-1042

Opt Number: 36-58020
Opt Version: E
Opt Tag: release-E-opt-E
Opt SCO: 36-1042

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This certification verifies the operation of the
 Continuous Clocking 3x3, Event Histogram, Compress
 All, and Science Mode Timed Lookup Patches.

 The certification consists of two tests, copied
 from the original test run during the Options
 Release. The tests have been modified to load
 all four optional patches, rather than just one
 at a time, and to clean up some false failures due
 to timing/pattern matching issues in the tests.

 The tests verify that the patch modes run as they
 did during the original test when they are
 both installed into the system.

 The Continuous Clocking 3x3 (cc3x3) test consists of two
 parts. The first launches a CC3x3 run, whereas the second
 runs CC1x3. This suite performs CC1x3 tests to verify that
 the modifications to the existing BEP Continuous Clocking
 functions do not break the existing CC1x3 functionality. Since
 the FEP software only contains CC3x3 code during CC3x3 runs (this
 is verified by the CC1x3 run), and no BEP functions used by Timed Exposure
 are modified by the patch, the Timed Exposure modes do not need to
 be re-tested as part of this certification.

 Each test sends a series of events on the right side of each quadrant
 (the original test was derived from the test for the rquad
 bug fix), and verifies that the mode runs nominally, and
 produces the expected event list. Since the "stop" critereon
 for the test is a little fuzzy, the runs tend to produce
 additional exposures that aren’t in the file used to check
 the run’s event output. "diff" used in the test produces
 mismatches on the additional exposures produced by the test
 run. Manual check of the run data shows that the event lists
 are replicated correctly by the run. Later, a "wrapping"

01/14/10
14:37:15 3../../certsrc/cc3x3+eventhist+compressall.notes

Flight S/W Patches, Revision E-E-F

 comparison may be developed to eliminate this manual step.

 The Event Histogram test uses a similar strategy to
 the CC3x3 test. It starts an Event Histogram run, and
 sends in a series of standard events. It then compares
 the resulting quadrant histograms with an example file
 to verify the results.

 One caveat that arose during the review of the Optional
 patches is that, when the standard patch "zap1expo" is
 present, which it should always be, the first exposure
 of event histogram mode will not contain any events.
 This will cause the first histogram from each FEP quadrant
 to appear to have been integrated for 1 less frame time than
 subsequent quadrant histograms. This is different than Raw
 Histogram mode, which is not affected by the "zap1expo"
 patch. The histogram example file used for this certification
 assumes that no events are sent during exposure 2 (the
 first "real" exposure of the run).

 The smTimedExposure patch is tested by merely running a
 timed-exposure faint run, verifying that the bias and event
 detection phases have been invoked, and then stopping the run.

 The Compress All patch is tested by copying an image to
 the image loader that contains several very "noisy" rows
 that are known to be incompressible by the Huffman tables.
 A timed-exposure raw-mode run is executed and the
 pixelCount field of the dataTeRaw packets of a couple of
 raw frames is monitored. The test fails if pixelCount is
 ever zero.

--
Included Patches:
 eventhist
 cc3x3
 compressall
 smtimedlookup

--
Test Support Patches:
 printswhouse
 dearepl
 tlmio

--
Test Results:
 smtimedlookup --> PASS
 cc3x3 --> PASS
 eventhist --> PASS
 eventhist --> PASS
 compressall --> PASS

01/14/10
14:37:26 1../../certsrc/cc3x3+eventhist+compressall+untricklebias.notes

Flight S/W Patches, Revision E-E-F

TITLE: ACIS untricklebias, eventhist, cc3x3, compressall, smtimedlookup Patch Certification
Release Notes

DOCUMENT NUMBER: 36-58021.03 REVISION: F

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

D 36-1036 Certify CC3x3/EventHist/smTimedL RFG 08/09/2007
E 36-1039 Certify Rev. D Standard and Rev. RFG 09/29/2009
F 36-1043 Certify Rev-E-Opt-E patches RFG 01/06/2010

01/14/10
14:37:26 2../../certsrc/cc3x3+eventhist+compressall+untricklebias.notes

Flight S/W Patches, Revision E-E-F

==

Title: ACIS untricklebias, eventhist, cc3x3, compressall, smtimedlookup Patch Certification
Release Notes for Version F

Software Change Order: 36-1039

Build Date: Fri Nov 6 20:26:58 EST 2009
Part Number: 36-58021.03
Version: F
CVS Tag: cc3x3+eventhist+compressall+untricklebias-E-E-F

Std Number: 36-58010
Std Version: E
Std Tag: release-E
Std SCO: 36-1042

Opt Number: 36-58020
Opt Version: E
Opt Tag: release-E-opt-E
Opt SCO: 36-1042

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This certification verifies the operation of the
 Continuous Clocking 3x3, Event Histogram, Compress
 All, Untrickle Bias, and Science Mode Timed Lookup Patches.

 The certification consists of two tests, copied
 from the original test run during the Options
 Release. The tests have been modified to load
 all four optional patches, rather than just one
 at a time, and to clean up some false failures due
 to timing/pattern matching issues in the tests.

 The tests verify that the patch modes run as they
 did during the original test when they are
 both installed into the system.

 The Continuous Clocking 3x3 (cc3x3) test consists of two
 parts. The first launches a CC3x3 run, whereas the second
 runs CC1x3. This suite performs CC1x3 tests to verify that
 the modifications to the existing BEP Continuous Clocking
 functions do not break the existing CC1x3 functionality. Since
 the FEP software only contains CC3x3 code during CC3x3 runs (this
 is verified by the CC1x3 run), and no BEP functions used by Timed Exposure
 are modified by the patch, the Timed Exposure modes do not need to
 be re-tested as part of this certification.

 Each test sends a series of events on the right side of each quadrant
 (the original test was derived from the test for the rquad
 bug fix), and verifies that the mode runs nominally, and
 produces the expected event list. Since the "stop" critereon
 for the test is a little fuzzy, the runs tend to produce
 additional exposures that aren’t in the file used to check
 the run’s event output. "diff" used in the test produces
 mismatches on the additional exposures produced by the test
 run. Manual check of the run data shows that the event lists
 are replicated correctly by the run. Later, a "wrapping"

01/14/10
14:37:26 3../../certsrc/cc3x3+eventhist+compressall+untricklebias.notes

Flight S/W Patches, Revision E-E-F

 comparison may be developed to eliminate this manual step.

 The Event Histogram test uses a similar strategy to
 the CC3x3 test. It starts an Event Histogram run, and
 sends in a series of standard events. It then compares
 the resulting quadrant histograms with an example file
 to verify the results.

 One caveat that arose during the review of the Optional
 patches is that, when the standard patch "zap1expo" is
 present, which it should always be, the first exposure
 of event histogram mode will not contain any events.
 This will cause the first histogram from each FEP quadrant
 to appear to have been integrated for 1 less frame time than
 subsequent quadrant histograms. This is different than Raw
 Histogram mode, which is not affected by the "zap1expo"
 patch. The histogram example file used for this certification
 assumes that no events are sent during exposure 2 (the
 first "real" exposure of the run).

 The smTimedExposure patch is tested by merely running a
 timed-exposure faint run, verifying that the bias and event
 detection phases have been invoked, and then stopping the run.

 The Compress All patch is tested by copying an image to
 the image loader that contains several very "noisy" rows
 that are known to be incompressible by the Huffman tables.
 A timed-exposure raw-mode run is executed and the
 pixelCount field of the dataTeRaw packets of a couple of
 raw frames is monitored. The test fails if pixelCount is
 ever zero.

 The Untrickle Bias patch is tested by a pair of expect scripts,
 each of which performs 12 tests, one in TE mode, the other in
 CC mode. Each test starts a science run and then terminates it
 in one of the possible ways, viz:

 1: stopScience during bias map creation
 2: double stopScience during bias map creation
 3: startScience during bias map creation
 4: assert/deassert RADMON during bias map creation
 5: stopScience during bias map telemetering
 6: double stopScience during bias map telemetering
 7: startScience during bias map telemetering
 8: assert/deassert RADMON during bias map telemetering
 9: stopScience during event processing
 10: double stopScience during event processing
 11: startScience during event processing
 12: assert/deassert RADMON during event processing

 The tests fail unless all steps complete and return the anticipated
 scienceReport return codes.

--
Included Patches:
 untricklebias
 eventhist
 cc3x3
 compressall
 smtimedlookup

--
Test Support Patches:

01/14/10
14:37:26 4../../certsrc/cc3x3+eventhist+compressall+untricklebias.notes

Flight S/W Patches, Revision E-E-F

 printswhouse
 dearepl
 tlmio

--
Test Results:
 smtimedlookup --> PASS
 cc3x3 --> PASS
 eventhist --> PASS
 eventhist --> PASS
 compressall --> PASS
 untricklebias --> PASS
 untricklebias --> PASS

	ACIS Patch E-E-F
	Patch Status
	Release Status

	Buscrash2 Patch
	Reasons for Patch
	Description of Original Patch
	Change to Untricklebias Patch
	Problem with Original Patch
	Update to the Buscrash2 Patch
	Controlled Sources
	Testing
	Reproduce Test
	Fix Test in TE Mode
	FIX Test in CC Mode

	Standard Patches
	Release Notes
	Tlmbusy
	Fepbiasparity2
	Biastiming
	Histogramvar
	Badpix
	Zap1expo
	Digestbiaserror
	Corruptblock
	Cornermean
	Buscrash
	Buscrash2
	Rquad
	Condoclk
	Histogrammean

	Optional Patches
	Release Notes
	Reportgrade1
	Untricklebias
	Deaeng
	Cc3x3
	Tlmio
	Compressall
	Ccignore
	Eventhist
	Printswhouse
	Dearepl
	Teignore
	Smtimedlookup
	Ctireport1
	Ctireport2

	Implementation
	buscrash2.C
	buscrash2inline.S
	Testing
	Reproduce
	Fix TE
	Fix CC

	Certification
	cc3x3+eventhist
	cc3x3+eventhist+compressall
	cc3x3+eventhist+compressall+untricklebias

