
ENGINEERING CHANGE ORDER
ECO No.

36–1035

CENTER FORSPACERESEARCH
MASSACHUSETTSINSTITUTE OFTECHNOLOGY

DWG. NO. NEW
REV. DRAWING TITLE

36-58010 C Flight Software Standard Patch Release C

REASON FORCHANGE:
Addition of standard patchestlmbusy andbuscrash. These patches address software problem
reports 138 and 140. No new optional patches are added.

DESCRIPTION OFCHANGE:
The optional patches—release C—are unchanged. The new set of standard—release C—
patches is compiled and loaded into a common address space so that each optional patch can
be loaded independently of the others, provided the load order defined inPatchRelease.spec
is maintained.

Patcheseventhist, ctireport1, andctireport2 require thatsmtimedlookup is also loaded;
similarly, the engineering patchesdeaeng, dearepl, andprintswhouse require thetlmio patch.
deaeng anddearepl must not be loaded at the same time.

SIGNATURE DATE REMARKS:

ORIGINATOR Peter Ford 08/09/07 Approved

MECHANICAL

ELECTRICAL

SOFTWARE

STRUCTURE

FABRICATION

SCIENCE

SYSTEMSENG.

QUALITY

PROJ. ENGINEER

DEPUTY PM

PROJ. MANAGER

MIT CSR

ACIS

ECO 36–1035

- 2 -

Existing ACIS Flight Software Patches

Name Rev Size Part ECO SPR

Standard Release C

1 corruptblock A 16 36–58030.01 994 113

2 digestbiaserror A 64 36–58030.02 995 116

3 histogramvar A 16 36–58030.03 999 115

4 biastiming A 1612 36–58030.04 993 117

5 rquad A 16 36–58030.14 1000 121

6 histogrammean A 156 36–58030.15 996 123

7 zap1expo A 64 36–58030.16 997 122

8 condoclk A 472 36–58030.17 1012 127

9 fepbiasparity2 A 504 36–58030.19 1015 130

10 cornermean A 32 36–58030.21 1017 128

11 tlmbusy A- 328 36–58030.29 1033 138

12 buscrash A- 280 36–58030.30 1034 140

Optional Release C

1 eventhist B 5908 36–58030.05 1025 N/A

2 cc3x3 B 4636 36–58030.06 1018 120,124,126

3 teignore A 36 36–58030.09 1003 N/A

4 ccignore A 36 36–58030.10 1004 N/A

5 smtimedlookup A 3712 36–58030.24 1025 N/A

6 ctireport1 A 5452 36–58030.25 1026 N/A

7 ctireport2 A 2784 36–58030.26 1026 N/A

8 compressall A 2368 36–58030.27 1027 134

9 untricklebias A 1612 36–58030.28 1028 133

10 reportgrade1 A 816 36–58030.22 1021 131,132

Under Development

1 hybrid 03 6104 36–58030.13 1010 N/A

2 fepbiasparity1 02 36–58030.18 1014 N/A

3 squeegy 06 4412 36-58030.23 1023 N/A

4 forcebiastrickle 01 N/A 36-58030.29 1024 133

Engineering Unit Utility Patches

1 tlmio 02 10312 36–58030.07 1010 N/A

2 printswhouse 01 7224 36–58030.08 986 N/A

3 deaeng 02 2604 36–58030.11 1010 N/A

4 dearepl 02 556 36–58030.12 1010 N/A

ECO 36–1035

- 3 -

Status of Patch Release C, Optional Revision C

a.typographical errors in the documentation
b.review item discrepancies—requiring changes to the patch code and/or test procedures

Name Part Number Description Typos a RIDsb Status

tlmbusy 36–58030.29 Prevent BEP telemetry packet
loss

Awaiting review

buscrash 36–58030.30 Prevent BEP bus crash on FEP
powerdown

Awaiting review

S/W Review 36–58020 C-C-D Documentation accompanying
the individual patch ECOs

Awaiting review

Certification 36–58021.03 Documentation describing the
multi-patch certification tests

Awaiting review

ACIS SOFTWARE PROBLEM REPORT
MIT CSR

ACIS

CENTER FORSPACERESEARCH

MASSACHUSETTSINSTITUTE OFTECHNOLOGY

Description of Problem: (should be sufficiently complete to be duplicated by engineering):

Corrective Action:

FOR:
Part Number Rev: Sub-Section Name:

Used on hardware:
DEA Rev: Human Interface:

Originator: Phone: Date: RCTU Rev: Front End HW:

Problem closed on: Date: Refer to ECO #: Refer to Patch ID:

Problem ID: Status: Sheet: 138 of 140

Missing data packet during OBSID 5645

On 30 March 2005, the CXO DS reported that OBSID couldn’t be processed because a parameter block was
missing from downlink. It was subsequently discovered that, although the parameter block had been transmitted,
a small number of bad packets within the event-processing phase of this run were responsible for terminating all
data processing. The identical anomaly was present in both R/T telemetry and in the subsequent SSR dump
(2005_088_2214_089_0250_Dump_EM_93236). In place of a singleexposureTeVeryFaint packet, the
telemetry stream contained three packet headers: onedataCcGraded and twodataTeVeryFaint . All
three packet lengths were wrong,i.e., they were not followed by the number of data words defined in their head-
ers: thedataCcGraded packet was actually only 8 bytes long, and thedataTeVeryFaint packets were
actually 2048 bytes long.

The problem was traced to a feature of the BEP telemetry manager. Telemetry packets are enqueued via a call to
the TlmManager::post() method. If this routine is called by one task while it is still processing a call from
another task, the first packet will be truncated and a random block of data from within the telemetry buffer area
will be telemetered in place of the second packet.

The problem can be prevented by cancelling task switching whileTlmManager::post() is running, and has
been implemented as thetlmbusy standard patch. This was verified by running the ACIS engineering unit under
very heavy load, causing 5 tasks to post telemetry packets “simultaneously” (see ACIS report SPR138-1.0, Sep-
tember 30, 2005).

36-54002.08 1.5 SW ACIS FLT 1.5

P. Ford x3-7277 04/07/05

08/09/2007 36-1033 tlmbusy

M05040701 Closed

ACIS SOFTWARE PROBLEM REPORT
MIT CSR

ACIS

CENTER FORSPACERESEARCH

MASSACHUSETTSINSTITUTE OFTECHNOLOGY

Description of Problem: (should be sufficiently complete to be duplicated by engineering):

Corrective Action:

FOR:
Part Number Rev: Sub-Section Name:

Used on hardware:
DEA Rev: Human Interface:

Originator: Phone: Date: RCTU Rev: Front End HW:

Problem closed on: Date: Refer to ECO #: Refer to Patch ID:

Problem ID: Status: Sheet: 140 of 140

ACIS BEP experienced a bus error during SCS107

When ACIS was halted by an SCS107 (high-radiation shut-down) command on 12/13/2006, the BEP suffered a
bus error and watchdog reboot. Studying previous occasions, it was discovered that bus errors occurred when-
ever the SCS107 was issued while the ACIS FEPs were computing their bias maps (3 instances) but never while
they were writing those maps to telemetry or processing event data (64 instances) or raw frames (1 instance).

The BEP flight code was examined to determine whether the science thread was correctly examining the power-
on status of FEPs before accessing their command mailboxes. It was found that the code that marks bad pixels
and columns in the FEP bias maps was not protected against a FEP power-down.

A patch (buscrash) was generated that callsfepManager.isEnabled() to determine whether to update
the bias maps. The patch was run on the ACIS engineering unit, and was found to prevent the bus crash.

36-54002.08 1.5 SW ACIS FLT 1.5 Flight

P. Ford x3-7277 12/13/06

08/09/2007 36-1034 buscrash

M06121301 Closed

Massachusetts Institute of Technology
Kavli Institute for Astrophysics & Space Research
1 Hampshire Street
Cambridge, MA 02139-4307

Tel: 617-253-7277
Fax:617-253-8084

Date: September 30, 2005 5:41 PM

report

A
C

I
S

 I
n

s
tr

u
m

e
n

t
T

e
a
m

To: ACIS Instrument Team

From: Peter G. Ford, NE80-6071 <pgf@space.mit.edu>

Subject: Version 1.0 of a report relating to SPR 138 (M05040701):
�Missing data packet during OBSID 5645�

Cc: Chandra SOT <sot@head-cfa.cfa.harvard.edu>

1. Introduction

The CXCDS was unable to process OBSID 5645 at the first attempt on March 30,
2005, because of the presence of a single data packet of type dataCcGraded (see Applicable
Document 2). Since the observation was being conducted in Very Faint Timed Exposure
mode, this unexpected packet caused the processing program to halt. At the time that the
packet was generated, Chandra was in real-time contact with a DSN station. The real-time
and recorded data were identical, implicating either the instrument itself or the RCTU that
relays its telemetry to the on-board data system. After examining a dump of the telemetry
stream, CXCDS personnel removed 8 consecutive telemetry minor frames, and OBSID
5645 was successfully processed.

This anomaly is being tracked by DDTS as OCCcm07109 and by the ACIS SI team as
SPR 138.

2. Preliminary Analysis

After filing a Software Problem Report (Applicable Document 1), the first task of the
ACIS team was to examine the logs from quick-look psci processing. The messages
generated during OBSID 5645 are illustrated in Fig. 1. While merging real-time and SSR
data, any mismatch between the two data streams would have been reported. It is
therefore the presence of the three �bad ACIS serial byte� messages and the single
�missing sequenceNumber� message, without an accompanying �missing minor frame(s)�
or �R/T-SSR mismatch� message that constitutes the ACIS anomaly.

The relevant SSR dump file (2005_088_2214_089_0250_Dump_EM_93236) was examined
in some detail. It spanned frames 67910:044 � 68416:035, but the anomalous packets were
restricted to the seven minor frames 068390:076 � 068390:082. Earlier in that file, a
number of minor frame headers began with anomalous sync codes,1 viz.

 bad sync 0xe53003e2 replaced at vcdu 67911:058
 bad sync 0xe53003e5 replaced at vcdu 67912:075
 bad sync 0xe6cffc1d replaced at vcdu 67913:068
 bad sync 0x1acff862 replaced at vcdu 67913:092

and there had been numerous similarly garbled sync words in the previous SSR file, but all
frame headers contributing to OBSID 5645 appeared normal and the anomaly was
restricted to that portion of the minor frames allocated to output from ACIS.

1. Each minor frame should begin with the synchronization pattern, 0x1acffc1d.

Page 2 of 17

September 30, 2005 SPR 138 (M05040701) Version 1.0

The anomalous ACIS data were output at 2:36:29 UTC on March 30, 2005. ACIS was
running in the S configuration with 5 CCDs (I2, I3, S2-4) and had just finished reporting
exposure 982. With no data yet available from exposure 983, the back-end processor (BEP)
idled, outputting a stream of �pad� bytes (0xb7). The data packets and pads generated in this
time interval are listed in Table 1. The readout times are those at which the packets begin to
be inserted into telemetry frames. The three highlighted packets were anomalous in several
respects:

1. The packet lengths recorded in their 5th and 6th header bytes did not correspond to the
number of (non-pad) bytes before the next packet header.

2. The packet sequence numbers, recorded in their 7th and 8th header bytes, were out of
order relative to the preceding and following packets.

068257:016 starting ACIS science run 53
068380:022 R/T missing 215 minor frame(s) byte
068390:080 bad ACIS serial byte 0x52
068390:080 bad ACIS serial byte 0x8e
068390:080 bad ACIS serial byte 0x2a
068390:080 dataTeVeryFaint.sequenceNumber=31834 != 31833
068398:071 R/T missing 4 minor frame(s) byte +7334042
068412:080 2005_089_0248_089_1138_Dump_EM_93423 starts at 2005/089/10115.400
068412:080 SSR extra 468 minor frame(s) byte +537498
068416:035 2005_088_2214_089_0250_Dump_EM_93236 ends at 2005/089/10235.325
068435:015 R/T missing 4 minor frame(s) byte +12704428
068440:031 raw_telem_2005-03-29_18:33:27 ends at 2005/089/11021.425
068440:032 raw_telem_2005-03-29_22:03:44 starts at 2005/089/11021.500
068471:091 R/T missing 4 minor frame(s) byte +4626158
068484:127 R/T missing 105902 minor frame(s) byte +7963056
069312:051 R/T missing 264 minor frame(s) byte +8275716
069314:060 R/T missing 6 minor frame(s) byte +8280314
069349:087 raw_telem_2005-03-29_22:03:44 ends at 2005/089/40851.025
069349:088 raw_telem_2005-03-30_06:20:54 starts at 2005/089/40851.000
069349:099 R/T missing 4 minor frame(s) byte +13782
069379:016 2005_089_1136_089_2210_Dump_EM_93700 starts at 2005/089/41816.600
069379:016 SSR extra 474 minor frame(s) byte +542092
069382:105 2005_089_0248_089_1138_Dump_EM_93423 ends at 2005/089/41938.575
069386:047 R/T missing 4 minor frame(s) byte +5388762
069421:045 R/T missing 132410 minor frame(s) byte +12271034
070463:107 raw_telem_2005-03-30_06:20:54 ends at 2005/089/77395.375
070463:108 raw_telem_2005-03-30_16:29:58 starts at 2005/089/77395.300
070481:075 R/T missing 4 minor frame(s) byte +2609392
070484:069 R/T missing 2 minor frame(s) byte +3041232
070518:023 R/T missing 4 minor frame(s) byte +7984376
070535:024 2005_089_2208_090_0402_Dump_EM_93819 starts at 2005/089/79735.400
070535:024 2005_089_2208_090_0402_Dump_EM_93819 starts at 2005/089/79735.400
070535:024 SSR extra 468 minor frame(s) byte +537498
070538:107 2005_089_1136_089_2210_Dump_EM_93700 ends at 2005/089/79855.375
070554:099 R/T missing 4 minor frame(s) byte +13359356
070555:055 raw_telem_2005-03-30_16:29:58 ends at 2005/089/80399.625
070555:056 raw_telem_2005-03-30_17:20:02 starts at 2005/089/80399.600
070580:026 R/T missing 70726 minor frame(s) byte +4570814
071041:120 ending ACIS science run 53

Figure 1: The psci log for OBSID 5645: messages are tagged by their major:minor frame
indices. The only indication of the anomaly is highlighted: a single data packet, sequence
number 31833, is missing, but there is no accompanying �missing minor frame(s)� report.
Byte offsets are reported from the start of the (uncompressed) EHS file. Times are UTC.

Page 3 of 17

SPR 138 (M05040701) Version 1.0 September 30, 2005

3. The dataCcGraded packet was anomalously short: the minimum length for such a packet
is 5 words; also, the packet type (recorded in header byte 6) was inconsistent with the
parameter block used for this run (whose identifier was in each exposureTeVeryFaint
packet.) In fact, the only instrument mode that could generate such a packet, Cc1x3
graded mode, has never been used since Chandra launch.

4. The two anomalous dataTeVeryFaint packets were too long�since each Very Faint event
occupies 5 words, their maximum length is only 503 words (e.g., packet 31834).

5. The contents of legitimate dataTeVeryFaint packets are tallied in exposureTeVeryFaint
packets. The number of exposures per frame recorded in the latter was entirely
consistent with the number of events in the former, leaving no possibility that the three
anomalous packets would have been generated in normal ACIS operation.

6. The sequence numbers (31740 and 31630) recorded in the headers of the anomalous
dataTeVeryFaint packets corresponded to packets that had already been telemetered

Table 1: Data packets from ACIS exposure numbers 982 and 983�

� The readout time�relative to the start of packet 31822� is determined by the location of the start of the packet
(or padding) in a telemetry minor frame. The packet length (in 32-bit words) is recorded in each packet header; the
�actual� length column shows the number of words until the next packet header. The �PktNo� field denotes a
continuation packet, i.e., there were more events from a given CCD than could fit into a single data packet.

SeqNo
Readout

Packet Type
Length (words)

CCD FEP ExpNo PktNo
(sec) Header Actual

31822 0.00000 exposureTeVeryFaint 18 18 3 3 981
0.01800 3693 pad bytes

31823 1.26150 dataTeVeryFaint 333 333 7 1 982 0
31824 1.70700 exposureTeVeryFaint 18 18 7 1 982
31825 1.73300 dataTeVeryFaint 123 123 8 4 982 0
31826 1.89600 exposureTeVeryFaint 18 18 8 4 982
31827 1.92225 dataTeVeryFaint 283 283 6 2 982 0
31828 2.29350 exposureTeVeryFaint 18 18 6 2 982
31829 2.31950 dataTeVeryFaint 123 123 2 5 982 0
31830 2.48275 exposureTeVeryFaint 18 18 2 5 982
31831 2.50875 dataTeVeryFaint 183 183 3 3 982 0
31832 2.75600 exposureTeVeryFaint 18 18 3 3 982

2.77400 4703 pad bytes
23572 4.35825 dataCcGraded 795 2 6 6
31740 4.36025 dataTeVeryFaint 283 512 3 3 973 0
31630 5.04100 dataTeVeryFaint 253 512 6 2 963 0
31834 5.73650 dataTeVeryFaint 503 503 8 4 983 0
31835 6.40825 dataTeVeryFaint 163 163 2 5 983 0
31836 6.61950 exposureTeVeryFaint 18 18 2 5 983
31837 6.64550 dataTeVeryFaint 283 283 7 1 983 0
31838 7.02475 exposureTeVeryFaint 18 18 7 1 983
31839 7.05100 dataTeVeryFaint 183 183 6 2 983 0
31840 7.29000 exposureTeVeryFaint 18 18 6 2 983
31841 7.32325 dataTeVeryFaint 53 53 3 3 983 0
31842 7.40025 exposureTeVeryFaint 18 18 3 3 983
31843 7.41825 dataTeVeryFaint 23 23 8 4 983 1
31844 7.44925 exposureTeVeryFaint 18 18 8 4 983

7.47525 169 pad bytes
31845 7.53350 dataTeVeryFaint 233 233 7 1 984 0

Page 4 of 17

September 30, 2005 SPR 138 (M05040701) Version 1.0

during this run. In fact, the contents of the anomalous packets were identical to those
already telemetered, with the addition of �random� words to make up a total length of
2048 bytes before the next packet header.

3. A Missing Packet

Since packet sequence number 31833 was missing, it seemed reasonable to suppose that the
BEP was trying to write that packet to the RCTU when the anomaly occurred. But what sort
of packet was it? It could not have been a dataTeVeryFaint or exposureTeVeryFaint packet since
these are all accounted for. It was unlikely to be a commandEcho packet since an inspection of
the daily Chandra command load shows no commands being sent to ACIS during this time
period. That leaves either bepStartupMessage or fatalError packets�both of which would have
caused the BEP to reboot and to terminate the science run�or software or analog (DEA)
housekeeping packets. Table 2 shows the sequence numbers of the housekeeping packets
spanning the time of the anomaly, their creation times as measured by the BEP interrupt
clock, and the time interval between successive housekeeping packets. This time interval is
approximately 64 seconds for software housekeeping, and is selected by ground command
for analog housekeeping (the current value is 17 seconds.) Note the anomalous interval
between the pair of analog housekeeping packets with sequence numbers 31782 and 31898.

While the BEP software will prevent an analog housekeeping packet from being generated
when no telemetry buffers are available, this cannot be the case in this instance since the
buffers are being written almost as soon as they are filled, as evidenced by the numerous pad
bytes that separate each exposure. This implies that the BEP tried to write the housekeeping
packet, but that something went astray and that 1026 words (4104 bytes) were written from
another location instead. The suspicion falls on the BEP hardware that copies telemetry
packets to the RCTU, and on the software that controls it.

4. The DMA Interface

The BEP�s Downlink Transfer Controller (DTC) is a type of Direct-Memory-Access
(DMA) device. It transfers buffers of data from the BEP�s bulk (i.e., uncached) memory to the
RCTU telemetry serial port interface logic which handles the insertion of ACIS time-stamps
into the first 32-bits of science data of each Science Telemetry Frame. The logic also provides
a 2-deep 32-bit word FIFO between the DTC and the RCTU. Once the last word of a block
has been transferred, the logic generates a Downlink Interrupt. Assuming that peak transfer
rate out of the FIFO is 128Kbps, the BEP software has about 0.5 milliseconds to handle the
interrupt and start a new transfer. Otherwise, a gap is introduced, and the hardware will
respond to RCTU requests with an 8-bit pattern whose value is 0xb7 in hexadecimal (see
Appendix A and Applicable Document 3 for further details).

Table 2: Housekeeping Packets

Software Housekeeping Analog (DEA) Housekeeping
SeqNo Start�

� Housekeeping packets contain the value of the 32-bit BEP interrupt counter at the time the packet was first
created and (for software housekeeping only) the time at which the packet was written to telemetry. The interrupt
counter is incremented whenever a 100 ms timer expires, but the true interval can be slightly longer when the
interrupt handler has several tasks to perform, e.g., when receiving lengthy commands or generating many short
telemetry packets. In this table, the �elapsed� fields�time in seconds between housekeeping packets�are
calculated on the assumption that the timer intervals are all 100 ms.

End� Elapsed SeqNo Start� Elapsed
31501 0x0cb72d01 0x0cb72f81 64.0 31721 0x0cb731c2 17.0

31720 0x0cb72f81 0x0cb73201 64.0 31782 0x0cb7326c 17.1

31940 0x0cb73201 0x0cb73481 64.0 31898 0x0cb733c0 34.0

32160 0x0cb73481 0x0cb73701 64.0 31961 0x0cb7346a 17.0

Page 5 of 17

SPR 138 (M05040701) Version 1.0 September 30, 2005

5. Similar Previous Anomalies

All ACIS output recorded on board and downlinked since March 20001 was scanned for
similar anomalies, i.e., gaps in packet sequence numbers and packets followed by unexpected
bytes, but not associated with missing telemetry frames or ACIS reboots. The resulting
anomalies are shown in Table 3.

Of the 26 anomalies, 12 occurred at times when a housekeeping packet (either DEA or
software) was expected but not output. Two other anomalies, cases 15 and 16 in Table 3, were
recognized by their garbled output, but were not accompanied by gaps in DEA or Software
housekeeping. All 14 anomalies show strong similarities to case 26, i.e.,

� the BEP output from 2 to 3482 4-byte words, beginning at a seemingly random 4-byte
address within the BEP storage area reserved for telemetry buffers.

� within the anomalous output, packet headers occurred at intervals of either 1024, 2048,
or 3088 bytes, as they do within the telemetry buffers assigned to DEA housekeeping,
science, and software housekeeping, respectively (see Table 4). It is perhaps relevant

1. This was the most recent time that the Chandra OBC was rebooted, and the VCDU counter reset. Earlier
telemetry could be processed, but with a separate time fence-post file after each OBC reboot.

Table 3: Missing packets not associated with telemetry gaps

n Phase Run Obsid Anomaly start time
UTC

SeqNo Corrupted
Pitch Error

typeFrom Missing Pkts Bytes
1 d5/acis2c 180 873 2000-03-18 18:41:17.269 5522 1 0 0 Bad hdr

2 d6/acis3a 33 62084 2000-04-15 11:19:53.945 59475 0 0 4 Bad word

3 d6/acis3a 33 62084 2000-04-15 11:33:28.308 59570 1 1 0 Bad word

4 d6/acis3c 111 551 2000-05-14 12:15:34.470 23710 1 1 4 Bad word

5 d7/acis4a 32 326 2000-06-25 11:14:55.333 45910 1 1 8 DEA H/K

6 d8/acis5b 77 2306 2000-09-20 00:28:33.395 34007 34 1 385 Seq jump

7 df/acis8b 69 1988 2001-05-12 18:23:10.130 51136 1 8 14344 2048 DEA H/K

8 dg/acis9a 18 1622 2001-06-23 21:21:45.476 27148 1 1 0 Bad hdr

9 dg/acis9b 137 2017 2001-07-24 15:13:04.831 59445 2 1 152 DEA H/K

10 dk/acis13b 67 3344 2002-05-01 23:18:20.744 43676 2 1 36 S/W H/K

11 dk/acis13e 194 3008 2002-06-16 23:34:57.214 50320 1 4 7176 2048 DEA H/K

12 dm/acis15c 92 61019 2002-09-26 13:46:07.795 28883 1 1 0 Bad hdr

13 dm/acis15c 92 61019 2002-09-26 19:23:15.913 33616 1 1 0 Bad hdr

14 dm/acis15c 92 61019 2002-09-26 19:40:26.038 36866 1 1 0 Bad hdr

15 dn/acis16e 206 3744 2003-01-11 18:42:39.708 52385 1 5 14400 3088 Unknown

16 do/acis17a 2 4374 2003-01-17 22:09:25.029 25451 1 5 5112 1024 Unknown

17 dp/acis18a 46 3654 2003-03-28 21:03:40.769 25970 1 8 15368 2048 DEA H/K

18 dp/acis18a 85 60790 2003-04-02 16:06:48.885 44950 1 1 0 Bad hdr

19 dq/acis19a 13 4276 2003-06-06 16:00:34.217 4033 1 2 4096 2048 DEA H/K

20 ds/acis21b 90 3966 2003-11-30 05:19:07.289 8951 1 7 14308 2048 S/W H/K

21 dt/acis22d 152 5015 2004-03-02 09:54:56.044 37016 1 2 3080 2048 DEA H/K

22 dv/acis24b 52 4505 2004-06-04 21:30:56.570 62456 1 1 0 Bad hdr

23 dx/acis25c 76 5357 2004-08-14 15:01:51.517 48423 1 1 2048 2048 DEA H/K

24 dx/acis25d 114 4816 2004-08-31 10:06:50.794 28178 1 4 7176 2048 DEA H/K

25 dA/acis28a 20 6180 2005-01-14 00:53:43.873 35534 1 1 0 Bad hdr

26 dB/acis29b 53 5645 2005-03-30 02:57:57.423 31832 1 3 4104 2048 DEA H/K

Page 6 of 17

September 30, 2005 SPR 138 (M05040701) Version 1.0

that, when a housekeeping packet is missed, the anomalous output comes from within
science buffers, whereas cases 15 and 16, in which no housekeeping is missed, the
output comes from within housekeeping buffers.

� ignoring the anomalous output, the event counts within the expected science packets
were consistent between data and exposure packets�no science packets appeared to be
missing.

In case 6, (�Seq jump� in the rightmost column of Table 3) the packet sequence numbers
jump from 34007 to 34042 and the exposure numbers jump from 6917 to 6920 without any
telemetry gap. The last packet before the gap is garbled�it is a dataTeVeryFaint packet whose
events are not in ascending ccdRow order, so its �real� length is suspect. Including that packet,
there are only 385 bytes of telemetry before the (totally normal) packet numbered 34042 and
the truncated packet 34043. The following 36 minor frames are missing, so it is tempting to
treat this as an extreme case of telemetry corruption.

The remaining 11 anomalies were caused by corruptions in telemetry, either to fields in a
packet header (ibid. �Bad hdr�) or to the pad bytes following a packet (ibid. �Bad word�).

Three anomalies, cases 13, 14, and 26, occurred at times when Chandra was in real-time
contact with the ground. In the case of item 26, the recorded and real-time data were
identical, and it was this that originally persuaded us that the anomaly was confined to ACIS
itself, rather than mere telemetry corruption. In the case of cases 13 and 14, the packets with
damaged headers in recorded telemetry were undamaged in real-time telemetry, but there
were frequent recorded-vs.-real-time mis-matches around that time, and in a majority of cases
it was the real-time data that seemed to have been corrupted. In any case, the corruption in
cases 13 and 14 was unlikely to have originated within ACIS.

6. Flight Software Analysis

A preliminary version of this Memo, consisting of sections 1�5, was circulated to the ACIS
SI team, including several engineers who were responsible for the original ACIS design (for
details, see Appendices A�C). Jim Francis, the BEP flight software architect, responded as
follows:

From: francis@payload.com
Subject: Re: ACIS anomaly during OBSID 5645
Date: April 25, 2005 8:46:12 AM EDT
To: pgf@space.mit.edu
Cc: dag@elfelectronics.com

It's looking to me like TelemetryManager::post()/serviceDevice() isn't
properly protected against re-entry when there is nothing actively being

Table 4: BEP telemetry buffer assignments

Packet name Task that writes it Max Length Number
bepStartupMessage Startup 4096 1

commandEcho CmdManager 2048 4

bepExecuteReply, bepReadReply
fepExecuteReply, fepReadReply
pramReadReply, sramReadReply

MemoryServer
4096 4

swHousekeeping SwHousekeeper 3088 8

deaHousekeepingData DeaHousekeeper 1024 8

dataCcBiasMap, dataTeBiasMap BiasThief 4096 20

everything else ScienceManager 2048 400

Page 7 of 17

SPR 138 (M05040701) Version 1.0 September 30, 2005

transmitted by the telemetry system (i.e. TelemetryManager::curPkt is
initially NULL).

If a thread calls TelemetryManager::post() when the DMA is idle,
TelemetryManager::curPkt is null. So it calls serviceDevice(). If the
1st thread is preempted by another thread before it has a chance to
assign TelemetryManager::curPkt (see TelemetryManager::serviceDevice()),
and the 2nd thread calls TelemetryManager::post(), the 2nd thread will
fall-through to advance the sequence number and initiate a telemetry
transfer. If the 2nd thread then suspends, the original 1st thread will
grab the next sequence number, and clobber the ongoing downlink transfer
with the new one. I'm not sure of the hardware behavior in this
situation. If the hardware behaves well, then this is probably a red-
herring. If the hardware gets confused, it might produce the garbage
you're observing.

Our �startTransfer()� function:
- clears the CTL_DNLKENB bit in the BEP's control register
- sets the DTC Start register to the starting page of the buffer to send
- sets the DTC End register to the end of the buffer we want to send
 (looks like it's aligned to page boundary)
- sets the CTL_DNLKENB bit in the BEP's control register

I believe that downlink interrupts are enabled throughout the activity.

 After reading this, Dorothy Gordon, the BEP hardware architect, concurred:

From: dag@elfelectronics.com
Subject: Re: ACIS anomaly during OBSID 5645
Date: April 27, 2005 9:26:25 PM EDT
To: pgf@space.mit.edu, francis@payload.com

If two software threads collide, one of the actions might be that the �Page
Register� is changed mid-Transfer. This may result in some of the symptoms
that you're seeing (i.e. the jumbling of science and engineering data).

Another action might be that the end-register is modified mid-transfer. This
would result in the packet header length field not matching the actual
packet length. Another thing to consider might be single event upsets. But
if none of the other state machines and registers appear to randomly upset,
I doubt that just this one would.

In further correspondence, Dorothy stated that the maximum DMA output length was 16
kbytes (12 bit length of 4-byte words), although the specification called for 8 kbytes. Also, the
input address is mapped into the BEP GP memory. This implies that the worst that could
happen is for no more than 16 kbytes to be output from GP memory, which will have no
further impact on the instrument. The two serious failure modes are thereby totally excluded
�one in which the contents of memory-mapped FEP memory would be read, possible
causing a FEP latch-up1, and the other in which the DMA is asked to output an enormously
long �packet�.

7. A Software Patch

Assuming that the anomaly was caused by the non-reentrant routine described in
Section 6., a tlmbusy patch (see Fig. 2) was prepared that prevents the TelemetryManager::post()
routine being called by two tasks simultaneously. The taskManager.forbidPreempt() and
taskManager.permitPreempt() calls will prevent a second task from calling post() until after the
first has determined that curPkt is NULL, i.e., that the DMA is quiescent, and has returned from
serviceDevice() with curPkt initialized.

1. Simultaneous FEP event-processing, pixel thresholding, and memory-mapped reading from the BEP can trigger
an anomaly in FEP firmware that puts a FEP FPGA into a �latch-up� state which continues until FEP power is
cycled (see Applicable Document 4).

Page 8 of 17

September 30, 2005 SPR 138 (M05040701) Version 1.0

It has proven much harder to validate the patch than to verify it. While the latter requires
only a short run on the ACIS Engineering Unit to verify that the tlmbusy patch does not
interfere with event processing, validation requires that anomalies must be reproduced using
the standard patch load, after which the test must be rerun with the additional tlmbusy patch to
verify that the anomaly no longer recurs. Both tests�without and with the new patch�must
last for sufficient lengths of time to demonstrate that (a) the number of anomalies without the
patch and (b) the absence of any anomaly with the patch, are consistent with the hypothesis
that the patch prevents the anomaly, to a given level of confidence.

If the anomaly occurs with Poisson statistics at a mean rate of R per second, the probability
that it will not recur within a further t seconds is given by exp(�Rt). If we were to emulate the
on-orbit environment and wanted to be 99.9% certain that the patch cured the anomaly, we
would be forced to test the engineering unit for �5.03 loge(0.001)/14 = 2.48 years, which is
unacceptable. Instead, we ran tests on the engineering unit in a manner that maximized the
rate of production of telemetry packets and the number of simultaneous tasks that wrote
them. This was achieved by the following choices:

� Timed-exposure graded mode to minimize the science packet header lengths.
� 100-column sub-frame readout from a single (simulated) CCD with 0.3 second

exposures to maximize the science packet rate with 4 �events� in the image loader.
� The maximum DEA housekeeping readout rate of one packet per second.
� The test was conducted by an expect script (see Fig. 3) that monitored the downlink data

stream. Whenever an exposureTeGraded packet was received, the script issued a readBep
command to report the contents of 4 bytes of BEP memory. This caused three BEP
tasks to write telemetry packets: the command task to echo the command, the memory
task to report the 4 bytes, and the software housekeeping task to write a �user pseudo-
packet�.

With 5 tasks frequently calling the TlmManager::post() routine, the anomaly was found to
occur 8 times in 622,101 seconds, i.e., once per 77,800 seconds, compared with the on-orbit
rate of once per 1.13×107 seconds. At this rate, the tlmbusy patch would be validated to a
99.9% confidence level provided no anomaly were found after 540,000 seconds of testing.

void Test_TlmManager::post(TlmPkt*pkt)
{

DebugProbe probe;

// ---- Place packet onto queue ----
sendQueue.enqueuePkt (pkt);

// ---- Prevent task preemption ----
taskManager.forbidPreempt();

// ---- If no transfers in progress, start one up ----
if (curPkt == 0)
{

serviceDevice (0);
}

// ---- Allow task preemption again ----
taskManager.permitPreempt();

}

Figure 2: Changes (in red/boldface) to TlmManager ::post() (see Appendix C) to prevent
the non-reentrant serviceDevice() method from being called simultaneously by multiple tasks.
Note that serviceDevice() is only called from post() when the packet queue is empty; otherwise,
it is called from within the BEP interrupt handler when the previous DMA operation has
completed. Since interrupts are disabled within the handler, serviceDevice() cannot, in this
instance, be called from multiple threads.

Page 9 of 17

SPR 138 (M05040701) Version 1.0 September 30, 2005

The tlmbusy patch was then installed and the test was repeated for 585991 secs; no anomaly
was detected. Next, the patch was removed and the test was run for a further 623229 seconds,
during which the anomaly occurred 5 times. Adding these 5 to the 8 anomalies seen in the
previous test reduced the estimated anomaly rate, so the patch was reapplied and a final test
was run for 624406 seconds. Seeing no anomalies, the probability that this was not due to the
patch is 0.0000033, i.e., the patch has been validated to a confidence level of 99.9997%.

8. Conclusions and Recommendations

The repeatability of the anomaly under predetermined test conditions�when multiple
tasks make frequent calls to the TlmManager::post() method�and the disappearance of the
anomalies when the tlmbusy patch is applied, provide very firm evidence that the cause of the
in-flight anomalies is understood, and that the patch provides the means for preventing them.

A careful inspection of the non-reentrant code shows that the effect of the anomaly is to
pass a bad input address and data length to the BEP DMA controller. The input address is
restricted to the M-bus, i.e., BEP bulk memory, and the length cannot exceed 16 kbytes. The
output always goes to the BEP�s serial digital interface port. The anomaly cannot result in
spurious data being written to other BEP (or FEP) memory locations, or being read from
anywhere other than bulk memory, and cannot therefore cause other BEP actions.

The question remains whether the patch should be applied to the flight instrument at this
time. There is no indication that the anomalies have become more frequent since launch�the
rate remains at one per ~110 days. In the worst case, a legitimate packet will be dropped and
a spurious 16 kbytes will be output instead, but no packets output as a result of the daily load
can be considered critical.1 The only packets whose loss would affect CXC operations are
output during real-time ACIS testing and patch loading, when the chance of the anomaly
occurring is absolutely minimal.

The ACIS Operations Team discussed these recommendations on July 25th and
concluded that there is no urgency in responding to this anomaly. The tlmbusy patch
should be added to MIT�s configuration control, and included in the next release, if
one becomes necessary for other reasons. Meanwhile, the diagnostic logs from rou-

1. It is possible for corrupted packets to cause the ground processing system to halt, but it is a relatively simple
matter to remove the offending telemetry frames and reprocess, as was done with OBSID 5645.

set timeout 300
expect -i $tlm_id {

-re "exposureTeGraded.*exposureNumber=(\[0-9a-fx]+).*\n" {
if { [expr $expect_out(1, string)] < 1000000 } {

send -i $cmd_id "read 0 0xa000e5e0 1\n"
exp_continue

}
}
timeout { fail "No exposure record" }

}

Figure 3: Extract from an expect script used to reproduce the telemetry anomaly on the ACIS
engineering unit. The output from the psci procedure is inspected. When an exposureTeGraded
packet is received, a readBep command is issued. The loop terminates either when the
exposureNumber value reaches 1000000 or when no exposure packet is received within 300
seconds. In practice, the expect script is more complicated than this since the engineering unit
cannot receive commands at this rate. Code was added to keep track of the number of
commandEcho packets received, so that the commanding rate could be maximized by a simple
feedback loop. The actual scripts are reproduced in Appendix D.

Page 10 of 17

September 30, 2005 SPR 138 (M05040701) Version 1.0

tine quick-look processing should be monitored for recurrences of the anomaly, and
the situation should be reviewed if the anomaly rate appears to be increasing.

9. Applicable Documents

1. ACIS Software Problem Report M05040701, April 7, 2005, available online at
http://acis.mit.edu/axaf/spr/prob0138.html.

2. ACIS Software IP&CL Structure Definitions, MIT 36-53204.0204 rev. N, March 15,
2001, online at http://acis.mit.edu/acis/ipcl/.

3. ACIS DPA Hardware Specification & System Description, MIT 36-02104, rev. C,
October 5, 1995, online at http://acis.mit.edu/axaf/dpa/.

4. ACIS Software Problem Report M00062901, April 12, 2000, online at
http://acis.mit.edu/axaf/spr/prob0133.html.

5. Object-Oriented Analysis and Design with Applications, by Grady Booch, 2nd
Edition, Addison-Wesley, 1993 (ISBN: 0805353402).

6. ACIS Software Test Tools, MIT 36�55001, rev. 3.1, June 20, 1997, online at
http://acis.mit.edu/ttools/testtools.pdf.

10. Abbreviations

ACIS Advanced CCD Imaging Spectrometer
AXAF Advanced X-ray Astronomy Facility (now Chandra)
BEP (ACIS) Back-End Processor
CASE Computer-Aided Software Engineering
CCD Charge-Coupled Device
D-Cache (R3000) Data Memory
DDTS (Rational�) Distributed Defect Tracking System
DEA Digital Electronics Assembly (a.k.a. ACIS video section)
DMA (R3000) Direct Memory Access
DPA (ACIS) Digital Processor Assembly (BEPs + FEPs)
DSN Deep Space Network
FEP (ACIS) Front-End Processor
FIFO First-In-First-Out (stack)
FPGA Field-Programmable Gate Array
GP General Purpose (random access memory)
I-Cache (R3000) Instruction Memory
MSB Most-significant Bit
OBC (Chandra) On-Board Computer
OBSID (Chandra) Observation Identifier
PCB Printed Circuit Board
R3000 (FEP and BEP) Radiation-Hardened Processor
RAM Random-Access Memory
RCTU Remote Control Telemetry Unit
SCET Spacecraft Event Time (UTC)
SD Serial Digital (output from the ACIS DPA)
SEU Single-Event Upset
SOT (Chandra) Science Operations Team
SPR (ACIS) Software problem report
SSR (On-board) Solid-State Recorder

Page 11 of 17

SPR 138 (M05040701) Version 1.0 September 30, 2005

Appendix A. The BEP-to-RCTU Interface

The following description is taken from §2.1.2.6.1 of Applicable Document 3.

The heart of the serial downlink interface is a DMA controller which transfers data from the M-bus bulk memory to a
parallel to serial converter register which is memory mapped onto the M-bus. The RCTU clock shifts out at a bit rate of
128 Kbits/sec (7.8 microseconds/bit); see the RCTU Users� Guide for further details. The downlink data register is 32-
bits wide, so that 4 bytes (one telemetry word = 8 bits) can be loaded into the register simultaneously, giving a minimum
register turnaround time of 250 s. (The turnaround time could be considerably longer since there are �dead� periods
when the clock is absent, and the DPA is not feeding the link.)

A dedicated state machine resident in a FPGA will serve as the �downlink transfer controller� (DTC). The downlink
transfer controller contains a 12 bit start_addr register, a 12_bit end_addr register, and a 6 bit page_addr register. An M-
Bus address is generated by combining a 12 bit counter output with the page address. Each M-Bus read clocks the counter
to the next longword address and simultaneously writes a longword to the DTC.

Upon detecting a DNLKTRENB (written to the BEP control register), the DTC loads an internal 12-bit counter with
start_addr and fills two 32-bit buffers (two longwords indexed by the address counter). It then transmits serialized
telemetry to the RCTU serial data I/F at a rate established by the RCTU, filling its 32-bit buffers on an alternating as-
needed basis. An end-of-transfer signal and Downlink Interrupt is generated by the DTC when an end_addr has been
detected. The hardware automatically disables the DTC (deasserts DnlkTransEnb) after fetching the word indexed by
end_addr from main memory. The CPU can abort a DTC transfer by clearing the DNLKTRENB bit. In this case, the
DTC will send out the pending 32-bit word and exit; no DNLKINT will be generated. (A watchdog or commanded reset
will have a similar effect, as they both deassert DNLKTRENB.)

NOTE: the DTCENB control register bit is deasserted one clock cycle before the assertion of DNLKINT.
Additionally, several clock cycles transpire before the CPU recognizes the interrupt. Therefore, at the trailing edge of a
DTC packet transfer, polling the control register may indicate that the transfer has finished before the DNLKTRENB
interrupt has gotten to the CPU. (There is a ~300 ns window where this could occur. This is only a conflict if the DTC is
run simultaneously in polled and interrupt driven modes.)

The RCTU downlink I/F state machine receives data from the DTC, shifts out the 32-bit word (low byte first, MSB
first within each byte). The RCTU downlink I/F state machine is responsible for detecting the Science Header Pulse,
latching the timestamp counter, and shifting it out as the first four bytes following the pulse detection. When the DTC is
disabled, the hardware shifts out the timestamp counter in the usual telemetry slot. A fill pattern (B7 hex) is inserted for
science data when the DTC is disabled.

The following requirements are imposed by DPA dynamic operation and the flight software:

� DMA turnaround time of 0.5 ms. (The flight software must service a downlink interrupt, and set up for the next
DTC transfer or it may miss sending (at the rate of one word per 0.25 ms) telemetry, in which case a fill-pattern
will be inserted by the hardware.)

� DMA must not stall the bus (< than 5 s per M-bus grant)

� Predefined fill pattern (B7 hex) to be supplied when the processor is not active, or is not driving the link

� Hardware must insert the running timestamp count into fixed positions in the telemetry stream (each four bytes
following the detection of a Science Header Pulse).

� All DTC transfers must be longword aligned with respect to M-Bus memory. (Since the RCTU operates in byte
transfer mode, the longword structure �floats� within the RCTU format, and will be reconstructed on the ground
by the AXAF Science Center.)

� Startup and boundary characteristics shall be well defined: the falling edge of the next byte requested by the RCTU
will activate the first �packet� transfer following the assertion of DNLKTRENB.

The maximum DTC packet size is 8192 bytes; the minimum packet size is 8 bytes.

Page 12 of 17

September 30, 2005 SPR 138 (M05040701) Version 1.0

Appendix B. Telemetry Software Classes

The BEP flight software used an object-oriented design called the Booch Method (see
Applicable Document 5) and implemented in the Rational Rose� CASE tool. In this
approach, the relationships between classes is described by a Class Diagram, and particular
scenarios by Object Diagrams (e.g., Fig. 6). Classes and their methods are enclosed in bubbles.
Arrows point from subclass to superclass; lines terminating in dots and squares represent
methods of one class using objects of the other, etc.

FIGURE 76. Telemetry Management Class Relationships

TlmPkt
getBufferAddress()
getBufferLength()
prepareForXfr()

release()
setFormatTag()

setPacketLength()
setSequence()

TlmPkt()

TlmManager
post()

sendPanic()

TlmDevice
(from Devices)

handleInterrupt()
isBusy()
reset()

startTransfer()

Queue
(from Executive)

howMany()

IntrDevice
(from Devices)

installCallback()
 invokeCallback()

AA

TlmCallback
invoke()

DevCallback
(from Devices)

AA

callbackPtr
1 1

TlmQueue
enqueuePkt()
requestPkt()
TlmQueue()
waitForPkt()

sendQueue

1

tlmManager

TlmAllocator
releasePkt()
requestPkt()

TlmAllocator()
waitForPkt()

MemoryPool
(from Executive)

available()

TlmPool
allocatePkt()

TlmPool()

tlmDevice
1

TlmForm
hasBuffer()

post()
requestBuffer()

TlmForm()
waitForBuffer()
 appendField()

 getWordCount()
 putField()
~TlmForm()

AA

tlmManager

freeQueue
1

instancePool

1

owner
1

TlmFatal
sendMessage()

TlmFatal()

pkt

1

pktPtr

1

allocator

1

Figure 4: Telemetry Management class diagram.

FIGURE 30. Telemetry Device Class Relationships

TlmDev i ce - This class represents the Back End’s downlink logic and controller hard-

TlmDevice
handleInterrupt()

isBusy()
reset()

startTransfer()

IntrDevice
installCallback()

 invokeCallback()

AA

BepReg
clrControl()

dtcEnd()
dtcStart()

getStatus()
pulse()

setControl()

Figure 5: Class diagram for a Telemetry Device.

Page 13 of 17

SPR 138 (M05040701) Version 1.0 September 30, 2005

Appendix C. A Telemetry Scenario: Writing a Packet

Any routine in any BEP task can write a packet. The general scheme is shown in Fig. 6. The
following steps are executed.

1. A client decides to create and send a telemetry packet. It declares tlmForm, whose
constructor initializes the state of the instance, and zeros its packet instance pointer.

2. The client then waits for a telemetry packet buffer to become available using
tlmForm.waitForBuffer().

3. tlmForm.waitForBuffer() in-turn calls its allocator�s member function,
tlmAllocator.waitForPkt() to attempt to reserve an unused TlmPkt instance.

4. tlmAllocator.waitForPkt() then invokes freeQueue.waitForPkt().

5. And finally, freeQueue.waitForPkt() invokes its protected member function,
Queue::waitForItem() to block until a telemetry packet pointer becomes available. Once
the allocator returns, tlmForm retains the acquired packet pointer until it is either posted,
(see step 11), or until tlmForm is destroyed. If tlmForm is destroyed prior to the packet
being posted, tlmForm�s destructor releases the packet back to its allocator. If the packet
is posted to the tlmManager, tlmForm is no longer responsible for the packet, and it is
tlmManager�s responsibility to ensure that the packet is released.

6. Once a packet has been obtained by tlmForm, it sets the packet�s format tag using
tlmPkt.setFormatTag().

7. tlmForm then obtains and caches the packet�s buffer address and length, for use later
when the client writes fields into the packet, using tlmPkt.getBufferAddress() and
tlmPkt.getBufferLength().

8. The client then writes zero or more fields into the telemetry packet buffer, using
member functions supplied by the format-specific tlmForm instance. The tlmForm
instance uses the inherited TlmForm::putField() and TlmForm::appendField() functions to
write the data into the packet�s buffer.

9. Once the client has completed the packet, it tells the tlmForm to transfer the packet out
of the instrument using tlmForm.post().

10. tlmForm.post() then computes the number of words written into the packet, using
tlmForm.getWordCount() and passes the result the packet, using tlmPkt.setPacketLength().

11. tlmForm.post() then invokes tlmManager.post(), passing the address of tlmPkt.

12. tlmManager.post() sets the packet�s sequence number using tlmPkt.setSequence() and
then places the packet address on the end of its queue, using sendQueue.enqueue-
Pkt(), which then uses Queue::enqueue().

13. Once tlmManager.post() returns, tlmForm zeros its local pointer to the packet. This ends
tlmForm�s responsibility concerning tlmPkt, and the client can destroy (~TlmForm)
tlmForm, without affecting the posted tlmPkt.

14. Once the telemetry device is ready, tlmManager gets the next telemetry packet to send
from the queue using sendQueue.requestPkt().

15. tlmManager then copies packet header information and obtains the packet�s buffer
address and length using tlmPkt.prepareForXfr().

16. tlmManager then tells the telemetry device to transfer the packet, using
tlmDevice.startTransfer().

17. Once the transfer completes, tlmDevice�s interrupt handler invokes the installed telemetry
callback, tlmCallback.invoke().

Page 14 of 17

September 30, 2005 SPR 138 (M05040701) Version 1.0

18. tlmCallback.invoke() then invokes the tlmManager.serviceDevice() to release the packet�s
buffer and start the next transfer (if a packet is available).

19. tlmManager.serviceDevice() function then releases the completed packet using
tlmPkt.release().

20. tlmPkt.release() in-turn calls its owner�s TlmAllocator::releasePkt().

21. tlmAllocator.releasePkt() then invokes freeQueue.enqueuePkt().

22. Finally, freeQueue.enqueuePkt() uses the protected function, Queue::enqueue() to place the
available packet onto the end of the queue.

The non-reentrant part occurs in Step 12 above, since serviceDevice() should only be called if
there is no DMA activity under way, but this is indicated by giving curPkt a zero value after a
call to curPkt->release() and sendQueue.requestPkt(). A second task calling TlmManager.post() and
still finding zero curPkt, will go ahead and call serviceDevice() and trigger the anomaly.

1. A client decides to create and send a telemetry packet. It declares tlmForm , whose
constructor initializes the state of the instance, and zeros its packet instance pointer.

tlmForm

tlmPkt

tlmManager

tlmDevicetlmCallback

client

freeQueue

sendQueue

LL

FF

GG

FF

GG

GG

PP

PP

1::TlmForm
2::waitForBuffer

8::write fields
9::post

13::~TlmForm

5::waitForItem
22::enqueue

6::setFormatTag
7::getBufferAddress,

getBufferLength
10::setPacketLength

11::post 15:prepareForXfr
19::release

12::enqueuePkt
14::requestPkt

16::startTransfer

17::invoke

18::serviceDevice

tlmAllocator

FF3::waitForPkt
FF

4::waitForPkt
21::enqueuePkt

FF

20::releasePkt

Figure 6: The Object Diagram of subroutine calls required to write a telemetry packet, in Booch
notation. The caller, named �client� in this figure, can be a member of any task.

Page 15 of 17

SPR 138 (M05040701) Version 1.0 September 30, 2005

void TlmForm::post () {
// ---- Get and set length of packet ----
unsigned count = getWordCount();
pktPtr->setPacketLength (count);
// ---- Tell telemetry manager to send packet ----
tlmManager.post (pktPtr);
// ---- No longer responsible for the packet ----
pktPtr = 0;

}

void TlmManager::post (TlmPkt*pkt){
// ---- Place packet onto queue ----
sendQueue.enqueuePkt (pkt);
// ---- If no transfers in progress, start one up ----
if (curPkt == 0) {

serviceDevice (0);
}

}

void TlmManager::serviceDevice (IntrDevice*devptr) {
// ---- If just finished transfer, release packet ----
// NOTE: If we do not zero the packet pointer after the
// release, we prevent post() from attempting to start a
// new transfer during this block of code. This removes
// the need for disabling interrupts here and in post().
if (curPkt != 0) {

curPkt->release ();// Release packet for re-use
 }

// ---- Attempt to get next packet to send ----
curPkt = sendQueue.requestPkt ();
// ---- If non-zero, start a new transfer ----
if (curPkt != 0) {

// --- Set the packet sequence number ---
curPkt->setSequence (curSequence);
curSequence++; // Advance sequence number
// --- Ready packet and get transfer address & count ----
unsigned* xfraddr; // Transfer address
unsigned xfrcnt; // Number of words to transfer
curPkt->prepareForXfr (xfraddr, xfrcnt);
// --- Start transferring the packet ---
tlmDevice.startTransfer (xfraddr, xfrcnt);

}
}

TlmPkt* TlmQueue::requestPkt() {
TlmPkt* pkt = 0; // Packet pointer
// ---- Attempt to dequeue, zero return value if it fails ----
if (Queue::dequeue(&pkt) == BoolFalse) {

pkt = 0; // None ready
}
// ---- Return dequeued packet, or 0 if none ready ---
return pkt;

}

Page 16 of 17

September 30, 2005 SPR 138 (M05040701) Version 1.0

Appendix D. The expect script �runtest.tcl�

Two copies of the runtest.tcl script exist: one to run with the standard.bcmd patches, the other
with standard.bcmd and with the new tlmbusy.bcmd patch (denoted original and patched). The
script uses several tools from the ACIS patch test environment (see Applicable Document 6).

#! /bin/env expect
#
Simulation of telemetry anomaly -- without tlmbusy patch
#

puts "Welcome to tlmbusy/testsuite/bugfix-hw/runtest.tcl"

---- Get runtime parameters ----
set basedir [lindex $argv 0] ; # patch base directory
set tools [lindex $argv 1] ; # tool directory
set patchdir [lindex $argv 2] ; # patches under test
set server $env(ACISSERVER) ; # lrtcu/ctue server
set port $env(PORT) ; # lrtcu/ctue server command port

---- Embed procedure library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Start command pipe ----
spawn /bin/sh -c "bcmd | cclient $server $port"
set cmd_id $spawn_id ; # copy the process ID

---- Start telemetry pipe ----
spawn /bin/sh -c "filterClient -h $server | psci -m -u"
sleep 1 ; wait for client to start

---- Apply patches ----
cold_boot
load_patch_list "$basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_dearepl.bcmd\
 $basedir/$patchdir/standard.bcmd\
 $basedir/$patchdir/tlmbusy.bcmd"
warm_boot

---- Power on FEP and CCD ----
power_on_boards "0 10 10 10 10 10"

---- While powering up, load the Bias Image ----
system "make bias"

---- Wait for FEP to finish powering ----
expect {
 -re ".*SWSTAT_FEP_EXECMEM: 0\[\r\n]" {}
 timeout {}
}

---- Start DEA housekeeping ----
send -s -i $cmd_id "load 0 dea 4 deablk.cmd\r"
command_echo 1 13 "load dea"
send -i $cmd_id "start 0 dea 4\r"
command_echo 1 18 "start dea housekeeping"

Page 17 of 17

SPR 138 (M05040701) Version 1.0 September 30, 2005

---- Load parameter block ----
send $cmd_id "load 0 te 4 teblk.cmd\r"
command_echo 1 9 "load te"

---- Start the Bias Run ----
send -i $cmd_id "start 0 te bias 4\r"
command_echo 1 15 "start bias run"
set timeout 600
wait_stop_science

---- Load the Event Image ----
system "make image"

---- Start the Science Run ----
send -i $cmd_id "start 0 te 4\r"
command_echo 1 14 "start science run"

set ncmd 0 ; # command packet counter
set nread 0 ; # number of commands unacknowledged
set cmdmax 5 ; # maximum commands unacknowledged
set expo 0 ; # current exposure packet number
set nexpo 20000000 ; # limit to number of exposures

---- Examine the telemetry ----
expect {
 -re "commandEcho.*commandOpcode=3\[\r\n]" {
 if {$nread > 0} {
 set nread [expr $nread - 1]
 }
 exp_continue
 }
 -re "exposureTeGraded.*exposureNumber=(\[0-9a-fx]+).*\n" {
 set expo [expr $expect_out(1,string)]
 if { $expo < $nexpo } {
 if { $nread <= $cmdmax } {
 set ncmd [expr ($ncmd + 1) % 65536]
 incr nread
 send -i $cmd_id "read $ncmd 0xa000e5e0 1\r"
 }
 exp_continue
 }
 # ---- fall through to stop the run ----
 }
 timeout {
 fail "No exposure record"
 }
}

---- stop the science run ----
send -i $cmd_id "stop 0 science\r"
command_echo 1 19 "stop science"
set timeout 30
science_report 1 "science report"

---- Report end of run ----
pass "$expo exposures received"

ENGINEERING CHANGE ORDER
ECO No.

36–1033

CENTER FORSPACERESEARCH
MASSACHUSETTSINSTITUTE OFTECHNOLOGY

DWG. NO. NEW
REV. DRAWING TITLE

 36-58030.29 A Flight S/W patch to prevent BEP telemetry packet loss

REASON FORCHANGE:
Telemetry packets are enqueued in the BEP via a call to theTlmManager::post() method.
If this routine is called by one task while it is still processing a call from another task, the first
packet will be truncated and a random block of data from within the telemetry buffer area will
be telemetered in place of the second packet. The problem can be prevented by cancelling task
switching while TlmManager::post() is running.

DESCRIPTION OFCHANGE:
ReplaceTlmManager::post() with a version that callstaskManager.forbidPreempt()
before callingserviceDevice() and callstaskmanager.permitPreempt() afterwards.

SIGNATURE DATE REMARKS:

ORIGINATOR Peter Ford 08/09/07 Approved version

MECHANICAL

ELECTRICAL

SOFTWARE

STRUCTURE

FABRICATION

SCIENCE

SYSTEMSENG.

QUALITY

PROJ. ENGINEER

DEPUTY PM

PROJ. MANAGER

MIT CSR

ACIS

ECO 36–1033

- 2 -

1. REASONS FORCHANGE

The CXCDS was unable to process OBSID 5645 at the first attempt on March 30, 2005,
because of the presence of a single data packet of typedataCcGraded. Since the observa-
tion was being conducted in Very Faint Timed Exposure mode, this unexpected packet
caused the processing program to halt. It was found that thedataCcGraded packet was fol-
lowed by several kilobytes of “garbage”, consisting of partial telemetry buffers that could
be recognized as already-telemetered packets.

Subsequent inspection of all ACIS telemetry since launch turned up 25 previous instances
of this behavior, although the size and contents of the “garbage” differed in each case.

The problem was traced to a feature of the BEP telemetry manager. Telemetry packets are
enqueued via a call to theTlmManager::post() method. If this routine is called by one
task while it is still processing a call from another task, the first packet will be truncated
and a random block of data from within the telemetry buffer area will be telemetered in
place of the second packet.

The problem is prevented by cancelling task switching whileTlmManager::post() is run-
ning, and has been implemented as thetlmbusy standard patch described in the current doc-
ument. For details of the original analysis, see ACIS report SPR138-1.0, September 30,
2005.

2. PROPOSEDCHANGE

Change theTlmManager::post() method:

void Test_TlmManager::post(TlmPkt*pkt)
{
 DebugProbe probe;
 // ---- Place packet onto queue ----
 sendQueue.enqueuePkt (pkt);
 // ---- If no transfers in progress, start one up ----
 if (curPkt == 0) {
 serviceDevice (0);
 }
}

by addingtaskManager calls to suspend task switching withinserviceDevice() :

void TlmManager::post(TlmPkt*pkt)
{
 DebugProbe probe;
 // ---- Place packet onto queue ----
 sendQueue.enqueuePkt (pkt);
 // ---- Prevent task preemption ----
 taskManager.forbidPreempt();
 // ---- If no transfers in progress, start one up ----
 if (curPkt == 0) {
 serviceDevice (0);
 }
 // ---- Allow task preemption again ----
 taskManager.permitPreempt();
}

ECO 36–1033

- 3 -

Since these calls cannot be added “inline”, we must replace the entire method, which we do
by defining a new public subclass ofTlmManager .

class Test_TlmManager : public TlmManager
{
public:
 ~Test_TlmManager() {};
 void post(TlmPkt*pkt);
};

and we instruct the patch generator to replace the address ofTlmManager::post() with
that ofTest_TlmManager::post() in the C++ jump table.

3. CONTROLLED SOURCES

tlmbusy

SPR138–1.0.pdf Report of the original anomaly and its subsequent investigation

eco-1033.doc Engineering change order describing thetlmbusy patch.

spr138.pdf Originating software problem report

standalone.mak Makefile script to generate test patch

tlmbusy.C Source code for Test_TlmManager class

tlmbusy.mak Makefile script to generate standard patch

tlmbusy.pkg Script to generate patch release

tlmbusy/testsuite

makebias Generate a TE bias image and copy it to the image loader.

makeimage Generate a TE image with events and copy it to the image loader.

tlmbusy/testsuite/bug-hw

Makefile Run tests of thefepignorebreak commands.

standard.bcmd Standard patch load for testing

runtest.tcl Test script for 600 kilosecond run

tlmbusy/testsuite/fix-hw

Makefile Run tests of thefepignorebreak commands.

standard.bcmd Standard patch load for testing

tmbusy.bcmd New patch for testing

runtest.tcl Test script for 600 kilosecond run

tlmbusy/testsuite/smoke

Makefile Run tests of thefepignorebreak commands.

standard.bcmd Standard patch load for testing

tmbusy.bcmd New patch for testing

runtest.tcl Test script for short run

ECO 36–1033

- 4 -

4. TESTING

Thus far, all ACIS flight software patches have been tested by explicit demonstration,i.e.,
a science run is started on the engineering unit and stopped when the particular anomaly
has been detected. The new patch is then applied and a second run is started. The job is
stpped when it is clear that the anomaly has not recurred.

In the current instance, it is impractical to test in this manner since, as described in the re-
port (SPR138-1.0), it takes many hundreds of hours of run time before the anomaly shows
up, and even longer to be sure that the behavior has been prevented by the patch. We shall
therefore use the report as a validation of the patch, and merely test it for a few minutes to
be quite sure that it isn’t affected by, or itself affects, the other patchs.

The test is performed on the ACIS Engineering Unit using 6 FEPs, an image loader, and an
L-RCTU interface. After setting up ashim process to handle I/O between UNIX and the L-
RCTU, the tests are controlled by scripts written in theexpect dialect of TCL.

4.1. Standard Test

An expect procedure, “smoke/runtest.tcl”, performs a timed-exposure science run with the
standard andtlmbusy patches. The following steps are performed:

1. A command pipe is spawned down which ACIS commands will be written.

2. A telemetry pipe is spawned, terminating in the “psci -m -u” packet monitoring func-
tion with expect examining the standard output.

3. ACIS is cold-booted.

4. Software housekeeping, DEA replacement, and standard flight patches, including
tlmbusy, are applied.

5. ACIS is warm-booted.

6. All FEPs are powered up.

7. A bias map containing the same value in each pixel of a given quadrant is written to
the image loader.

8. A DEA housekeeping parameter block is sent to ACIS, calling for one readout per sec-
ond. Housekeeping is restarted.

9. A te_3x3 parameter block is sent to ACIS. It calls for one FEP to be run in faint graded
mode, calling for a 100-row subarray and 0.3 second exposures.

10. A science run is started.

11. Whenever an exposure packet is generated, theexpect script issues areadBep com-
mand. The aim is to stress the BEP, causing its task manager to switch between threads
(Science, DEA housekeeping, Software housekeeping, Command management, Mem-
ory Management), and hence make it most likely that the anomaly will be triggered.

12. If the anomaly isn’t triggered after 5 minutes of event data, astopScience command
will be sent..

13. If ascienceReport packet is received withterminationCode = 1 , the test is deter-
mined to have passed.

ECO 36–1033

- 5 -

4.2. Test to Reproduce the Anomaly

This test used the same methodology as in Section 4.1, above, except that thetlmbusy patch
was omitted from Step 4 and theexpect script was run for an extended period. As described
in Section 7 of the SPR-138 Report,1 the test was run twice, the first time for 622,101 sec-
onds, the second for 623,229 seconds, during which a total of 13 anomalies were recorded.

4.3. Test of the Patch

This test used the same methodology as in Section 4.1, above, except that theexpect script
was run for an extended period. As described in Section 7 of the SPR-138 Report,1 the test
was run twice, the first time for 585,991 seconds, the second for 624,406 seconds, during
which no anomalies were recorded.ß

1 This document may be downloaded from "ftp://acis.mit.edu/pub/SPR138-1.0.pdf".

ENGINEERING CHANGE ORDER
ECO No.

36–1034

CENTER FORSPACERESEARCH
MASSACHUSETTSINSTITUTE OFTECHNOLOGY

DWG. NO. NEW
REV. DRAWING TITLE

 36-58030.30 A Flight S/W patch to prevent BEP bus crash on FEP powerdown

REASON FORCHANGE:
If ACIS is computing bias maps when commanded to power down its front-end processors
(FEPs), it is likely to crash the back-end processor (BEP) interface bus, causing the BEP to
reboot without flight software patches. Normal operations must be restored via ground com-
mand. The cause of the problem has been traced to a design flaw in the BEP flight software
and this ECO describes a small patch that will fix it.

DESCRIPTION OFCHANGE:
Replace theFepManager::loadBadPixel() routine, which merely calls the appropriate
FepIo::writeBiasValue() method, with one that first callsFepManager::ieEnabled() to
check whether the FEP is powered up, and only callsFepIo::writeBiasValue() if it is.

SIGNATURE DATE REMARKS:

ORIGINATOR Peter Ford 08/09/07 Accepted version

MECHANICAL

ELECTRICAL

SOFTWARE

STRUCTURE

FABRICATION

SCIENCE

SYSTEMSENG.

QUALITY

PROJ. ENGINEER

DEPUTY PM

PROJ. MANAGER

MIT CSR

ACIS

ECO 36–1034

- 2 -

1. REASONS FORCHANGE

If ACIS is computing bias maps when commanded to power down its front-end processors
(FEPs), it is likely to crash the back-end processor (BEP) interface bus, causing the BEP to
reboot without flight software patches. Normal operations must be restored via ground com
mand. This situation has arisen 3 times since launch. The cause of the problem has been
traced to a design flaw in the BEP flight software and this ECO describes a small patch that
will fix it.

During execution of SCS107, typically due to high background radiation, ACIS is powered
down. Science telemetry reports that the flight s/w version number is 11, whereas typical val-
ues (depending in the patch combination) are 30 or higher, indicating that the BEP rebooted
itself. Subsequent inspection of the recorded telemetry shows noscienceReport packet from
the last science run, but abepStartupMessage packet withlastFatalCode=7 andwatchdog-
Flag=1 .

Since the observatory is usually in safe mode for several hours following the SCS107, there
is generally sufficient time to establish a realtime contact, set the BEP's warm-boot flag, and
restart it. However, this takes time and manpower.

The bus crash has been traced to a flaw in theFepManager::loadBadPixel() method. This
routine is executed after the FEP bias maps have been created and before they are (optionally)
reported in telemetry. It uses the memory-mapped interface between BEP and FEP to change
those locations in the FEP bias maps that correspond to "bad" pixels or whole columns. How-
ever, unlike all other FepManager operations,loadBadPixel() does not confirm that a FEP
is powered up before it writes to its map. This causes the bus crash.

2. PROPOSEDCHANGE

Replace theFepManager::loadBadPixel() method:

void FepManager::loadBadPixel(FepId fepid, unsigned row,
 unsigned col)
{
 DebugProbe probe;
 fepIo[fepid]->writeBiasValue(row, col, PIXEL_BAD);
}

with the following:

class Test_FepManager
{
public:
 virtual void loadBadPixel(FepId fepid, unsigned row, unsigned col);
 friend class Test2_FepManager;
};

void Test_FepManager::loadBadPixel(FepId fepid, unsigned row,
 unsigned col)
{
 DebugProbe probe;
 if (fepManager.isEnabled(fepid) == BoolTrue) {
 fepIo[fepid]->writeBiasValue(row, col, PIXEL_BAD);
 }
}

ECO 36–1034

- 3 -

It is necessary to define a new class because the call to isEnabled() takes up too many ma-
chine instructions to be performed in an "inline" patch. The choice ofTest_FepManager
for the new class is dictated by the existing header file,fepmanager.H, which already in-
cludes the statement

friend class Test_FepManager;

in its definition of theFepManager class. Since the only existing BEP patch that defines this
new class is the optionalhybrid patch, these two patches cannot be linked together without
renaming one of theTest_FepManager declarations. Sincebuscrash will be a standard
patch, andhybrid will be optional, it is the latter that must change toTest2_FepManager ,
and we make provision for this inbuscrash with the declaration

friend class Test2_FepManager;

3. CONTROLLED SOURCES

buscrash

buscrash.C Source code for theTest_FepManager class

buscrash.mak Makefile script to generate test patch

buscrash.pkg Script to generate patch release

eco-1034.doc Engineering change order describing thebuscrash patch

spr140.pdf Originating software problem report

fepignorebreak/testsuite

makebias Generate a bias image and copy it to the image loader

fepignorebreak/testsuite/bug-hw

Makefile Run a test without thebuscrash patch

runtest.tcl expect script to demonstrate a BEP bus crash

fepignorebreak/testsuite/fix-hw

Makefile Run a test with thebuscrash patch

standard.bcmd Standard patches, includingbuscrash

runtest.tcl expect script to demonstrate prevention of BEP bus crash

ECO 36–1034

- 4 -

4. TESTING

All tests are performed on the ACIS Engineering Unit using one FEP, an image loader, and
an L-RCTU interface. After setting up ashim process to handle I/O between UNIX and the
L-RCTU, the tests were controlled by scripts written in theexpect dialect of TCL.

4.1. Reproduce Test

An expect procedure, “bug-hw/runtest.tcl”, performs a timed-exposure science run with the
standard andopt_dearepl patches. The following steps are performed:

1. A command pipe is spawned down which ACIS commands will be written.

2. A telemetry pipe is spawned, terminating in the “psci -m -u” packet monitoring func-
tion with expect examining the standard output.

3. ACIS is cold-booted.

4. Software housekeeping, DEA replacement, and standard flight patches are applied.

5. ACIS is warm-booted.

6. FEP_0 is powered up.

7. A bias map containing the same value in each pixel of a given quadrant is written to
the image loader.

8. A te_3x3 parameter block is sent to ACIS. It calls for FEP_0 to be run in faint mode,
calling for 3.3 second full-frame exposures.

9. A science run is started. Its telemetry is monitored by theexpect script.

10. Once aSWSTAT_FEP_STARTBIAS user pseudopacket is received, three commands are
sent to ACIS at 2-second intervals: twostopScience commands, followed by a com-
mand to power down FEP_0.

11. The script waits until one of three events occurs: (1) abepStartupMessage packet is
received, indicating that the BEP has crashed; (2) ascienceReport packet is received,
incicating that the run ended normally without a crash; (3) neither packet has been
received after 6 minutes.

12. The test is passed if case (1) occurs; otherwise, the test fails.

4.2. Fix Test

This test, controlled by theexpect procedure “fix-hw/runtestcc.tcl”. is identical to the Re-
produce Test except in two respects:

1. In step 4,buscrash.bcmd is added to the standard patch load.

2. In step 12, the test passes if case (2) occurs; otherwise it fails.

08/14/07
17:47:07 1../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

TITLE: ACIS Flight Software Standard Patch Component Release Notes

DOCUMENT NUMBER: 36-58010 REVISION: C

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

01 36-984 Initial numeric release jimf 10/27/1998
A 36-1006 Bug fixes, incorporate tests RFG 05/11/1999
B 36-1019 Add new patches, retest RFG 12/16/1999
C 36-1035 Add new patches, retest RFG 08/09/2007
C 36-1035 Add tlmbust and buscrash

08/14/07
17:47:07 2../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Title: ACIS Patch Release Notes for Version C

Software Change Order: 36-1035

Build Date: Tue Aug 14 17:47:07 EDT 2007
Part Number: 36-58010
Version: C
CVS Tag: release-C

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

Load Size: 2188 bytes

--
Description:
 This is the second letter release of the standard patch set for the
 ACIS Flight Software.

 The purpose of this release is to add the reportgrade1 optional patch.

 This patch release uses new tools which combine FEP "C" code patches
 into a single FEP image, which is then patched into spare space in the
 BEP’s FEP load image. It also includes a mechanism to run
 "release-level" tests of the patches, in addition to the regression
 tests provided by the individual patches.

 This release consists of the following bug fix/system modification
 patches, where * indicates the new or modified patches since the
 previous release:

 biastiming - Fixes SPR 117
 corruptblock - Fixes SPR 113
 digestbiaserror - Fixes SPR 116
 histogramvar - Fixes SPR 115
 rquad - Fixes SPR 121
 histogrammean - Fixes SPR 123
 zap1expo - Addresses SPR 122
 condoclk - Addresses SPR 127
 fepbiasparity2 - Addresses SPR 130
 cornermean - Fixes SPR 128
 * tlmbusy - Fixes SPR 138
 * buscrash - Fixes SPR 140

 For archival purposes, this document contains two attachments. The
 first contains ASCII command inputs to the ACIS command generator,
 "bcmd", used to generate the binary patch commands corresponding to
 this release. The second attachment contains the linker map listing
 for the ACIS Flight Software, and the patches built by this release.

 The following documentation identifies these patches, provides a brief
 justification for each patch, and briefly describes the contents of
 these patches and their command, telemetry and science impacts.

--
Addressed Problem Reports:
 SPR-128
 SPR-123
 SPR-127

08/14/07
17:47:07 3../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 SPR-130
 SPR-138
 SPR-122
 SPR-115
 SPR-113
 SPR-140
 SPR-117
 SPR-116
 SPR-121

--
Included Patches:
 tlmbusy
 fepbiasparity2
 biastiming
 histogramvar
 zap1expo
 digestbiaserror
 corruptblock
 cornermean
 buscrash
 rquad
 condoclk
 histogrammean

--
Additional Release Level Tests:

08/14/07
17:47:07 4../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: tlmbusy

Part Number: 36-58030.29
Version: A
SCO:

Description:
 This standard patch prevents the BEP from writing anomalous telemetry
 output when the TlmManager::post() method is called from one task while
 it is still enqueuing a packet from another task.

 The BEP will not drop the occasional packet (usually a housekeeping
 packet), and will be prevented from writing garbage in its stead.
 This will prevent the ground system from mis-processing science runs
 in which the garbage consists of correctly formatted, but unexpected,
 packets.

Applicable Reports/Requests:
 SPR-138
 SER-None

Test Results:
 smoke --> PASS

Replaced Functions:
 TlmManager::post

Command Impact:
 None.

Telemetry Impact:
 The occasional packet drop-out or garbling will no longer occur, so the
 impact should be wholly favorable.

Science Impact:
 None.

08/14/07
17:47:07 5../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: fepbiasparity2

Part Number: 36-58030.19
Version: A
SCO: 36-1015

Description:
 In TE mode, this patch causes FEP_0 to bypass the upper half of each
 image map (rows 512 through 1023) if the bias parity errors in any one
 frame reported by the firmware exceed a threshold value (10). In
 addition, the 10 bias values, and their corresponding pixel values,
 are copied to a static location from which they can be dumped at a
 later time. In CC mode, the patch copies the lower half of the FEP_0
 bias map into the upper half whenever 10 or more bias errors have been
 detected.

 The patch has no effect on other FEPs.

Applicable Reports/Requests:
 SPR-130

Test Results:
 bugTe --> PASS
 bugCc --> PASS
 fixTe --> PASS
 patchCc --> PASS

Replaced Functions:

Command Impact:
 Once the patch is installed and FEP_0 powered up and running, it is
 advisable to clear its static save area via the following command:

 write ‘c’ fep 0 0x80000210 {
 0
 }

 Then, either on a regular basis, or when it is noticed that 10
 parity errors have been reported from a single FEP_0 exposure frame,
 the following command should be executed to dump the contents of the
 static save area:

 read ‘c’ fep 0 0x80000210 20

Telemetry Impact:
 If 10 or more bias parity errors are detected in FEP_0 during a
 timed-exposure science run, fepbiasparity2 will prevent more from
 being reported in telemetry. Once the threshold is reached, no further
 events will be reported from rows 512-1023. In 5x5 mode, a few
 additional parity errors may be reported from row 512.

 In continuous clocking mode, when 10 or more bias parity errors are
 detected in FEP_0, fepbiasparity2 will copy the entire contents of the
 lower half of the bias map, i.e., 512 rows x 1024 pixels, to the upper
 half, thereby (hopefully) restoring the original contents. Occasional

08/14/07
17:47:07 6../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 parity errors will be corrected in the usual manner, i.e., by
 searching through the bias map, starting at row 0, for a pair of
 undamaged values.

Science Impact:
 When this patch is triggered in timed-exposure modes, no further
 parity errors will be reported from rows 513-1023 of the CCD attached
 to FEP_0. In 3x3 mode, no events will be reported from rows 511-1023;
 in 5x5 mode, none will be reported from 510-1023. Ground software must
 be prepared to sense this condition, e.g., by examining the
 biasParityErrors fields in exposure packets, or by recognizing the
 absense of events above row 512, and updating the exposure maps
 accordingly.

 The patch should have less impact in continuous clocking mode. When
 the 10-error threshold is triggered, FEP_0 may skip an exposure frame
 while replacing the upper half of its bias map, but otherwise, event
 processing will continue, taking advantage of the full area of the
 CCD.

08/14/07
17:47:07 7../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: biastiming

Part Number: 36-58030.04
Version: A
SCO: 36-993

Description:

 Reason:
 This patch fixes a software problem which was first
 encountered during AXAF thermal vacuum testing at TRW.

 Symptom:
 At TRW thermal vacuum testing, someone observed that the
 instrument sent a science report in the middle of trickled
 bias map data. Bev has subsequently observed one case where
 the instrument started sending science data while trickling
 the bias maps.

 Symptom Impact:
 This symptom opens the possibility that the FEP threshold
 plane will lock up during a science run if the event rate
 is high enough (on the order of 5K events/sec/CCD).

 Symptom Cause:
 When the science manager tells the bias thief to start,
 by calling biasReady(), it set the thief’s busy flag prior
 to signaling the task to start. If the task monitor
 sneaks in, the bias thief’s main loop, goTaskEntry() ends
 up re-clearing the busyFlag, but then later picks up
 the start event and starts trickling the bias map. Since
 the busyFlag is clear at this point, the science manager
 assumes that the bias has been sent, and proceeds on to the
 data processing portion of the run (or if it’s a bias only
 run or the run has been told to stop, the terminate the run).

 Fix Description:
 This patch replaces the BiasThief::biasReady() function
 with one that re-orders the setting of the busyFlag. In
 the patched version, the busyFlag is set AFTER the
 notification to the thief to start sending the bias.
 If the task monitor sneaks in, the thief will clear
 the flag, but once we return to the biasReady() function,
 the flag will be correctly asserted.

Applicable Reports/Requests:
 SPR-117

Test Results:
 unit --> PASS
 fix --> PASS

Replaced Functions:
 BiasThief::biasReady

Command Impact:

08/14/07
17:47:07 8../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 None

Telemetry Impact:
 When this patch is not installed, it is possible, but rare, for bias maps
 to be telemetered while data processing is running and telemetering
 event data and exposure records, and even for a science report to
 be issued while the bias maps continue to be telemetered.

 Once the patch is installed, the instrument will reliably wait until
 all of the bias maps have been telemetered before proceeding with
 the data processing portion of the run.

Science Impact:
 Without this patch, it is possible, but extremely unlikely, that the
 FEP hardware threshold plane may lockup. This results in unreasonably
 low energy events being reported in the same set of positions, where ever
 there was a threshold crossing at the point where the threshold hardware
 locked up. This occurrence has only been seen with high event rates,
 on the order of 3000-5000 per exposure.

 With this patch, this situation will not occur.

08/14/07
17:47:07 9../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: histogramvar

Part Number: 36-58030.03
Version: A
SCO: 36-999

Description:
 This patch fixes a software problem, SPR-115.

 Symptom:
 The Raw Histogram Mode occassionally produces anomalously large
 values for the low word of the overclock variances.

 Symptom Impact:
 This slightly degrades the science analysis of histogram
 mode data by very occassionally providing bad variance values
 for the overclocks.

 Symptom Cause:
 The error is cause by an unsigned integer divide which should
 have been a signed integer divide. If the low order word ends up negative
 this produces an incorrectly high value for the variance.

 Fix Description:
 This inline patch modifies the FEP to use a signed divide instead
 of unsigned divide.

Applicable Reports/Requests:
 SPR-115

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 None

Science Impact:
 This patch affects Histogram Mode Only.
 Without this patch, the overclock variances in histogram mode may
 occassionally be incorrect. Once this patch is installed, the
 Flight Software correctly computes overclock variances.

08/14/07
17:47:07 10../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: zap1expo

Part Number: 36-58030.16
Version: A
SCO: 36-997

Description:
 Reason:
 In event-finding mode, the FEP thresholds are adjusted using delta-overclock
 values, which are calculated from difference between the average overclock
 values from the preceding frame and the average overclock values from the
 initial bias frame. The delta-overclocks for the initial data frame are set
 to zero, i.e., it is assumed that the mean bias levels haven’t drifted
 since the first exposure frame used to compute the bias map. This is
 often a poor assumption, and can lead to a very large number of events
 being reported within the first exposure.

 Fix Description:
 Inhibit the FEP from finding any threshold crossings within the first
 examined exposure frame. This is performed at science run initialization
 time within the "fepSciTimed.c":FEPsciTimedInit function (TE mode) and
 the "fepSciCClk.c":FEPsciCClkInit function (CC mode) by storing 4095 in
 the FEP threshold registers. Thus,

 186:fepSciTimed.c **** for (iquad = 0; iquad < 4; iquad++) {
 925 0290 21200000 move $4,$0
 926 0294 0000053C la $5,stageThresh
 926 0000A524
 187:fepSciTimed.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 929 029c 40100400 sll $2,$4,1
 930 $L90:
 931 02a0 21105000 addu $2,$2,$16
 932 02a4 A0024394 lhu $3,672($2)
 933 02a8 00000000
 934 02ac 100043A4 sh $3,16($2)
 188:fepSciTimed.c **** fp->ex.dOclk[iquad] = 0;
 937 02b0 180040A4 sh $0,24($2)
 189:fepSciTimed.c **** FIOsetThresholdRegister(iquad, (short)(fp->tp.thresh[iqu
ad]));
 944 02b4 80180400 sll $3,$4,2
 945 02b8 21107000 addu $2,$3,$16
 948 02bc 21186500 addu $3,$3,$5
 949 02c0 4C004284 lh $2,76($2)
 950 02c4 00000000
 951 02c8 000062AC sw $2,0($3)
 958 02cc 01008424 addu $4,$4,1
 959 02d0 0400822C sltu $2,$4,4
 960 .set noreorder
 961 .set nomacro
 962 02d4 F2FF4014 bne $2,$0,$L90
 963 02d8 40100400 sll $2,$4,1
 964 .set macro
 965 .set reorder
 190:fepSciTimed.c **** }

 becomes

 186:fepSciTimed.c **** for (iquad = 0; iquad < 4; iquad++) {
 925 0290 21200000 move $4,$0
 926 0294 0000053C la $5,stageThresh
 926 0000A524

08/14/07
17:47:07 11../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 187:fepSciTimed.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 929 029c 40100400 sll $2,$4,1
 930 $L90:
 931 02a0 21105000 addu $2,$2,$16
 932 02a4 A0024394 lhu $3,672($2)
 933 02a8 00000000
 934 02ac 100043A4 sh $3,16($2)
 188:fepSciTimed.c **** fp->ex.dOclk[iquad] = 0xfff;
 937 02b0 FF0F0324 li $3,0x00000fff
 944 02b4 180043A4 sh $3,24($2)
 189:fepSciTimed.c **** FIOsetThresholdRegister(iquad, 0xfff);
 945 02b8 80180400 sll $3,$4,2
 948 02bc 21186500 addu $3,$3,$5
 949 02c0 FF0F0224 li $2,0x00000fff
 950 02c4 00000000
 951 02c8 000062AC sw $2,0($3)
 958 02cc 01008424 addu $4,$4,1
 959 02d0 0400822C sltu $2,$4,4
 960 .set noreorder
 961 .set nomacro
 962 02d4 F2FF4014 bne $2,$0,$L90
 963 02d8 40100400 sll $2,$4,1
 964 .set macro
 965 .set reorder
 190:fepSciTimed.c **** }

 and

 174:fepSciCClk.c **** for (iquad = 0; iquad < 4; iquad++) {
 774 01fc 21200000 move $4,$0
 775 0200 0000053C la $5,stageThresh
 775 0000A524
 175:fepSciCClk.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 778 0208 40100400 sll $2,$4,1
 779 $L83:
 780 020c 21105000 addu $2,$2,$16
 781 0210 A0024394 lhu $3,672($2)
 782 0214 00000000
 783 0218 100043A4 sh $3,16($2)
 176:fepSciCClk.c **** fp->ex.dOclk[iquad] = 0;
 786 021c 180040A4 sh $0,24($2)
 177:fepSciCClk.c **** FIOsetThresholdRegister(iquad, (short)(fp->tp.thresh[iqu
ad]));
 793 0220 80180400 sll $3,$4,2
 794 0224 21107000 addu $2,$3,$16
 797 0228 21186500 addu $3,$3,$5
 798 022c 4C004284 lh $2,76($2)
 799 0230 00000000
 800 0234 000062AC sw $2,0($3)
 807 0238 01008424 addu $4,$4,1
 808 023c 0400822C sltu $2,$4,4
 809 .set noreorder
 810 .set nomacro
 811 0240 F2FF4014 bne $2,$0,$L83
 812 0244 40100400 sll $2,$4,1
 813 .set macro
 814 .set reorder
 178:fepSciCClk.c **** }

 becomes

 174:fepSciCClk.c **** for (iquad = 0; iquad < 4; iquad++) {
 774 01fc 21200000 move $4,$0
 775 0200 0000053C la $5,stageThresh

08/14/07
17:47:07 12../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 775 0000A524
 175:fepSciCClk.c **** fp->ex.bias0[iquad] = fp->br.bias0[iquad];
 778 0208 40100400 sll $2,$4,1
 779 $L83:
 780 020c 21105000 addu $2,$2,$16
 781 0210 A0024394 lhu $3,672($2)
 782 0214 00000000
 783 0218 100043A4 sh $3,16($2)
 176:fepSciCClk.c **** fp->ex.dOclk[iquad] = 0xfff;
 786 021c FF0F0324 li $3,0x00000fff
 787 0220 180043A4 sh $3,24($2)
 177:fepSciCClk.c **** FIOsetThresholdRegister(iquad, 0xfff);
 793 0224 80180400 sll $3,$4,2
 797 0228 21186500 addu $3,$3,$5
 798 022c FF0F0224 li $2,0x00000fff
 799 0230 00000000
 800 0234 000062AC sw $2,0($3)
 807 0238 01008424 addu $4,$4,1
 808 023c 0400822C sltu $2,$4,4
 809 .set noreorder
 810 .set nomacro
 811 0240 F2FF4014 bne $2,$0,$L83
 812 0244 40100400 sll $2,$4,1
 813 .set macro
 814 .set reorder
 178:fepSciCClk.c **** }

Applicable Reports/Requests:
 SPR-122

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 No events will be generated for the first examined exposure, i.e.,
 the frame with exposureNumber == 2 (unless the teignore or ccignore
 patches are loaded, in which case it will be the frame with
 exposureNumber == ignoreInitialFrames).

 To determine whether this patch was in effect during a particular
 science run, telemetry processing software should examine the 4 values
 in the deltaOverclocks array in exposure packets with exposureNumber
 == 2 (or with exposureNumber == ignoreInitialFrames if the relevant
 teignore or ccignore patch is installed). If they are all equal to
 4095, the patch was installed and this exposure frame should not be
 included in the good time interval (GTI); if they are all zero, the
 patch was omitted.

Science Impact:
 With this patch installed, the frame with exposureNumber == 2 (or with
 exposureNumber == ignoreInitialFrames if the relevant teignore or

08/14/07
17:47:07 13../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 ccignore patch is installed) should not be included in the GTI maps.

08/14/07
17:47:07 14../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: digestbiaserror

Part Number: 36-58030.02
Version: A
SCO: 36-995

Description:
 This patch fixes software problem SPR-116.

 Symptom:
 When a parity error is detected, the FEP produces a pair of bias
 values with a flag indicating if one or both are corrupt.
 The BEP mishandles this when telemetering the error.
 If the error occurs at an odd column position, the BEP reports
 the wrong column position of the error.

 Symptom Impact:
 This has the potential to degrade the science analysis by providing
 ambiguous knowledge of which bias map values have been
 corrupted.

 Symptom Cause:
 In PmEvent::digestBiasError, it assumes that only one of pair
 of bias values is corrupt and that the FEP reported column
 indicates which of the two is corrupt. This is WRONG.

 Fix Description:
 This inline patch provides a new representation of the bias error event
 and modifies the telemetry format tag to indicate the new format.
 Rather than telemeter the corrupt value (which is fairly useless),
 the 12-bit value field is as follows, where bit 0 is the
 least-significant bit:

 Bits 0 - 3: The top 4 bits of the bias value at the column position
 Bits 4 - 7: The top 4 bits of the bias value at column + 1
 Bits 8 - 11: Unused

 These bits contain the results of the hardware parity check
 of the corresponding pixel bias value.
 The format of these 4 bits are as follows:

 Bit 0 (H/W bit 12) - Always zero
 Bit 1 (H/W bit 13) - H/W computed parity of bias map value
 Bit 2 (H/W bit 14) - Parity bit stored in parity plane
 Bit 3 (H/W bit 15) - Parity error bit (0 - no parity error, 1 - parity error)

 The bit definition information is derived from the
 "DPA Hardware Specification and System Description",
 MIT 36-02104 Rev. C., Section 2.2.2.5.5 "Bias Map Parity Detection".

Applicable Reports/Requests:
 SPR-116

Test Results:
 reproduce --> PASS
 fix --> PASS

08/14/07
17:47:07 15../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 This patch affects the telemetry Pixel Bias Map Error records.
 Without this patch, the error records will be incorrect if the
 error occurs on an odd column.
 With this patch installed, the instrument will telemetry bias
 errors using a new telemetry format, TTAG_SCI_PATCHED_BIAS_ERROR,
 defined by the "Patch Data Bias Error" format in the IP&CL Software
 Structures Definitions, MIT 36-53204.0204 Rev. L.

Science Impact:
 Without the patch installed, there is an ambiguity whether a bias
 error is in the reported pixel, or in the adjacent, odd column.
 Once the patch is installed, the ground can determine exactly which
 pixel was upset.

08/14/07
17:47:07 16../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: corruptblock

Part Number: 36-58030.01
Version: A
SCO: 36-994

Description:
 Reason:
 This patch fixes software problem report SPR-113.

 Symptom:
 If a parameter block is corrupt, the flight software
 may use nonsense parameters, if just powered on, or run
 the previous run mode’s parameter block.

 Symptom Impact:
 If the original parameter block was corrupt and if this was
 the first run since the instrument was powered, the nonsense
 parameters may cause the instrument to crash and reset, preventing
 any science activity during that observation’s time period.
 The system will recover, although without patches, at the onset
 of the next observation. If there was an earlier run of
 the same type, Timed Exposure or Continuous Clocking, the
 previous run’s parameter will be used, which may or may not
 be ideal.

 Symptom Cause:
 The flight software start run routine, ChStartSciRun::processCmd(),
 declares an "alternate" parameter block variable, which is filled
 in by the science mode’s checkBlock() routine if the original
 parameter block is corrupt. processCmd() then erroneously passes
 this "alternate", and a reference to the "alternate" back to
 checkBlock() to verify that the alternate is not also corrupt.
 The called checkBlock() initializes the 2nd reference to INVALID,
 which ends up overwriting the desired alternate block id. This propagates
 through to the run, preventing the mode from loading the parameter
 block, and using, instead, what it had already staged from an earlier run.

 Fix Description:
 This inline patch modifies 2nd parameter to refer to a dummy
 variable when checking the default backup block. This prevents
 the id from being overridden and provides the proper default
 parameter block selection behavior when the selected block
 has been corrupted.

 The original line from chstartscirun.C is:
 if (mode.checkBlock (blockid, alternate) == BoolTrue)
 {
 result = CMDRESULT_OK;
 }
 <<< else if (mode.checkBlock (alternate, alternate) == BoolTrue)
 {
 blockid = alternate;
 usedAlternate = BoolTrue;
 }
 else
 {
 return CMDRESULT_CORRUPT_IDLE;
 }

 The effect of the patch changes this to:

08/14/07
17:47:07 17../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 if (mode.checkBlock (blockid, alternate) == BoolTrue)
 {
 result = CMDRESULT_OK;
 }
 >>> else if (mode.checkBlock (alternate, dummy) == BoolTrue)
 {
 blockid = alternate;
 usedAlternate = BoolTrue;
 }
 else
 {
 return CMDRESULT_CORRUPT_IDLE;
 }

 The stack frame of the modified patch will appear as follows, where
 the offsets in the left-hand column are relative to the stack pointer
 at the time the jump is made to the called subroutine mode.checkBlock(),
 the symbols in the center column indicate the "conventional" locations
 for various registers, and the right column indicates if the assembler
 actually put anything into that stack slot. If "unassigned" then
 the assembler didn’t explicitly store anything into that stack slot.
 If blank, then the "convention"
 (NOTE: In the MIPS processors, calls don’t explicitly push anything
 on the stack. The return address is maintained in "ra" at the time of
 the call and the caller is then required to save it if needed):
 *
 * ChStartSciRun::processCmd() - Stack Frame
 * Convention described in Section 2.3 of
 * MIPS programmers handbook, by Farquahar and Bunce
 *
 * 60 pad unassigned
 * 56 ra ra ($31)
 * 52 s3 s3 ($19)
 * 48 s2 s2 ($18)
 * 44 s1 s1 ($17)
 * 40 s0 s0 ($16)
 * 36 f23 unassigned (patch uses as local "dummy")
 * 32 f22 alternate (local variable)
 * 28 f21 unassigned
 * 24 f20 unassigned
 * 20 pad unassigned
 * 16 arg biasonly argument (arg4) to scienceManager.startRun()
 * 12 a3 unassigned
 * 8 a2 unassigned
 * 4 a1 unassigned
 * 0 a0 unassigned

Applicable Reports/Requests:
 SPR-113

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 Without this patch, corruptions (if any are actually ever encountered)
 may cause an previous parameter block to be used for an observation, or

08/14/07
17:47:07 18../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 at worst, a reset of the instrument.
 When the patch is installed, the instrument will use the appropriate
 default parameter block (slot 0 or slot 1) instead of the corrupted
 parameter block, or will skip the observation if the defaults are
 also corrupt.

Telemetry Impact:
 None.
 Although, without this patch, the instrument may select
 an inappropriate parameter block, the parameter blocks dumped
 to telemetry at the start of a science run will always be the
 the ones actually used for the run.

Science Impact:
 None

08/14/07
17:47:07 19../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: cornermean

Part Number: 36-58030.21
Version: A
SCO: 36-1017

Description:
 Reason:
 This patch fixes software problem report SPR-128.

 Symptom:
 In Timed Exposure Graded Telemetry mode, when some of
 the corner pixels have a small negative corrected pulse
 height, the system reports an incorrect, extremely large
 negative value for the mean corrected pulse height of
 the corner pixels. Additionally, the algorithm rounds
 incorrectly when the mean pulse height is negative (not
 mentioned in the SPR).

 Symptom Impact:
 Barring corrective ground analysis and action, the incorrectly
 reported corner mean value may confuse the science analysis
 process, and at worst, lead to incorrect conclusions about
 the science, or the state of the instrument data processing.

 Symptom Cause:
 The flight software routine, Pixel3x3:computePhGrade() divides
 a signed integer value, cornersum, with an unsigned integer value,
 sumcount (see filesscience/pixel3x3.H). In "C" and "C++", this
 division is performed as an unsigned divide, preventing any sign
 extension, hence the "signedness" of the cornersum is lost.
 The result is stored into a signed value, cornermean, which is
 later converted to a signed 13-bit value for telemetry. When the
 ground software extracts the 13-bit signed value, it will sign-extend
 the value. The effect of losing the sign in the divide, sometimes
 yields incorrect results, some of which appear as large negative values
 when processed by the ground.

 The rounding problem is due to incorrect coding of the integer
 rounding for negative values:
 mean = (sum + (count/2))/count
 should be:
 mean = (sum + (sign(sum) * int(count)/2))/int(count)

 Fix Description:
 This patch implements the fix to the loss of "signedness"
 problem and the rounding using an inline assembler patch.

 To fix the loss of "signedness" problem the patch replaces
 the existing unsigned divide instruction (divu) with a signed
 divide (div).

 In order to fix the rounding problem, more work was needed.

 The coded formula is:
 mean = (sum + (count/2))/count

 In practice, the MIPS assembler implements divides as an
 embedded assembler macro which performs a divide by zero
 check. In the case of Pixel3x3 it is as
 follows:

08/14/07
17:47:07 20../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 0370 2000638E lw $3,32($19)
 0374 00000000
 0378 42100300 srl $2,$3,1
 037c 2400648E lw $4,36($19)
 0380 00000000

 ---- Code we’re going to muck with ----
 0384 21104400 addu $2,$2,$4
 0388 1B004300 divu $2,$2,$3
 02006014
 00000000
 0D000700
 ---- End of code we’re going to muck with ----
 0398 12100000
 039c 00000000
 00000000
 03a4 280062AE sw $2,40($19)

 ...

 Since the C++ code already has an earlier zero check on the
 denominator, the patch re-codes this portion function as follows:

 0370 2000638E lw $3,32($19)
 0374 00000000
 0378 42100300 srl $2,$3,1
 037c 2400648E lw $4,36($19)
 0380 00000000

 ---- Start of change ----
 0384 bgez $4,positive
 0388 add $2,$2,$4
 038c sub $2,$2,$3
 positive:
 0390 div $0,$2,$3
 0394 nop
 ---- End of change ----

 0398 12100000
 039c 00000000
 00000000
 03a4 280062AE sw $2,40($19)

Applicable Reports/Requests:
 SPR-128

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None.

Telemetry Impact:

08/14/07
17:47:07 21../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 None.

Science Impact:
 Without this patch, the corner mean values in Graded Telemetry
 mode may occasionally be invalid. There is a deterministic ground
 algorithm which can detect and and correct for this effect, but
 without the flight patch or the ground algorithm, the corner mean
 values may be grossly incorrect in some cases.

 Once the patch is in place, the corner mean values should be
 within 1/2 an ADU of the true mean, regardless if sign, without
 further action needed by the ground science software.

08/14/07
17:47:07 22../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: buscrash

Part Number: 36-58030.30
Version: A
SCO:

Description:

 Reason:
 If ACIS is computing bias maps when commanded to power down its front-end
 processors (FEPs), it is likely to crash the back-end processor (BEP)
 interface bus, causing the BEP to reboot without flight software patches.
 Normal operations must be restored via ground com mand. The cause of the
 problem has been traced to a design flaw in the BEP flight software and
 this ECO describes a small patch that will fix it.

 Symptom:
 During execution of SCS107, typically due to high background radiation,
 ACIS is powered down. Science telemetry reports that the flight s/w
 version number is 11, whereas typical values (depending in the patch
 combination) are 30 or higher, indicating that the BEP rebooted itself.
 Subsequent inspection of the recorded telemetry shows no scienceReport
 packet from the last science run, but a bepStartupMessage packet with
 lastFatalCode=7 and watchdogFlag=1.

 Symptom Impact:
 Since the observatory is usually in safe mode for several hours following
 the SCS107, there is generally sufficient time to establish a realtime
 contact, set the BEP’s warm-boot flag, and restart it. However, this
 takes time and manpower.

 Symptom Cause:
 The bus crash has been traced to a flaw in the FepManager::loadBadPixel()
 method. This routine is executed after the FEP bias maps have been
 created and before they are (optionally) reported in telemetry. It
 uses the memory-mapped interface between BEP and FEP to change those
 locations in the FEP bias maps that correspond to "bad" pixels or whole
 columns. However, unlike all other FepManager operations, loadBadPixel()
 does not confirm that a FEP is powered up before it writes to its map.
 This causes the bus crash.

 Fix Description:
 Call the FepManeger::isEnabled() method to check if the FEP is powered
 up before writing to a FEP’s bias memory (and parity plane).

Applicable Reports/Requests:
 SPR-140

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:
 FepManager::loadBadPixel

Command Impact:

08/14/07
17:47:07 23../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 None.

Telemetry Impact:
 None.

Science Impact:
 None.

08/14/07
17:47:07 24../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: rquad

Part Number: 36-58030.14
Version: A
SCO: 36-1000

Description:
 Reason:
 This patch fixes software problem report SPR-121.

 Symptom:
 If the center pixel of a 3x3 event is in the last
 column of any but the right-most quadrant (i.e. in FULL mode,
 quadrants A, B or C, but not D), the flight software will
 inappropriately use the delta overclock and split threshold
 for the center pixel’s quadrant on the pixels on the right
 edge of the event. The instrument is supposed to use the
 delta overclock and split thresholds for the next quadrant
 on these pixels.

 Symptom Impact:
 This may lead to an incorrect estimate of the
 event’s total pulse height and grade, possibly
 leading to inappropriate pulse height and grade
 filtering of these events, or, when using Graded
 Event formats, incorrect pulse height and grade
 code values.

 Symptom Cause:
 The flight software is fetching the quadrant identifier
 for the wrong column position for the right edge pixels:

 quad = exposure->getQuadrant (col);
 doclk[1] = exposure->getOverclockDelta (quad);
 split[1] = exposure->getSplitThreshold (quad);

 WRONG---> quad = exposure->getQuadrant (col);
 doclk[2] = exposure->getOverclockDelta (quad);
 split[2] = exposure->getSplitThreshold (quad);

 computePhGrade (doclk, split);

 This should be:

 quad = exposure->getQuadrant (col);
 doclk[1] = exposure->getOverclockDelta (quad);
 split[1] = exposure->getSplitThreshold (quad);

 CORRECT---> quad = exposure->getQuadrant (col+1);
 doclk[2] = exposure->getOverclockDelta (quad);
 split[2] = exposure->getSplitThreshold (quad);

 computePhGrade (doclk, split);

 Fix Description:
 The patch increments the column register variable using
 an "nop" slot of an earlier instruction following
 the previous call to exposure->getQuadrant() and prior
 to the last call to exposure->getQuadrant().

08/14/07
17:47:07 25../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 This is the last time the register is used in the function,
 so it won’t corrupt subsequent code, and the "nop"
 was inserted by the compiler after a "lw", which allows
 for increments of registers unrelated to the "lw".

 05cc 2C00A2AF sw $2,44($sp)
 $LM84:
 210:../filesscience/pixel3x3.C ****
 211:../filesscience/pixel3x3.C **** quad = exposure->getQ
uadrant (col);
 05d0 5400028E lw $2,84($16)
 "addu $18,$18,1" --->> 05d4 00000000
 05d8 0800428C lw $2,8($2)
 00000000
 05e0 21200002 move $4,$16
 .set noreorder
 .set nomacro
 "col" is passed in 05e4 09F84000 jal $31,$2
 a delay slot --->>05e8 21284002 move $5,$18
 .set macro
 .set reorder

 05ec 21884000 move $17,$2
 $LM85:
 ../filesscience/pixel3x3.C **** doclk[2] = exposure->getO
verclockDelta (quad);
 05f0 5400028E lw $2,84($16)
 05f4 00000000
 05f8 0400428C lw $2,4($2)
 00000000
 0600 21200002 move $4,$16
 .set noreorder
 .set nomacro
 0604 09F84000 jal $31,$2
 0608 21282002 move $5,$17
 .set macro
 .set reorder

 060c 2000A2AF sw $2,32($sp)
 $LM86:
 ../filesscience/pixel3x3.C **** split[2] = exposure->getS
plitThreshold (quad);
 .stabn 68,0,213,$LM86
 0610 5400028E lw $2,84($16)
 0614 00000000
 0618 0C00428C lw $2,12($2)
 00000000
 0620 21200002 move $4,$16
 .set noreorder
 .set nomacro
 0624 09F84000 jal $31,$2
 0628 21282002 move $5,$17
 .set macro
 .set reorder

 062c 3000A2AF sw $2,48($sp)
 $LM87:
 ../filesscience/pixel3x3.C ****
 ../filesscience/pixel3x3.C **** computePhGrade (doclk, sp
lit);
 .stabn 68,0,215,$LM87
 0630 1000828E lw $2,16($20)
 0634 00000000
 0638 1C00428C lw $2,28($2)

08/14/07
17:47:07 26../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 00000000
 0640 21208002 move $4,$20
 0644 1800A527 addu $5,$sp,24
 .set noreorder
 .set nomacro
 0648 09F84000 jal $31,$2
 064c 2800A627 addu $6,$sp,40
 .set macro
 .set reorder

 $LBB29:
 $LM88:
 $LBB30:
 $LBE30:
 $LM89:
 $LBE29:
 $LM90:
 ../filesscience/pixel3x3.C ****
 ../filesscience/pixel3x3.C **** //
 ../filesscience/pixel3x3.C **** }
 $LBE26:
 0650 4C00BF8F lw $31,76($sp)
 00000000
 0658 4800B48F lw $20,72($sp)
 00000000
 0660 4400B38F lw $19,68($sp)
 00000000
 0668 4000B28F lw $18,64($sp)
 00000000
 0670 3C00B18F lw $17,60($sp)
 00000000
 0678 3800B08F lw $16,56($sp)
 00000000
 0680 5000BD27 addu $sp,$sp,80
 0684 0800E003 j $31
 00000000
 .end Pixel3x3::attachData(FEPeven
tRec3x3 const *, EventExposure *)
 $LM91:

Applicable Reports/Requests:
 SPR-121

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 See SCIENCE IMPACT.

Science Impact:
 Without this patch, all Timed Exposure and CC3x3 events on the left
 edge of a quadrant boundary may have incorrect pulse heights and

08/14/07
17:47:07 27../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 grades, and events which impact at these positions may be inappropriately
 filter out or telemetered if pulse height and grade filters are used.

08/14/07
17:47:07 28../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: condoclk

Part Number: 36-58030.17
Version: A
SCO: 36-1012

Description:
 Reason:
 The first timed exposure frames received during OAC (e.g.,
 SOP_61052_DARK_CUR) showed sporadic increases in the overclock
 averages, and anomalous dark patches within bias maps. Once raw frames
 were examined (in SOP_61054_RAW_DATA and SAP_61079_RAW_BIAS), the
 effect was seen to be caused by charged particle background "leaking"
 into the overclocks.

 Fix Description:
 Patch the FEP overclock processing function, fepOclkProc in
 fep/fepCtl.c, to "condition" the overclock sum on a row-by-row
 basis. The patch, which will not apply to OC_RAW or OC_HIST modes,
 will ignore the overclock sum of particular row and node if it exceeds
 the previous sum by some suitable threshold. This entails replacing
 the following fepOclkProc() code:

 for (ioclk = 0; ioclk < fp->tp.noclk; ioclk++) {
 unsigned p0 = *fp->oc.optr++;
 unsigned p1 = *fp->oc.optr++;
 switch (fp->tp.quadcode) {
 case FEP_QUAD_AC:
 fp->oc.osum[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.osum[1] += PIXEL0(p1) & PIXEL_MASK;
 break;
 case FEP_QUAD_BD:
 fp->oc.osum[0] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.osum[1] += PIXEL1(p1) & PIXEL_MASK;
 break;
 default:
 fp->oc.osum[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.osum[1] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.osum[2] += PIXEL0(p1) & PIXEL_MASK;
 fp->oc.osum[3] += PIXEL1(p1) & PIXEL_MASK;
 break;
 } /* end switch */
 } /* end for ioclk */

 with an inline patch that saves R9-R12:

 condoclkCtl(fp);

 subu $sp,$sp,16
 sw $9,0($sp)
 sw $10,4($sp)
 sw $11,8($sp)
 sw $12,12($sp)
 jal condoclkCtl
 move $4,$16
 lw $9,0($sp)
 lw $10,4($sp)
 lw $11,8($sp)
 lw $12,12($sp)
 j fepCtl+0x0f74
 addu $sp,$sp,16

08/14/07
17:47:07 29../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 and adding the condoclkCtl function:

 void condoclkCtl(FEPparm *fp)
 {
 unsigned dsum = OCLK_COND * fp->tp.noclk;
 unsigned ioclk, iquad;

 /* clear local accumulator */
 for (iquad = 0; iquad < 4; iquad++) {
 fp->oc.ossql[iquad] = 0;
 /* clear saved row sum at start of frame */
 if (fp->oc.osum[iquad] == 0) {
 fp->oc.ossqh[iquad] = 0;
 }
 } /* end for iquad */

 /* accumulate the overclock sums */
 for (ioclk = 0; ioclk < fp->tp.noclk; ioclk++) {
 unsigned p0 = *fp->oc.optr++;
 unsigned p1 = *fp->oc.optr++;
 switch (fp->tp.quadcode) {
 case FEP_QUAD_AC:
 fp->oc.ossql[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.ossql[1] += PIXEL0(p1) & PIXEL_MASK;
 break;
 case FEP_QUAD_BD:
 fp->oc.ossql[0] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.ossql[1] += PIXEL1(p1) & PIXEL_MASK;
 break;
 default:
 fp->oc.ossql[0] += PIXEL0(p0) & PIXEL_MASK;
 fp->oc.ossql[1] += PIXEL1(p0) & PIXEL_MASK;
 fp->oc.ossql[2] += PIXEL0(p1) & PIXEL_MASK;
 fp->oc.ossql[3] += PIXEL1(p1) & PIXEL_MASK;
 break;
 } /* end switch */
 } /* end for ioclk */

 /* condition the sums */
 for (iquad = 0; iquad < 4; iquad++) {
 if (fp->oc.ossqh[iquad] == 0) {
 /* always save first row sum */
 fp->oc.ossqh[iquad] = fp->oc.ossql[iquad];
 } else if (fp->oc.osum[iquad] == fp->oc.ossqh[iquad] &&
 fp->oc.ossqh[iquad] > fp->oc.ossql[iquad] + dsum) {
 /* if second row sum much less than first, replace the
 total sum by twice the second sum */
 fp->oc.osum[iquad] = fp->oc.ossqh[iquad] = fp->oc.ossql[iquad];
 } else if (fp->oc.ossql[iquad] <= fp->oc.ossqh[iquad] + dsum) {
 /* save row sum if not much greater than the saved sum */
 fp->oc.ossqh[iquad] = fp->oc.ossql[iquad];
 }
 /* increment overclock accumulator */
 fp->oc.osum[iquad] += fp->oc.ossqh[iquad];
 } /* end for iquad */
 }

 The algorithm uses the oc.ossql[4] and oc.ossqh[4] fields which would
 not otherwise participate in OC_SUM mode, and whose prior contents may
 be safely overwritten. The oc.ossql fields are used to accumulate the
 overclocks of the current row, and the current "best" value of this

08/14/07
17:47:07 30../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 sum is saved from row to row in oc.ossqh. If the current row sum
 exceeds the current best sum by a constant OCLK_COND times the number
 of overclocks in the row, the current best sum will be used in its
 place; otherwise, the sum of the current row will replace the current
 best. The first two rows of each frame receive special treatment: the
 first row sum is used to initialize oc.ossqh -- the "best" sum -- and,
 if the sum of the second row is anomalously LOWER than this, the best
 row sum and the running total sum are corrected.

Applicable Reports/Requests:
 SPR-127

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 None

Science Impact:
 With this patch installed, the effect of background events on
 overclock averages will be greatly reduced, directly reducing
 systematic errors within bias maps and increasing the accuracy of
 photon energy determination.

08/14/07
17:47:07 31../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: histogrammean

Part Number: 36-58030.15
Version: A
SCO: 36-996

Description:
 Reason:
 In raw TE histogram mode, the FEPs report the mean of each CCD
 quadrant’s overclocks. This is done in two steps: first, the
 overclocks of each quadrant of each frame are summed into fields
 "oc.osum" in the FEPparm structure, and these are then averaged over
 the separate "histogramCount" frames and reported to the BEP in
 "omean" fields in FEPeventRecHist structures. The error is caused by
 using the 16-bit "omean" fields as accumulators, as well as final
 values, since, if the mean overclock value multiplied by
 "histogramCount" exceeds 65535, overflow will occur.

 Fix Description:
 The patch adds 8 32-bit integer fields to the end of the D-cache stack
 employed by the fepCtl function. Within FEPsciTimedHist, machine
 instructions are altered to initialize these fields to zero, to use
 them to accumulate the intermediate sums, and hence to form the means
 which are stored into "omean".

 (a) increase fepCtl stack length by an extra 32 bytes

 .globl fepCtl_lst_0000_0000
 .ent fepCtl_lst_0000_0000
 fepCtl_lst_0000_0000:

 0000 88FABD27 subu $sp,$sp,1368+32
 0004 5405BFAF

 .end fepCtl_lst_0000_0000

 (b) decrease fepCtl stack length by an extra 32 bytes

 .globl fepCtl_lst_012c_012c
 .ent fepCtl_lst_012c_012c
 fepCtl_lst_012c_012c:
 0128 00000000
 012c 7805BD27 addu $sp,$sp,1368+32
 0130 0800E003
 .end fepCtl_lst_012c_012c

 (c) set mean and variance sums to zero

 .globl fepSciTimed_lst_1858_1864
 .ent fepSciTimed_lst_1858_1864
 fepSciTimed_lst_1858_1864:
 1854 80180B00
 1858 21187000 addu $3,$3,$16
 185c 480560AC sw $0,1368-16($3)
 1860 580560AC sw $0,1368($3)
 1864 140040A4 sh $0,20($2)
 1868 0C0044A4
 .end fepSciTimed_lst_1858_1864

 (d) increment mean sum

08/14/07
17:47:07 32../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 .globl fepSciTimed_lst_1acc_1adc
 .ent fepSciTimed_lst_1acc_1adc
 fepSciTimed_lst_1acc_1adc:
 1ab0 1B006A00
 02004015
 00000000
 0D000700
 12180000
 1acc 34050925 addu $9,$8,1368-36
 1ad0 4805028D lw $2,1368-16($8)
 1ad4 00000000 nop
 1ad8 21104300 addu $2,$2,$3
 1adc 480502AD sw $2,1368-16($8)
 1ae0 1B00AA01
 1ae4 02004015
 1ae8 00000000
 1aec 0D000700
 1af0 12200000
 .end fepSciTimed_lst_1acc_1adc

 (e) save stack pointer in R9

 .globl fepSciTimed_lst_1c38_1c38
 .ent fepSciTimed_lst_1c38_1c38
 fepSciTimed_lst_1c38_1c38:
 1c34 1403028E
 1c38 48050926 addu $9,$16,1368-16
 1cec 22004010
 .end fepSciTimed_lst_1c38_1c38

 (f) load overclock mean sum

 .globl fepSciTimed_lst_1c50_1c50
 .ent fepSciTimed_lst_1c50_1c50
 fepSciTimed_lst_1c50_1c50:
 1c4c 21187200
 1c50 0000228D lw $2,0($9)
 1c54 00000000
 .end fepSciTimed_lst_1c50_1c50

 (g) load overclock variance sum

 .globl fepSciTimed_lst_1c84_1c84
 .ent fepSciTimed_lst_1c84_1c84
 fepSciTimed_lst_1c84_1c84:
 1c80 21187200
 1c84 1000228D lw $2,16($9)
 1c88 00000000
 .end fepSciTimed_lst_1c84_1c84

 (h) increment R9

 .globl fepSciTimed_lst_1cb8_1cb8
 .ent fepSciTimed_lst_1cb8_1cb8
 fepSciTimed_lst_1cb8_1cb8:
 1cb4 1403028E
 1cb8 04002925 addu $9,$9,4
 1cbc 2B106201
 .end fepSciTimed_lst_1cb8_1cb8

Applicable Reports/Requests:

08/14/07
17:47:07 33../dist/standard-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 SPR-123

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 None. It should be pointed out that an alternative approach to
 fixing this problem is to add the following code to the downlink
 raw histogram software, although this algorithm may fail for very
 large values of "histogramCount".

 if (fs->meanOverclock[node] < fs->minimumOverclock[node] ||
 fs->meanOverclock[node] > fs->maximumOverclock[node]) {
 unsigned hh = loadTeBlock_histogramCount(param);
 double dmlim = 8192.0*hh*loadTeBlock_overclockPairsPerNode(param);
 unsigned mm, mlim = (dmlim < 0x7fffffff) ? dmlim : 0x7fffffff;
 for (mm = 0; mm < mlim; mm += 65536) {
 unsigned nn = fs->meanOverclock[node]+(mm+hh/2)/hh;
 if (nn >= fs->minimumOverclock[node] &&
 nn <= fs->maximumOverclock[node]) {
 fs->meanOverclock[node] = nn;
 break;
 }
 }
 }

Science Impact:
 None -- raw histogram mode is not necessary for science processing.

08/15/07
00:24:27 1../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

TITLE: ACIS Flight Software Optional Patch Component Release Notes

DOCUMENT NUMBER: 36-58020 REVISION: C

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

01 36-987 Initial numeric release jimf 11/12/1998
A 36-1007 Bug fixes, incorporate tests RFG 05/12/1999
B 36-1019 Add new patches, retest RFG 12/16/1999
C 36-1022 Add new patches, retest RFG 03/21/2003
C 36-1035 Recompile after change in standa

08/15/07
00:24:27 2../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Title: ACIS Optional Patch Release Notes for Version C

Software Change Order: 36-1035

Build Date: Wed Aug 15 00:24:26 EDT 2007
Part Number: 36-58020
Version: C
CVS Tag: release-C-opt-C

Std Number: 36-58010
Std Version: C
Std Tag: release-C
Std SCO: 36-1035

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This is the fourth letter release of the optional patch set for the
 ACIS Flight Software. The purpose of this release is to add new
 patches to the standard set, resulting in a Rev. C Standard Patch
 release, and to retest all optional patches against this release.

 Although the patches listed in this release have been tested in
 combination with the standard patch release, they have NOT been tested
 in various combinations with each other as part of this release. Each
 needed combination will be provided a distinct part number, and will
 be released invidually, based on the patches provided in this release.

 This release relies on the patches produced by Revision C of the
 standard patch release. Refer to MIT 36-58010, Rev. C.

 This release consists of the following optional flight patches, where
 * indicates additional or modified patches since the previous release:

 cc3x3 - Continuous Clocking 3x3 Event Mode
 ccignore - Ignore Continuous Clocking data frames
 compressall - Fixes SPR 134
 ctireport1 - Reports precursor charge
 ctireport2 - Reports precursor charge
 eventhist - Timed Exposure Event Histogram Mode
 reportgrade1 - Addresses SPR 132
 smtimedlookup - Supports eventhist and ctireport*
 teignore - Ignore Timed Exposure data frames
 untricklebias - Fixes SPR 133

 This release also contains a set of informally controlled engineering
 patches, used for ground testing, debugging and experimentation:

 hybrid - Prototype of a hybrid clocking mode
 squeegy - Prototype of a squeegee clocking mode
 fepbiasparity1 - Prototype of the fepbiasparity2 patch
 forcebiastrickle - Patch to set trickleBias flag
 tlmio - Telemetry Standard I/O Utility Routines
 printswhouse - Print S/W Housekeeping reports in realtime
 deaeng - Detect/configure for DEA Engineering video boards
 dearepl - Stubs for use when a DEA is not attache

--

08/15/07
00:24:27 3../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

Addressed Problem Reports:
 SPR-134
 SPR-126
 SPR-132
 SPR-133
 SPR-120
 SPR-124

--
Included Patches:
 cc3x3 (4636 bytes)
 ccignore (36 bytes)
 compressall (2368 bytes)
 ctireport1 (5452 bytes, depends on smtimedlookup)
 ctireport2 (2784 bytes, depends on smtimedlookup)
 deaeng (2604 bytes, depends on tlmio, conflicts with dearepl)
 dearepl (556 bytes, conflicts with deaeng)
 eventhist (5908 bytes, depends on smtimedlookup)
 printswhouse (7224 bytes, depends on tlmio)
 reportgrade1 (816 bytes)
 smtimedlookup (3712 bytes)
 teignore (36 bytes)
 tlmio (10312 bytes)
 untricklebias (1612 bytes)

08/15/07
00:24:27 4../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: reportgrade1

Part Number: 36-58030.22
Version: A
SCO: 36-1021
Environment: flight

Conflicts:
Depends On:
Size: 816 bytes

Bcmd File: opt_reportgrade1.bcmd
Pkts File: opt_reportgrade1.pkts

Description:
 This patch reports per-FEP event filtering statistics via software
 housekeeping. The SwHousekeeper constructor is patched in order to
 add an extra 54 housekeeping codes, 9 per FEP, as follows:

 SW_FILT_NONE, /* events unfiltered */
 SW_FILT_ENERGY, /* events filtered by energy */
 SW_FILT_GRADE1, /* events filtered by SW_GRADE_CODE1 */
 SW_FILT_GRADE2, /* events filtered by SW_GRADE_CODE2 */
 SW_FILT_GRADE3, /* events filtered by SW_GRADE_CODE3 */
 SW_FILT_GRADE4, /* events filtered by SW_GRADE_CODE4 */
 SW_FILT_GRADE5, /* events filtered by SW_GRADE_CODE5 */
 SW_FILT_OTHER, /* events filtered by other grade */
 SW_FILT_WIN, /* events filtered by window */

 These SwStatistic codes begin at a value of SWSTAT_FILTER_BASE. They
 are defined in "acis_h/interface.h", along with the 5 special grade
 codes:

 SW_GRADE_CODE1 = 24,
 SW_GRADE_CODE2 = 66,
 SW_GRADE_CODE3 = 107,
 SW_GRADE_CODE4 = 214,
 SW_GRADE_CODE5 = 255

 Thus, the number of grade 214 events rejected by FEP_3 during the
 current housekeeping interval will be reported in swHousekeeping
 packets with a "statistics[].swStatisticId" value of
 SWSTAT_FILTER_BASE+SW_FILT_GRADE4+(9*FEP_3). The corresponding
 "statistics[].count" field will contain the number of events in this
 particular class from this particular FEP during the current ˜64 sec
 housekeeping interval. As an aide to synchronizing housekeeping data
 and event packets, the "statistics[].value" field will contain the
 most recent exposure number read from this FEP during this interval.

Applicable Reports/Requests:
 SPR-132

Test Results:
 testTe --> PASS
 testCc --> PASS

08/15/07
00:24:27 5../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

Replaced Functions:
 PmEvent::filterEvent

Command Impact:
 None.

Telemetry Impact:
 No reduction of telemetry throughput is anticipated. To identify the
 new housekeeping fields, ground software must recognize the new
 SwStatistic codes. Refer to the ACIS Software IP&CL Release Notes,
 Rev. L or later, for details

Science Impact:
 None.

08/15/07
00:24:27 6../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: untricklebias

Part Number: 36-58030.28
Version: A
SCO: 36-1028
Environment: flight

Conflicts:
Depends On:
Size: 1612 bytes

Bcmd File: opt_untricklebias.bcmd
Pkts File: opt_untricklebias.pkts

Description:
 For reasons unknown, the BEP has occasionally run the science and bias
 thief tasks simultaneously. This causes the FEPs to start searching
 for x-ray events while the BEP is copying their bias maps to
 telemetry. If the threshold crossing freqency is sufficiently high,
 this can trigger an error in the FEP firmware leading to a "T-plane
 latchup" condition.

 The untricklebias patch prevents this behavior by ensuring that the
 FEP bias maps are never accessed by the BiasThief task. Instead, the
 science task is given these functions.

 The main routine of the bias thief task is repaced by
 Test_BiasThief::goTaskEntry, which does nothing beyond waking up
 whenever the task monitor tells it to, but goes back to sleep again
 immediately.

 Where necessary, the remaining BiasThief methods that are called from
 the science task are replaced by methods that do not notify the bias
 thief task that a change has been made. The trickleTeBias and
 trickleCcBias do not need to be patched, but the checkMonitor method
 must be replaced with a version that is appropriate for being called
 from the science task. Note that it tests the EV_SM_BIAS_ABORT_RUN in
 the event mask: this is the value appropriate for a science task
 abort.

Applicable Reports/Requests:
 SPR-133

Test Results:
 patchTe --> PASS
 patchAll --> PASS
 patchCc --> PASS

Replaced Functions:
 BiasThief::abort
 ScienceMode::waitForBiasTrickle
 BiasThief::goTaskEntry
 BiasThief::biasReady
 BiasThief::checkMonitor

08/15/07
00:24:27 7../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

Command Impact:
 None.

Telemetry Impact:
 None.

Science Impact:
 None.

08/15/07
00:24:27 8../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: deaeng

Part Number: 36-58030.11
Version: 02
SCO: 36-1010
Environment: engineering

Conflicts: dearepl
Depends On: tlmio
Size: 2604 bytes

Bcmd File: opt_deaeng.bcmd
Pkts File: opt_deaeng.pkts

Description:
 This patch provides the basic capability to detect
 and communicate with the engineering version of the
 DEA CCD controller boards. For historical reasons,
 these boards have a different interface than
 the flight CCD controllers.

 This patch relies on printf() being installed
 (see tlmio).

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:
 DeaCcdController::updateRegister
 DeaCcdController::powerOn
 DeaCcdController::writeData

Command Impact:
 This patch will determine the type of video boards
 installed in the system. Due to the interface differences
 between boards, high-speed tap commands will not work
 on engineering video boards, but will continue to work
 on "flight-like" video boards.

Telemetry Impact:
 Since this patch calls printf(), it will result
 in TTAG_USER telemetry packets.

Science Impact:
 N/A

08/15/07
00:24:27 9../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: cc3x3

Part Number: 36-58030.06
Version: B
SCO: 36-1018
Environment: flight

Conflicts:
Depends On:
Size: 4636 bytes

Bcmd File: opt_cc3x3.bcmd
Pkts File: opt_cc3x3.pkts

Description:
 This patch implements the Continuous Clocking 3x3
 Event Mode. In this mode, the instrument performs the
 standard continuous clocking manipulation of the CCDs,
 but rather than accept and telemetry 1x3 events, the mode
 processes 3x3 event islands, improving the spectral performance
 of the mode and reducing the problems associated with vertically
 split events.

 Because the Continuous Clocking parameter block only provides
 4 bits for defining the grade selection for the mode (in 1x3, only
 4 bits were necessary), this patch provides table which maps
 the 4-bit code into a set of pre-built 256-bit grade selection
 masks. In this release, the grade selection map is populated with
 masks provided by Fred Baganoff. Refer to grade_table.html for
 a description of the grade families. The following table summarizes
 the selections:

 Code 0 - Reject all grades
 Code 1 - Reject ASCA grades 1,2,3,4,5,6,7
 Code 2 - Reject ASCA grades 1,5,6,7
 Code 3 - Reject ASCA grades 1,5,7
 Code 4 - Undefined (currently rejects all grades)
 Code 5 - Undefined (currently rejects all grades)
 Code 6 - Undefined (currently rejects all grades)
 Code 7 - Reject ACIS flight grades 24,66,107,127,214,223,248,251,254,255
 Code 8 - Reject ACIS flight grades 24,107,127,214,223,248,251,254,255
 Code 9 - Reject ACIS flight grades 24,66,107,214,248,255
 Code 10 - Reject ACIS flight grades 24,66,107,214,255
 Code 11 - Reject ACIS flight grades 24,107,214,248,255
 Code 12 - Reject ACIS flight grades 24,107,214,255
 Code 13 - Reject ASCA grade 7
 Code 14 - Reject ACIS flight grade 255
 Code 15 - Accept all grades

 NOTE: CC3x3 Codes 0 and 15 have the same effect
 as their numerical equivalents in CC1x3, where 0
 will reject all events, and 15 will accept events
 with any grade code.

Applicable Reports/Requests:
 SPR-126
 SPR-120
 SPR-124

08/15/07
00:24:27 10../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

Test Results:
 unit --> PASS
 smoke --> PASS

Replaced Functions:
 SmContClocking::setupFepBlock
 SmContClocking::setupProcess
 SmContClocking::terminate

Command Impact:
 This version of CC3x3 uses different grade sets than the
 previous version. This may have an impact on the grade selection
 field of CC Parameter Block command packets already built
 built for CC3x3 observations.

 This mode is invoked by using the FEP_CC_MODE_EV3x3 (2) in the
 fepMode field of the Continuous Clocking Parameter block, in
 conjunction with any of the BEP_CC event processing modes for
 the bepPackingMode field. This restricts the use of this mode
 to CC Faint and CC Graded modes. This patch does NOT support
 other Timed Exposure derived modes, such as Faint with Bias,
 5x5, nor any of the exisiting nor patched histogram modes.

 At the onset of a CC3x3 science run, the run will force two
 resets and reloads of the FEP software, the first to ensure
 that the boot-strap code is in the FEPs, and the second to
 load the patch code into the FEPs. This will always add up
 to 14 seconds per FEP to the start-up time of the run, compared
 to runs where the FEPs were already loaded and running.

 To ensure that the patch is not present at the start of the
 next run, which may or may not be a CC3x3 run, a CC3x3 science
 run will always force the FEPs into a reset state at the end
 of the run. This will add another 7 seconds per FEP to the
 start up time of the run following a CC3x3 run, relative to
 the normal start up time, where the FEPs were already loaded
 and running.

 These resets will also impact the power consumption of ACIS,
 where the system will draw up to 16 watts less than normal (with
 all 6 on and running) while the FEPs are held a reset state.

 Refer to the ACIS Software IP&CL Structure Definitions, Rev. L
 or later for details.

Telemetry Impact:
 This mode defines 4 new telemetry packet types.

 When configured for FEP_CC_MODE_EV3x3 and BEP_CC_MODE_FAINT,
 the patch produces TTAG_SCI_CC_REC_FAINT3x3 exposure records
 and TAG_SCI_CC_DAT_FAINT3x3 event data packets.
 When configured for FEP_CC_MODE_EV3x3 and BEP_CC_MODE_GRADED,
 it produces TTAG_SCI_CC_REC_GRADED3x3 exposure records and
 TTAG_SCI_CC_DAT_GRADED3x3 event data packets.

 The size of and overhead of these packets are the same as
 their Timed Exposure counterparts, TTAG_SCI_TE_REC_FAINT3x3,
 TTAG_SCI_TE_DAT_FAINT3x3, TTAG_SCI_TE_REC_GRADED3x3 and
 TTAG_SCI_TE_DAT_GRADED3x3.

08/15/07
00:24:27 11../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 When used, a CC3x3 science run will produce additional
 Software Housekeeping counts to the FEP write and execute
 statistics, reflecting the additional resets and reloads
 of the FEPs. Runs immediately following a CC3x3 run will also
 produce additional FEP related counts, as they load and run
 the reset FEPs.

 Refer to the ACIS Software IP&CL Structure Definitions, Rev. L
 or later for details

Science Impact:
 This version of CC3x3 uses different grade sets than the
 previous version. The ground data analysis software may have
 to be aware of which version of CC3x3 is installed for a given
 set of CC3x3 data. Please refer to the ACIS command generation
 system for the set of ACIS Software Version identifiers
 (telemetered in the BEP Startup Message and in each Software
 Housekeeping telemetry packet) corresponding to the different
 installed CC3x3 versions.

 This mode produces a new type of data product, consisting
 of 3x3 islands around accepted events in Continuous Clocking
 mode. This is intended to provide better spectral resolution
 and event detection performance when in Continuous Clocking
 mode.

 This mode will not report events on row 0 and row 511,
 leaving a 2-row timing gap with a period of 512 rows.

 As in other Continuous Clocking modes, no bias errors will
 be reported when in this mode, since the bias map is
 extremely redundant (there’s 512 copies of the bias value
 for any given column).

08/15/07
00:24:27 12../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: tlmio

Part Number: 36-58030.07
Version: 02
SCO: 36-1010
Environment: flight

Conflicts:
Depends On:
Size: 10312 bytes

Bcmd File: opt_tlmio.bcmd
Pkts File: opt_tlmio.pkts

Description:
 This patch provides basic standard I/O functions
 which emit TTAG_USER telemetry packets containing
 data written via calls to write().

 This patch stubs the functions open(), close() and
 read(), and implements the function write(), used
 by higher level I/O library functions, such as printf().

 The patch maintains a 1024 word telemetry buffer just
 at the end of bulk memory. write() appends data
 to this buffer until either the buffer fills, or
 until a newline is written. Once write() fills the
 buffer or a newline is encountered, the telemetry buffer
 is sent as follows:
 1. Interrupts are disabled
 2. The hardware is polled until the current packet
 is finished.
 3. The packet buffer header is filled in, and the
 first data word is set to 0 (a hook used to support
 different subtypes of TTAG_USER).
 4. Transfer the packet
 5. Wait for the transfer to complete
 6. If no transfer was in progress prior to the
 interrupt disable, clear the pending interrupt
 caused by the TTAG_USER packet transfer
 7. Reset the the buffer contents
 8. Reenable interrupts

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:

Command Impact:
 None

Telemetry Impact:
 If this patch is used by client code (this patch itself doesn’t

08/15/07
00:24:27 13../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 initiate any messages), it will emit telemetry packets consisting
 of the tag TTAG_USER. The format of these packets consist of the
 standard telemetry header, followed by 1 32-bit word containing a zero,
 followed by the number of data words indicated by the packet length.
 If the clients of the patch issue "printf" calls, the data will consist
 of a single null-terminated ascii string.

 Word 0: SYNC (0x736f4166)
 Word 1: [0..9] Length (3 + "n"/4)
 Word 1: [10..31] TTAG_USER
 Word 2: 0
 Word 3..Length: Data

Science Impact:
 Since this patch "plays" with the hardware and telemetry software,
 the use of this patch may interfere with the smooth operation of
 science runs.

08/15/07
00:24:27 14../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: compressall

Part Number: 36-58030.27
Version: A
SCO: 36-1027
Environment: flight

Conflicts:
Depends On:
Size: 2368 bytes

Bcmd File: opt_compressall.bcmd
Pkts File: opt_compressall.pkts

Description:
 This patch ensures that all raw mode packets are written to the
 telemetry stream without data loss. It eliminates the prior behavior
 in which, if a compressed pixel row was too long to fit into an output
 packet, the entire row was skipped and a zero-data-length was
 telemetered.

 In the new version, rows that are too long when compressed are written
 uncompressed, with the telemetry packet header fields rewritten to
 indicate that that particular packet is uncompressed.

Applicable Reports/Requests:
 SPR-134

 SER-none

Test Results:
 reproduce --> PASS
 fix --> PASS

Replaced Functions:
 PmCcRaw::digestRawRecord
 PmTeRaw::digestRawRecord

Command Impact:
 None.

Telemetry Impact:
 Ground software must examine the compressionTableSlotIndex and
 compressionTableIdentifier fields of all dataCcRaw and dataTeRaw
 packets. If their values are 255 and 0, respectively, the pixel
 array should not be decompressed.

Science Impact:
 None. Raw mode is intended for diagnostic purposes only.

08/15/07
00:24:27 15../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: ccignore

Part Number: 36-58030.10
Version: A
SCO: 36-1004
Environment: flight

Conflicts:
Depends On:
Size: 36 bytes

Bcmd File: opt_ccignore.bcmd
Pkts File: opt_ccignore.pkts

Description:
 This patch causes the FEP to ignore "ignoreInitialFrames"
 frames of data at the onset of Continuous Clocking data processing.

Applicable Reports/Requests:
 SER-PENDING

Test Results:
 smoke --> PASS

Replaced Functions:

Command Impact:
 This patch will cause the start up time of a Continuous
 Clocking run to increase by "ignoreInitialFrames" times
 the frame rate configured for the run. If "ignoreInitialFrames"
 is less than 2, the 2 frames will be skipped.

Telemetry Impact:
 When "ignoreInitialFrames" is greater than 2,
 the first telemetered Continous Clocking exposure number
 will be "ignoreInitialFrames", rather than "2".

Science Impact:
 This may reduce the amount of noise in the early
 telemetered frames of the Continuous Clocking run by
 running the CCDs longer before processing and sending the data.

08/15/07
00:24:27 16../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: eventhist

Part Number: 36-58030.05
Version: B
SCO: 36-1025
Environment: flight

Conflicts:
Depends On: smtimedlookup
Size: 5908 bytes

Bcmd File: opt_eventhist.bcmd
Pkts File: opt_eventhist.pkts

Description:
 This patch implements the Event Histogram Mode. In this mode, the
 instrument performs the standard timed exposure clocking, and event
 detection and filtering, but rather than send the events to telemetry,
 the instrument builds CCD quadrant specific histograms of the summed
 corrected pulse heights of the accepted events. These histograms
 contain bins 0 through 4095. Events with a pulse height above 4095 are
 counted in bin 4095 and events with a negative value are counted in
 bin 0. All histogram bin values consist of a 26-bit count, followed by
 5-bit of Hamming error detection/correction code, and 1 spare bit. The
 code is capable of detecting and correcting 1-bit errors in the count
 and hamming code bits.

 Important: This version of the eventhist patch will only run correctly
 if the smtimedlookup patch is also loaded.

Applicable Reports/Requests:

Test Results:
 smoke --> PASS
 smoke2 --> PASS

Replaced Functions:
 smTimedLookup3x3[3]
 smTimedLookup5x5[3]

Command Impact:
 As in normal Raw Histogram Mode, Event Histogram mode can only be used
 for Timed Exposure Science runs, and not in Continuous Clocking runs.

 This mode is invoked by using the FEP_TE_MODE_EV3x3 or
 FEP_TE_MODE_EV5x5 for the fepMode field of the Timed Exposure
 Parameter Block, in conjunction with the new BEP_TE_MODE_EVHIST (3)
 for the bepPackingMode field.

 Refer to the ACIS Software IP&CL Structure Definitions, Rev. M for
 details.

Telemetry Impact:
 This mode defines new telemetry formats, TTAG_SCI_TE_REC_EV_HIST for
 exposure records, and TTAG_SCI_TE_DAT_EV_HIST for histogram data

08/15/07
00:24:27 17../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 packets. This new mode now places the count of error corrections
 performed on the quadrant’s histogram bins within the previously
 unused "Variance Overclock High" of the exposure record,
 TTAG_SCI_TE_REC_EV_HIST. The Rev. M version of IP&CL renames this
 field accordingly.

 The size of these packets are the same as those for
 TTAG_SCI_TE_REC_HIST and TTAG_SCI_TE_DAT_HIST respectively.

 This mode always requires 10 telemetry buffers for each quadrant it
 accumulates (9 data buffers + 1 exposure record buffer per histogram).
 When accumulating histograms from all 4 quadrants on all 6 CCDs, the
 system requires 216 data buffers, and once the histograms are
 complete, it requires an additional 24 exposure record buffers. ACIS
 is configured for 400 science telemetry buffers, and as such, has
 enough buffering to accumulate only 1 complete set of histograms at a
 time. This will cause time gaps between sets of histograms when no
 events are accumulated. These gaps will consist of complete exposures,
 so partial exposures will not be accumulated in the histograms. As the
 previous buffers are telemetered and released back to the telemetry
 pool, eventually enough buffers (to be exact, 56) will be available to
 hold the 2nd set of histograms. At 24Kbps (format 2), this results in
 a time gap on the order of half a minute to a minute, and, at 500bps
 (format 1), a gap on the order of a half an hour to 45 minutes.

 The total transmission time for a set of histograms at 24Kbps is about
 3 minutes, whereas at 500bps, it starts approaching 2 hours.

 If only 5 CCDs are used, ACIS can double-buffer the histograms,
 eliminating this gap, assuming that the histogram count times the
 frame time (exposure time + overhead) is large enough to accommodate
 the transmission time of the histograms. The total transmission time
 for 5 CCDs at 24Kbps is about 2 minutes, and at 500bps, the
 transmission time approaches 1.5 hours.

 Details of these formats are described in the ACIS Software IP&CL
 Structure Definitions, Rev. M.

Science Impact:
 This mode produces a new type of data product, histograms of the
 corrected and summed pulse heights from filtered events.

08/15/07
00:24:27 18../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: printswhouse

Part Number: 36-58030.08
Version: 01
SCO: 36-986
Environment: flight

Conflicts:
Depends On: tlmio
Size: 7224 bytes

Bcmd File: opt_printswhouse.bcmd
Pkts File: opt_printswhouse.pkts

Description:
 This patch provides a diagnotic which prints software
 housekeeping reports to telemetry in real-time,
 using the tlmio package.

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:
 SwHousekeeper::report

Command Impact:
 None

Telemetry Impact:
 This patch will cause the system to emit TTAG_USER
 packets containing a null terminated string, which describes
 the software housekeeping element currently being reported.
 See a description of the tlmio patch, MIT 36-58030.07.

Science Impact:
 See the tlmio patch, 36-58030.07

08/15/07
00:24:27 19../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: dearepl

Part Number: 36-58030.12
Version: 02
SCO: 36-1010
Environment: engineering

Conflicts: deaeng
Depends On:
Size: 556 bytes

Bcmd File: opt_dearepl.bcmd
Pkts File: opt_dearepl.pkts

Description:
 This patch provides the basic capability to fake
 the existence of a DEA. This patch is used when
 no DEA box is available, or one wants to test
 without actually talking to the DEA.

Applicable Reports/Requests:
 TOOL-PENDING

Test Results:
 No Tests Specified

Replaced Functions:
 DeaDevice::sendCmd
 DeaManager::writeData
 DeaManager::checkLoads
 DeaDevice::isReplyReady
 DeaCcdController::updateRegister
 DeaDevice::readReply
 DeaDevice::isCmdPortReady

Command Impact:
 This "fakes" the existence of the DEAs. Commands
 which read and write PRAM, SRAM or DEA hardware
 will not crash, but won’t work either.

Telemetry Impact:
 This will produce true fiction from the DEAs.

Science Impact:
 Can’t do any, since the patch replaces the
 interface to the real DEAs.

08/15/07
00:24:27 20../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: teignore

Part Number: 36-58030.09
Version: A
SCO: 36-1003
Environment: flight

Conflicts:
Depends On:
Size: 36 bytes

Bcmd File: opt_teignore.bcmd
Pkts File: opt_teignore.pkts

Description:
 This patch causes the FEP to ignore "ignoreInitialFrames"
 frames of data at the onset of Timed Exposure data processing.

Applicable Reports/Requests:
 SER-PENDING

Test Results:
 smoke --> PASS

Replaced Functions:

Command Impact:
 This patch will cause the start up time of a Timed Exposure
 run to increase by "ignoreInitialFrames" times the frame
 rate configured for the run. If "ignoreInitialFrames"
 is less than 2, the 2 frames will be skipped.

Telemetry Impact:
 When "ignoreInitialFrames" is greater than 2,
 the first telemetered exposure number will be
 "ignoreInitialFrames", rather than "2".

Science Impact:
 This may reduce the amount of noise in the early
 telemetered frames of the Timed Exposure run by running
 the CCDs longer before processing and sending the data.

08/15/07
00:24:27 21../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: smtimedlookup

Part Number: 36-58030.24
Version: A
SCO: 36-1025
Environment: flight

Conflicts:
Depends On:
Size: 3712 bytes

Bcmd File: opt_smtimedlookup.bcmd
Pkts File: opt_smtimedlookup.pkts

Description:
 This patch replaces several "switch" statements in SmTimedExposure
 class methods with a set of lookup tables indexed by the value of
 the BepMode and FepMode fields from the current TE parameter block.
 If a table slot is empty, the corresponding mode will be treated as
 unimplemented. With this patch, it is therefore possible to add more
 than one new TE mode via optional patches without the need to deliver
 a version of each patch for every possible combination of the other
 patches. The following methods, tables, and indices are used:

 +--------------------------------+-------------------+----------------+
 | Method | lookup table | index |
 +--------------------------------+-------------------+----------------+
 | SmTimedExposure::setupProcess | smTimedLookupMode | FepMode |
 | | smTimedLookup3x3 | BepPackingMode |
 | | smTimedLookup5x5 | BepPackingMode |
 +--------------------------------+-------------------+----------------+
 | SmTimedExposure::setupFepBlock | smTimedSetupFep | FepMode |
 +--------------------------------+-------------------+----------------+
 | SmTimedExposure::terminate | smTimedTerminate | FepMode |
 +--------------------------------+-------------------+----------------+

 These tables may be patched by an extension of the "func" directive
 in the *.pkg file used to describe an ACIS patch. Hence, the line

 func smTimedLookupMode[4] Test2_SmTimedExposure::setupCti1

 instructs the linker to insert the address of the setupCti1() method of
 the Test2_SmTimedExposure class into slot 4 of the smTimedLookupMode
 table, so that setupCti1() will be called when FepMode == 4.

Applicable Reports/Requests:

Test Results:
 smoke --> PASS

Replaced Functions:
 SmTimedExposure::terminate
 SmTimedExposure::setupProcess
 SmTimedExposure::setupFepBlock

Command Impact:

08/15/07
00:24:27 22../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 None.

Telemetry Impact:
 None.

Science Impact:
 None.

08/15/07
00:24:27 23../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: ctireport1

Part Number: 36-58030.25
Version: A
SCO: 36-1026
Environment: flight

Conflicts:
Depends On: smtimedlookup
Size: 5452 bytes

Bcmd File: opt_ctireport1.bcmd
Pkts File: opt_ctireport1.pkts

Description:
 This patch implements a variant of timed-exposure 3x3 faint event mode
 in which the presence of precursor charge in each of the three columns
 that can contribute to each event is encoded in the 16 "outlying" pixels
 of Te5x5 mode.

 FEP patches are loaded after the default code by two additional calls
 to fepManager.loadRunProgram from Test2_SmTimedExposure::setupCti1Fep.
 Once loaded, the FEPs are marked as having been reset, thereby causing
 the following run to reload their default code.

 Within the FEP, additional stack space is reserved for the cti1stk
 structure that holds the row indices and bias-subtracted pixel values
 of the most recently located precursor charge in each CCD column.

 The new FEPtestCti1 routine is called from an inline patch within
 FEPsciTimedEvent in advance of the FEPtestOddPixel or FEPtestEvenPixel
 routines. When a threshold crossing is detected, FEPtestCti1 clears
 the cti1stk array (if this is a new frame), calls FEPtestOddPixel or
 FEPtestEvenPixel, and then pushes the pixel value and row index onto
 cti1stk. If cti1stk is full, the most distant (by row) value is
 dropped.

 FEPappendCti1 is called by the patched FEP code in place of the
 original FEPappend5x5 routine. It determines the maximum bias-
 subtracted pixel value in each column, then inspects the cti1stk
 stacks for those columns, and packs up to 15 precursor charge values
 (adu and row) into elements 1 through 15 of the pe[] array:

 pe[i] = STORE_PIX(pixel - bias - delta_overclock, row_index)

 pe[0] contains three 4-bit fields, the number of successive pe[]
 precursor values corresponding to col-1, col, and col+1 of the event.

Applicable Reports/Requests:

Test Results:
 smoke --> PASS

Replaced Functions:
 smTimedLookupMode[4]

08/15/07
00:24:27 24../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 smTimedTerminate[4]
 smTimedSetupFep[4]

Command Impact:
 This patch requires that the smtimedlookup patch must also be loaded.
 Once loaded, it is invoked by setting fepMode = FEP_TE_MODE_CTI1 in a
 loadTeBlock packet, writing that packet to a parameter block slot, and
 then starting a timed-exposure science run from that slot. The uplink
 format is defined in the ACIS IP&CL document 36-53204.0204 Rev. N.

Telemetry Impact:
 The downlinked exposure and event data packets are identical in format
 to exposureTeFaint and dataTeVeryFaint except that their formatTag
 fields contain TTAG_SCI_TE_REC_CTI1 and TTAG_SCI_TE_DAT_CTI1,
 respectively. When a TTAG_SCI_TE_DAT_CTI1 is received, precursor
 charge data will be located in the dataTeVeryFaint.pulseHeights array,
 as follows:

 pulseHeights[0] - three 4-bit counters
 pulseHeights[1..5,9,10,14,15,19..24] - precursor ADU and row

 The sub-fields of pulseHeights[0] determine the contents of the
 other 15 fields:

 ncol[0] = (pulseHeights[0] >> 8) & 15 -
 ncol[1] = (pulseHeights[0] >> 4) & 15 -
 ncol[2] = pulseHeights & 15 -

 The fields from icol-1, if any, are written starting at pulseHeights[1],
 followed by those from icol, and finally those from icol+1. The ADU
 values are stored in the 7 most significant bits of pulseHeights[] and
 the row indices in the least significant 5 bits, and should be extracted
 as follows:

 adu = pulseHeights[i] & 0xfe0;
 row = (pulseheights[i] & 0x01f) << 5;

 Unused pulseHeights[] will be filled with zeroes.

Science Impact:
 This patch is intended for on-orbit diagnostic use only.

08/15/07
00:24:27 25../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

==

Patch Name: ctireport2

Part Number: 36-58030.26
Version: A
SCO: 36-1026
Environment: flight

Conflicts:
Depends On: smtimedlookup
Size: 2784 bytes

Bcmd File: opt_ctireport2.bcmd
Pkts File: opt_ctireport2.pkts

Description:
 This patch implements a variant of timed-exposure 3x3 faint event mode
 in which the presence of precursor charge in each of the three columns
 that can contribute to each event is encoded in the low-order bits of
 three of the corner pixels.

 FEP patches are loaded after the default code by two additional calls
 to fepManager.loadRunProgram from Test3_SmTimedExposure::setupCti1Fep.
 Once loaded, the FEPs are marked as having been reset, thereby causing
 the following run to reload their default code.

 Within the FEP, additional stack space is reserved for the cti2stk
 structure that holds the row indices of the most recently located
 precursor charge in each CCD column.

 The new FEPtestCti2 routine is called from an inline patch within
 FEPsciTimedEvent in advance of the FEPtestOddPixel or FEPtestEvenPixel
 routines. When a threshold crossing is detected, FEPtestCti2 clears
 the cti2stk array (if this is a new frame), calls FEPtestOddPixel or
 FEPtestEvenPixel, and then updates cti2stk to indicate that this
 column contains charge.

 FEPappendCti2 is called by the patched FEP code instead of the
 original FEPappend5x5. It finds the maximum of the 4 corner pixels
 of the event that is being reported. Then it determines whether
 any of the three contributing columns contained precursor charge.
 Finally, it encodes this information in the low order bytes of
 the three smallest corner pixels. (Since the low-order bit of
 each corner pixel may be replaced, only the 11 high-order bits
 are compared when determining the maximum value).

Applicable Reports/Requests:

Test Results:
 smoke --> PASS

Replaced Functions:
 smTimedLookupMode[5]
 smTimedTerminate[5]
 smTimedSetupFep[5]

Command Impact:

08/15/07
00:24:27 26../dist/options-release-C-opt-C.notes

Flight S/W Patches, Revision C-C-D

 The uplink format is defined in the ACIS IP&CL document 36-53204.0204
 Rev. N. The fepMode field in the loadTeBlock command packet must be
 set equal to FEP_TE_MODE_CTI2. Unless the smtimedlookup patch has
 also be loaded, this value will cause a subsequent startScience
 command that references this parameter block to fail.

Telemetry Impact:
 The downlinked exposure and event data packets are identical in format
 to exposureTeFaint and dataTeFaint. To process the precursor charge
 information, ground software must first inspect the loadTeBlock
 reported in the dumpedTeBlock packet that started the run. If the
 fepMode field is equal to FEP_TE_MODE_CTI2, subsequent dataTeFaint
 packets should be inspected. The following code fills ee[i] with
 one (zero) according to whether column (ccdColumn+i-1) did (did not)
 contain precursor charge:

 unsigned nn, mm, ii, ee[3];

 for (mm = 0, nn = 2; nn < 9; nn++) {
 if ((nn & 1) == 0 && nn != 4) {
 if ((pulseHeights[nn] & 0xffe) > (pulseHeights[mm] & 0xffe))
 mm = nn;
 }
 }
 for (nn = ii = 0; nn < 9; nn++) {
 if ((nn & 1) == 0 && nn != 4 && nn != mm) {
 ee[ii++] = pulseHeights[nn] & 1;
 }
 }

Science Impact:
 This patch is intended for on-orbit diagnostic use only.

08/14/07
12:09:36 1../../buscrash/buscrash.C

Flight S/W Patches, Revision C-C-D

/* ==
 *
 * $$Source: /nfs/acis/h3/acisfs/configcntl/patches/buscrash/buscrash.C,v $$
 *
 * Patch Name: Bus Crash Prevention
 *
 * Description:
 * This defines a C++ replacement function to FepManager::loadBadPixel()
 *
 * References:
 * Refer to the 1.5 release of filesprotocols/fepmanager.C
 *
 * $$Log: buscrash.C,v $
 * $Revision 1.4 2007/08/14 16:09:36 pgf
 * $Add friend statement
 * $
 * $Revision 1.3 2007/07/14 22:48:29 pgf
 * $Change method from static to virtual
 * $
 * $Revision 1.2 2007/04/18 21:10:57 pgf
 * $Call fepManager.isEnabled to prevent bus crash.
 * $
 * $Revision 1.1 2007/04/17 18:52:35 pgf
 * $Initial version.
 * $$
 *
 * === */

#include <stdio.h>
#include "acis_h/interface.h"
#include "filesprotocols/fepmanager.H"
#include "filesswhouse/swhousekeeper.H"

class Test_FepManager
{
public:
 virtual void loadBadPixel(FepId fepid, unsigned row, unsigned col);
 friend class Test2_FepManager;
};

void Test_FepManager::loadBadPixel(FepId fepid, unsigned row, unsigned col)
{
 DebugProbe probe;

 if (fepManager.isEnabled(fepid) == BoolTrue) {
 fepIo[fepid]->writeBiasValue(row, col, PIXEL_BAD);
 }
}

07/13/07
01:18:41 1../../buscrash/testsuite/bug-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

#! /bin/env expect

puts "Welcome to buscrash/testsuite/bug-hw/runtest.tcl"

---- Split off the command arguments ----
set basedir [lindex $argv 0]
set tools [lindex $argv 1]
set patchdir [lindex $argv 2]

---- Launch the command and telemetry server processes ----
set first_fep 0 ; # first FEP under test
set last_fep 0 ; # last FEP under test
set quad_mode "0 \# QUAD_ABCD" ; # desired outputRegisterMode
set ccd_list "0 10 10 10 10 10" ; # desired fepCcdSelect

---- Embed procedure library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Sleep while reporting packets ----
proc gotosleep { secs } {
 set timeout $secs
 expect { timeout { } }
}

---- Start command pipe ----
spawn $basedir/$tools/bin/cmdclient $env(ACISSERVER)
set cmd_id $spawn_id

---- Start telemetry pipe ----
spawn $basedir/$tools/bin/tlmclient $env(ACISSERVER)
gotosleep 1

---- Select Input from Image Loader ----
system make loaderselect

---- Apply patches ----
cold_boot
load_patch_list "$basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_dearepl.bcmd\
 ../standard.bcmd"
warm_boot

---- Power on FEPs and CCDs ----
power_on_boards "$ccd_list"

---- Wait for FEPs to finish powering ----
expect {
 -re ".*SWSTAT_FEPMAN_ENDLOAD: $last_fep\[\r\n]*" { }
 timeout { fail "Power-up Failure" }
}

---- Load Pblock for Faint Timed-Exposure Mode ----
send -i $cmd_id "load 0 te 4 {
 parameterBlockId = 0x00000014
 fepCcdSelect = $ccd_list
 fepMode = 2 # FEP_TE_MODE_EV3x3
 bepPackingMode = 2 # BEP_TE_MODE_GRADED
 onChip2x2Summing = 0
 ignoreBadPixelMap = 0
 ignoreBadColumnMap = 0
 recomputeBias = 1
 trickleBias = 1
 subarrayStartRow = 0

07/13/07
01:18:41 2../../buscrash/testsuite/bug-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

 subarrayRowCount = 1023
 overclockPairsPerNode = 8
 outputRegisterMode = $quad_mode
 ccdVideoResponse = 0 0 0 0 0 0
 primaryExposure = 33
 secondaryExposure = 0
 dutyCycle = 0
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 50 50 50 50
 fep1SplitThreshold = 50 50 50 50
 fep2SplitThreshold = 50 50 50 50
 fep3SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 fep4SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 lowerEventAmplitude = 0
 eventAmplitudeRange = 65535
 gradeSelections = 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 windowSlotIndex = 65535
 histogramCount = 0
 biasCompressionSlotIndex = 3 3 1 1 1 1
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasArg0 = 9 9 9 9 9 1
 biasArg1 = 25 25 25 25 25 25
 biasArg2 = 20 20 20 20 20 20
 biasArg3 = 26 26 50 50 50 50
 biasArg4 = 20 20 20 20 20 20
 fep0VideoOffset = 65 65 65 65
 fep1VideoOffset = 65 65 65 65
 fep2VideoOffset = 65 65 65 65
 fep3VideoOffset = 65 65 65 65
 fep4VideoOffset = 65 65 65 65
 fep5VideoOffset = 65 65 65 65
 deaLoadOverride = 0
 fepLoadOverride = 0
}
"
command_echo 1 9 "load te"
system make bias

puts ""
puts "# Starting test 1"
puts ""
send -i $cmd_id "start 0 te 4\n"
command_echo 1 14 "start science run"
set timeout 360
expect {
 -re "SWSTAT_FEP_STARTBIAS.*\[\r\n]*" { }
 timeout { fail "Bias Failure" }
}
gotosleep 10

puts "# stopScience"
send -i $cmd_id "stop 0 science\n"
command_echo 1 19 "stop science run"
gotosleep 2

07/13/07
01:18:41 3../../buscrash/testsuite/bug-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

puts "# stopScience"
send -i $cmd_id "stop 0 science\n"
command_echo 1 19 "stop science run"
gotosleep 2

puts "# powering boards off"
power_off_boards
set timeout 360
expect {
 -re "bepStartupMessage.*\[\r\n]*" {
 pass "Bus crash reproduced"
 }
 -re "scienceReport.*\[\r\n]*" {
 fail "Science run ends without bus crash"
 }
 timeout {
 fail "No crash or stopScience"
 }
}

puts "Done"

04/18/07
17:49:20 1../../buscrash/testsuite/fix-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

#! /bin/env expect

puts "Welcome to buscrash/testsuite/fix-hw/runtest.tcl"

---- Split off the command arguments ----
set basedir [lindex $argv 0]
set tools [lindex $argv 1]
set patchdir [lindex $argv 2]

---- Launch the command and telemetry server processes ----
set first_fep 3 ; # first FEP under test
set last_fep 3 ; # last FEP under test
set quad_mode "0 \# QUAD_ABCD" ; # desired outputRegisterMode
set ccd_list "10 10 10 1 10 10" ; # desired fepCcdSelect

---- Embed procedure library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Sleep while reporting packets ----
proc gotosleep { secs } {
 set timeout $secs
 expect { timeout { } }
}

---- Start command pipe ----
spawn $basedir/$tools/bin/cmdclient $env(ACISSERVER)
set cmd_id $spawn_id

---- Start telemetry pipe ----
spawn $basedir/$tools/bin/tlmclient $env(ACISSERVER)
gotosleep 1

---- Select Input from Image Loader ----
system make loaderselect

---- Apply patches ----
cold_boot
load_patch_list "$basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_dearepl.bcmd\
 $basedir/$patchdir/standard.bcmd"
warm_boot

---- Power on FEPs and CCDs ----
power_on_boards "$ccd_list"

---- Wait for FEPs to finish powering ----
expect {
 -re ".*SWSTAT_FEPMAN_ENDLOAD: $last_fep\[\r\n]*" { }
 timeout { fail "Power-up Failure" }
}

---- Load Pblock for Faint Timed-Exposure Mode ----
send -i $cmd_id "load 0 te 4 {
 parameterBlockId = 0x00000014
 fepCcdSelect = $ccd_list
 fepMode = 2 # FEP_TE_MODE_EV3x3
 bepPackingMode = 2 # BEP_TE_MODE_GRADED
 onChip2x2Summing = 0
 ignoreBadPixelMap = 0
 ignoreBadColumnMap = 0
 recomputeBias = 1
 trickleBias = 1
 subarrayStartRow = 0

04/18/07
17:49:20 2../../buscrash/testsuite/fix-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

 subarrayRowCount = 1023
 overclockPairsPerNode = 8
 outputRegisterMode = $quad_mode
 ccdVideoResponse = 0 0 0 0 0 0
 primaryExposure = 33
 secondaryExposure = 0
 dutyCycle = 0
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 50 50 50 50
 fep1SplitThreshold = 50 50 50 50
 fep2SplitThreshold = 50 50 50 50
 fep3SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 fep4SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 lowerEventAmplitude = 0
 eventAmplitudeRange = 65535
 gradeSelections = 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 windowSlotIndex = 65535
 histogramCount = 0
 biasCompressionSlotIndex = 3 3 1 1 1 1
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasArg0 = 9 9 9 9 9 1
 biasArg1 = 25 25 25 25 25 25
 biasArg2 = 20 20 20 20 20 20
 biasArg3 = 26 26 50 50 50 50
 biasArg4 = 20 20 20 20 20 20
 fep0VideoOffset = 65 65 65 65
 fep1VideoOffset = 65 65 65 65
 fep2VideoOffset = 65 65 65 65
 fep3VideoOffset = 65 65 65 65
 fep4VideoOffset = 65 65 65 65
 fep5VideoOffset = 65 65 65 65
 deaLoadOverride = 0
 fepLoadOverride = 0
}
"
command_echo 1 9 "load te"
system make bias

puts ""
puts "# Starting test 1"
puts ""
send -i $cmd_id "start 0 te 4\n"
command_echo 1 14 "start science run"
set timeout 360
expect {
 -re "SWSTAT_FEP_STARTBIAS.*\[\r\n]*" { }
 timeout { fail "Bias Failure" }
}
gotosleep 10

puts "# stopScience"
send -i $cmd_id "stop 0 science\n"
command_echo 1 19 "stop science run"
gotosleep 2

04/18/07
17:49:20 3../../buscrash/testsuite/fix-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

puts "# stopScience"
send -i $cmd_id "stop 0 science\n"
command_echo 1 19 "stop science run"
gotosleep 2

puts "# powering boards off"
power_off_boards
set timeout 360
expect {
 -re "bepStartupMessage.*\[\r\n]*" {
 fail "Bus crash"
 }
 -re "scienceReport.*\[\r\n]*" {
 pass "Science run ends without bus crash"
 }
 timeout {
 fail "No crash or stopScience"
 }
}

puts "Done"

07/12/07
22:42:06 1../../tlmbusy/tlmbusy.C

Flight S/W Patches, Revision C-C-D

/* ==
 *
 * $$Source: /nfs/acis/h3/acisfs/configcntl/patches/tlmbusy/tlmbusy.C,v $$
 *
 * Patch Name: Make TlmManager::post() reentrant to concurrent tasks
 *
 * Description:
 * This implements the standard tlmbusy patch, which prevents the
 * BEP from attempting to start two telemetry packets simultaneously
 * from separate tasks. It does this by replacing the post() method
 * of TlmManager with a function that calls the forbidPreempt() and
 * then permitPreempt() methods of TaskManager.
 *
 * This patch consists of the following files:
 * tlmbusy.C - The replaced TlmManager::post() method.
 *
 * The tlmbusy.C file defines and implements the following:
 *
 * Test_TlmManager - This is a "friendly" subclass of TlmManager
 * that provides a replacement function.
 * Test_TlmManager - This constructor is provided to avoid
 * compiler/linker complaints. It is never invoked.
 * ˜Test_TlmManager - This destructor is provided to avoid
 * compiler/linker errors. It is never invoked.
 * post - This function replaces TlmManager::post and
 * prevents task switching while it is invoked,
 * i.e., it prevents the routine from being
 * called in a reentrant manner from multiple
 * tasks.
 *
 * References:
 * Refer to the 1.5 release of filesprotocols/tlmmanager.C
 *
 * $$Log: tlmbusy.C,v $
 * $Revision 1.1 2005/06/08 20:02:11 pgf
 * $Initial version of patch.
 * $$
 * === */

#include "ipcl/interface.h"
#include "filesexecutive/task.H"
#include "filesprotocols/tlmmanager.H"

class Test_TlmManager : public TlmManager
{
public:
 ˜Test_TlmManager();
 void post(TlmPkt*pkt);
};

Test_TlmManager::˜Test_TlmManager() {};

// --
void Test_TlmManager::post(TlmPkt*pkt)
// --
{
 DebugProbe probe;

 // ---- Place packet onto queue ----
 sendQueue.enqueuePkt (pkt);

 // ---- Prevent task preemption ----
 taskManager.forbidPreempt();

07/12/07
22:42:06 2../../tlmbusy/tlmbusy.C

Flight S/W Patches, Revision C-C-D

 // ---- If no transfers in progress, start one up ----
 if (curPkt == 0)
 {
 serviceDevice (0);
 }

 // ---- Allow task preemption again ----
 taskManager.permitPreempt();
};

06/08/05
16:02:18 1../../tlmbusy/testsuite/bug-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

#! /bin/env expect
#
$Source: /nfs/acis/h3/acisfs/configcntl/patches/tlmbusy/testsuite/bug-hw/runtest.tcl,v $
#
Test telemetry posting by concurrent tasks -- without tlmbusy patch
#

puts "Welcome to tlmbusy/testsuite/bug-hw/runtest.tcl"

---- Launch the command and telemetry server processes ----
set basedir [lindex $argv 0] ; # patch base directory
set tools [lindex $argv 1] ; # tool directory
set patchdir [lindex $argv 2] ; # patches under test
set quad_mode "0 \# QUAD_ABCD" ; # desired outputRegisterMode
set ccd_list "0 10 10 10 10 10" ; # desired fepCcdSelect
set last_fep 0 ; # last FEP read out
set nexpo 2000000 ; # limit to number of exposures
set server $env(ACISSERVER) ; # lrtcu/ctue server
set port $env(PORT) ; # lrtcu/ctue server command port

---- Embed procedure library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Start command pipe ----
spawn /bin/sh -c "(bcmd | cclient $server $port) > $server.err 2>&1"
set cmd_id $spawn_id
set send_slow {10 0.001}

---- Start telemetry pipe ----
spawn /bin/sh -c "filterClient -h $server | psci -m -u"
sleep 1

---- Apply patches ----
cold_boot
load_patch_list "$basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_dearepl.bcmd\
 $basedir/$patchdir/standard.bcmd"
warm_boot

---- Power on FEPs and CCDs ----
power_on_boards "$ccd_list"

---- While powering up, load the Bias Image ----
system "make bias"

---- Wait for FEPs to finish powering ----
expect {
 -re ".*SWSTAT_FEP_EXECMEM: $last_fep\[\r\n]" {}
 timeout {}
}

---- Start DEA housekeeping ----
send -s -i $cmd_id "load 0 dea 4 {
 deaBlockId = 0x00001014
 sampleRate = 1
 queries = {
 ccdId = 10
 queryId = 0
 }
}
"
command_echo 1 13 "load dea"
send -i $cmd_id "start 0 dea 4\r"

06/08/05
16:02:18 2../../tlmbusy/testsuite/bug-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

command_echo 1 18 "start dea housekeeping"

---- Write long string line by line ----
proc long_send {id str} {
 set cnt 0
 foreach s [split $str "\n"] {
 send -s -i $id "$s\r"
 incr cnt
 }
 puts "$cnt command lines sent"
}

---- Load parameter block ----
long_send $cmd_id "load 0 te 4 {
 parameterBlockId = 0x00057014
 fepCcdSelect = $ccd_list
 fepMode = 2 # FEP_TE_MODE_EV3x3
 bepPackingMode = 2 # BEP_TE_MODE_GRADED
 onChip2x2Summing = 0
 ignoreBadPixelMap = 1
 ignoreBadColumnMap = 1
 recomputeBias = 0
 trickleBias = 0
 subarrayStartRow = 0
 subarrayRowCount = 99
 overclockPairsPerNode = 2
 outputRegisterMode = $quad_mode
 ccdVideoResponse = 0 0 0 0 0 0
 primaryExposure = 3
 secondaryExposure = 0
 dutyCycle = 0
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 50 50 50 50
 fep1SplitThreshold = 50 50 50 50
 fep2SplitThreshold = 50 50 50 50
 fep3SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 fep4SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 lowerEventAmplitude = 0
 eventAmplitudeRange = 65535
 gradeSelections = 0xffffffff 0xffffffff 0xffffffff 0xffffffff\
 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 windowSlotIndex = 65535
 histogramCount = 0
 biasCompressionSlotIndex = 3 3 1 1 1 1
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasArg0 = 1 1 1 1 1 1
 biasArg1 = 0 0 0 0 0 0
 biasArg2 = 0 0 0 0 0 0
 biasArg3 = 26 26 50 50 50 50
 biasArg4 = 20 20 20 20 20 20
 fep0VideoOffset = 65 65 65 65
 fep1VideoOffset = 65 65 65 65
 fep2VideoOffset = 65 65 65 65
 fep3VideoOffset = 65 65 65 65
 fep4VideoOffset = 65 65 65 65

06/08/05
16:02:18 3../../tlmbusy/testsuite/bug-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

 fep5VideoOffset = 65 65 65 65
 deaLoadOverride = 0
 fepLoadOverride = 0
}
"
command_echo 1 9 "load te"

---- Start the Bias Run ----
send -i $cmd_id "start 0 te bias 4\r"
command_echo 1 15 "start bias run"
set timeout 600
wait_stop_science

---- Load the Event Image ----
system "make image"

---- Start the Science Run ----
send -i $cmd_id "start 0 te 4\r"
command_echo 1 14 "start science run"

set ncmd 0
set nloop 0
set nread 0
set expo 0
set expolast 0

---- Wait for Exposure Records ----
expect {
 -re "commandEcho.*commandOpcode=3\[\r\n]" {
 if {$nread > 0} {set nread [expr $nread - 1]}
 set expolast $expo
 exp_continue
 }
 -re "exposureTeGraded.*fepId=(\[0-5]).*exposureNumber=(\[0-9a-fx]+).*\n" {
 set fep $expect_out(1,string)
 set expo [expr $expect_out(2,string)]
 if { $expo < $nexpo || $fep != $last_fep } {
 if {$nread <= 5} {
 set ncmd [expr ($ncmd + 1) % 65536]
 incr nread
 send -i $cmd_id "read $ncmd 0xa000e5e0 1\r"
 } elseif {$expo > $expolast + 2000} {
 if {$nloop < 5} {
 set nread 0
 set expolast $expo
 incr nloop
 } else {
 fail "nexpo=$expo: no commandEcho since nexpo=$expolast"
 }
 }
 exp_continue
 }
 # ---- fall through to wait for scienceReport packet ----
 }
 timeout {
 fail "No exposure record"
 }
}

send -i $cmd_id "stop 0 science\r"
command_echo 1 19 "stop science"

set timeout 600
science_report 1 "science report"

06/08/05
16:02:18 4../../tlmbusy/testsuite/bug-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

---- Report fate ----
pass "$expo exposures received, $nloop command resets"

06/08/05
16:02:19 1../../tlmbusy/testsuite/fix-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

#! /bin/env expect
#
$Source: /nfs/acis/h3/acisfs/configcntl/patches/tlmbusy/testsuite/fix-hw/runtest.tcl,v $
#
Test telemetry posting by concurrent tasks -- with tlmbusy patch
#

puts "Welcome to tlmbusy/testsuite/fix-hw/runtest.tcl"

---- Launch the command and telemetry server processes ----
set basedir [lindex $argv 0] ; # patch base directory
set tools [lindex $argv 1] ; # tool directory
set patchdir [lindex $argv 2] ; # patches under test
set quad_mode "0 \# QUAD_ABCD" ; # desired outputRegisterMode
set ccd_list "0 10 10 10 10 10" ; # desired fepCcdSelect
set last_fep 0 ; # last FEP read out
set nexpo 2000000 ; # limit to number of exposures
set server $env(ACISSERVER) ; # lrtcu/ctue server
set port $env(PORT) ; # lrtcu/ctue server command port

---- Embed procedure library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Start command pipe ----
spawn /bin/sh -c "(bcmd | cclient $server $port) > $server.err 2>&1"
set cmd_id $spawn_id
set send_slow {10 0.001}

---- Start telemetry pipe ----
spawn /bin/sh -c "filterClient -h $server | psci -m -u"
sleep 1

---- Apply patches ----
cold_boot
load_patch_list "$basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_dearepl.bcmd\
 $basedir/$patchdir/standard.bcmd\
 $basedir/$patchdir/tlmbusy.bcmd"
warm_boot

---- Power on FEPs and CCDs ----
power_on_boards "$ccd_list"

---- While powering up, load the Bias Image ----
system "make bias"

---- Wait for FEPs to finish powering ----
expect {
 -re ".*SWSTAT_FEP_EXECMEM: $last_fep\[\r\n]" {}
 timeout {}
}

---- Start DEA housekeeping ----
send -s -i $cmd_id "load 0 dea 4 {
 deaBlockId = 0x00001014
 sampleRate = 1
 queries = {
 ccdId = 10
 queryId = 0
 }
}
"
command_echo 1 13 "load dea"

06/08/05
16:02:19 2../../tlmbusy/testsuite/fix-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

send -i $cmd_id "start 0 dea 4\r"
command_echo 1 18 "start dea housekeeping"

---- Write long string line by line ----
proc long_send {id str} {
 set cnt 0
 foreach s [split $str "\n"] {
 send -s -i $id "$s\r"
 incr cnt
 }
 puts "$cnt command lines sent"
}

---- Load parameter block ----
long_send $cmd_id "load 0 te 4 {
 parameterBlockId = 0x00057014
 fepCcdSelect = $ccd_list
 fepMode = 2 # FEP_TE_MODE_EV3x3
 bepPackingMode = 2 # BEP_TE_MODE_GRADED
 onChip2x2Summing = 0
 ignoreBadPixelMap = 1
 ignoreBadColumnMap = 1
 recomputeBias = 0
 trickleBias = 0
 subarrayStartRow = 0
 subarrayRowCount = 99
 overclockPairsPerNode = 2
 outputRegisterMode = $quad_mode
 ccdVideoResponse = 0 0 0 0 0 0
 primaryExposure = 3
 secondaryExposure = 0
 dutyCycle = 0
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 50 50 50 50
 fep1SplitThreshold = 50 50 50 50
 fep2SplitThreshold = 50 50 50 50
 fep3SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 fep4SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 lowerEventAmplitude = 0
 eventAmplitudeRange = 65535
 gradeSelections = 0xffffffff 0xffffffff 0xffffffff 0xffffffff\
 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 windowSlotIndex = 65535
 histogramCount = 0
 biasCompressionSlotIndex = 3 3 1 1 1 1
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasArg0 = 1 1 1 1 1 1
 biasArg1 = 0 0 0 0 0 0
 biasArg2 = 0 0 0 0 0 0
 biasArg3 = 26 26 50 50 50 50
 biasArg4 = 20 20 20 20 20 20
 fep0VideoOffset = 65 65 65 65
 fep1VideoOffset = 65 65 65 65
 fep2VideoOffset = 65 65 65 65
 fep3VideoOffset = 65 65 65 65

06/08/05
16:02:19 3../../tlmbusy/testsuite/fix-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

 fep4VideoOffset = 65 65 65 65
 fep5VideoOffset = 65 65 65 65
 deaLoadOverride = 0
 fepLoadOverride = 0
}
"
command_echo 1 9 "load te"

---- Start the Bias Run ----
send -i $cmd_id "start 0 te bias 4\r"
command_echo 1 15 "start bias run"
set timeout 600
wait_stop_science

---- Load the Event Image ----
system "make image"

---- Start the Science Run ----
send -i $cmd_id "start 0 te 4\r"
command_echo 1 14 "start science run"

set ncmd 0
set nloop 0
set nread 0
set expo 0
set expolast 0

---- Wait for Exposure Records ----
expect {
 -re "commandEcho.*commandOpcode=3\[\r\n]" {
 if {$nread > 0} {set nread [expr $nread - 1]}
 set expolast $expo
 exp_continue
 }
 -re "exposureTeGraded.*fepId=(\[0-5]).*exposureNumber=(\[0-9a-fx]+).*\n" {
 set fep $expect_out(1,string)
 set expo [expr $expect_out(2,string)]
 if { $expo < $nexpo || $fep != $last_fep } {
 if {$nread <= 5} {
 set ncmd [expr ($ncmd + 1) % 65536]
 incr nread
 send -i $cmd_id "read $ncmd 0xa000e5e0 1\r"
 } elseif {$expo > $expolast + 2000} {
 if {$nloop < 5} {
 set nread 0
 set expolast $expo
 incr nloop
 } else {
 fail "nexpo=$expo: no commandEcho since nexpo=$expolast"
 }
 }
 exp_continue
 }
 # ---- fall through to wait for scienceReport packet ----
 }
 timeout {
 fail "No exposure record"
 }
}

send -i $cmd_id "stop 0 science\r"
command_echo 1 19 "stop science"

set timeout 600

06/08/05
16:02:19 4../../tlmbusy/testsuite/fix-hw/runtest.tcl

Flight S/W Patches, Revision C-C-D

science_report 1 "science report"

---- Report fate ----
pass "$expo exposures received, $nloop command resets"

07/13/07
08:11:08 1../../tlmbusy/testsuite/smoke/runtest.tcl

Flight S/W Patches, Revision C-C-D

#! /bin/env expect
#
$Source: /nfs/acis/h3/acisfs/configcntl/patches/tlmbusy/testsuite/smoke/runtest.tcl,v $
#
Simple ’smoke’ test -- with tlmbusy patch
#

puts "Welcome to tlmbusy/testsuite/smoke/runtest.tcl"

---- Launch the command and telemetry server processes ----
set basedir [lindex $argv 0] ; # patch base directory
set tools [lindex $argv 1] ; # tool directory
set patchdir [lindex $argv 2] ; # patches under test
set quad_mode "0 \# QUAD_ABCD" ; # desired outputRegisterMode
set ccd_list "0 10 10 10 10 10" ; # desired fepCcdSelect
set last_fep 0 ; # last FEP read out
set nexpo 100 ; # limit to number of exposures

---- Embed procedure library ----
source $basedir/$tools/lib/lib-exp/runtest_support.tcl

---- Start command pipe ----
spawn $basedir/$tools/bin/cmdclient $env(ACISSERVER)
set cmd_id $spawn_id

---- Start telemetry pipe ----
spawn $basedir/$tools/bin/tlmclient $env(ACISSERVER)
sleep 1

---- Apply patches ----
cold_boot
load_patch_list "$basedir/$tools/share/opt_tlmio.bcmd\
 $basedir/$tools/share/opt_printswhouse.bcmd\
 $basedir/$tools/share/opt_dearepl.bcmd\
 $basedir/$patchdir/standard.bcmd"
warm_boot

---- Power on FEPs and CCDs ----
power_on_boards "$ccd_list"

---- While powering up, load the Bias Image ----
system "make bias"

---- Wait for FEPs to finish powering ----
expect {
 -re ".*SWSTAT_FEP_EXECMEM: $last_fep\[\r\n]" {}
 timeout {}
}

---- Start DEA housekeeping ----
send -i $cmd_id "load 0 dea 4 {
 deaBlockId = 0x00001014
 sampleRate = 1
 queries = {
 ccdId = 10
 queryId = 0
 }
}
"
command_echo 1 13 "load dea"
send -i $cmd_id "start 0 dea 4\r"
command_echo 1 18 "start dea housekeeping"

---- Load parameter block ----

07/13/07
08:11:08 2../../tlmbusy/testsuite/smoke/runtest.tcl

Flight S/W Patches, Revision C-C-D

send -i $cmd_id "load 0 te 4 {
 parameterBlockId = 0x00057014
 fepCcdSelect = $ccd_list
 fepMode = 2 # FEP_TE_MODE_EV3x3
 bepPackingMode = 2 # BEP_TE_MODE_GRADED
 onChip2x2Summing = 0
 ignoreBadPixelMap = 1
 ignoreBadColumnMap = 1
 recomputeBias = 0
 trickleBias = 0
 subarrayStartRow = 0
 subarrayRowCount = 99
 overclockPairsPerNode = 2
 outputRegisterMode = $quad_mode
 ccdVideoResponse = 0 0 0 0 0 0
 primaryExposure = 3
 secondaryExposure = 0
 dutyCycle = 0
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 50 50 50 50
 fep1SplitThreshold = 50 50 50 50
 fep2SplitThreshold = 50 50 50 50
 fep3SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 fep4SplitThreshold = 50 50 50 50
 fep5SplitThreshold = 50 50 50 50
 lowerEventAmplitude = 0
 eventAmplitudeRange = 65535
 gradeSelections = 0xffffffff 0xffffffff 0xffffffff 0xffffffff\
 0xffffffff 0xffffffff 0xffffffff 0xffffffff
 windowSlotIndex = 65535
 histogramCount = 0
 biasCompressionSlotIndex = 3 3 1 1 1 1
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasArg0 = 1 1 1 1 1 1
 biasArg1 = 0 0 0 0 0 0
 biasArg2 = 0 0 0 0 0 0
 biasArg3 = 26 26 50 50 50 50
 biasArg4 = 20 20 20 20 20 20
 fep0VideoOffset = 65 65 65 65
 fep1VideoOffset = 65 65 65 65
 fep2VideoOffset = 65 65 65 65
 fep3VideoOffset = 65 65 65 65
 fep4VideoOffset = 65 65 65 65
 fep5VideoOffset = 65 65 65 65
 deaLoadOverride = 0
 fepLoadOverride = 0
}
"
command_echo 1 9 "load te"

---- Start the Bias Run ----
send -i $cmd_id "start 0 te bias 4\r"
command_echo 1 15 "start bias run"
set timeout 600
wait_stop_science

07/13/07
08:11:08 3../../tlmbusy/testsuite/smoke/runtest.tcl

Flight S/W Patches, Revision C-C-D

---- Load the Event Image ----
system "make image"

---- Start the Science Run ----
send -i $cmd_id "start 0 te 4\r"
command_echo 1 14 "start science run"

set ncmd 0
set nread 0
set expo 0

---- Wait for Exposure Records ----
expect {
 -re "commandEcho.*commandOpcode=3\[\r\n]" {
 if {$nread > 0} {set nread [expr $nread - 1]}
 exp_continue
 }
 -re "exposureTeGraded.*fepId=(\[0-5]).*exposureNumber=(\[0-9a-fx]+).*\n" {
 set fep $expect_out(1,string)
 set expo [expr $expect_out(2,string)]
 if { $expo < $nexpo || $fep != $last_fep } {
 if {$nread <= 5} {
 set ncmd [expr ($ncmd + 1) % 65536]
 incr nread
 send -i $cmd_id "read $ncmd 0xa000e5e0 1\r"
 }
 exp_continue
 }
 # ---- fall through to wait for scienceReport packet ----
 }
 timeout {
 fail "No exposure record"
 }
}

send -i $cmd_id "stop 0 science\r"
command_echo 1 19 "stop science"

set timeout 600
science_report 1 "science report"

---- Report fate ----
pass "$expo exposures received"

ENGINEERING CHANGE ORDER
ECO No.

36–1036

CENTER FORSPACERESEARCH
MASSACHUSETTSINSTITUTE OFTECHNOLOGY

DWG. NO. NEW
REV. DRAWING TITLE

36-58021.03 D Flight Software Patch Release C-C-D Certification

REASON FORCHANGE:
Certification of standard patch release C, which includes the newtlmbusy andbuscrash patch-
es, along with the same optional patches that were certified in release B-C-C:smtimedlookup,
compressall, eventhist, cc3x3, anduntricklebias.

DESCRIPTION OFCHANGE:
Three optional patch combinations are certified as release C–C–D:

(a)cc3x3, eventhist, and smtimedlookup.

(b) cc3x3, eventhist, compressall, andsmtimedlookup.

(c) cc3x3, eventhist, compressall, untricklebias, andsmtimedlookup.

The certification tests are taken from the optional release C suite, the only difference being that
the tests are conducted with release C of the standard patches.

SIGNATURE DATE REMARKS:

ORIGINATOR Peter Ford 08/09/07 Released version

MECHANICAL

ELECTRICAL

SOFTWARE

STRUCTURE

FABRICATION

SCIENCE

SYSTEMSENG.

QUALITY

PROJ. ENGINEER

DEPUTY PM

PROJ. MANAGER

MIT CSR

ACIS

08/15/07
18:53:06 1../../certsrc/cc3x3+eventhist.notes

Flight S/W Patches, Revision C-C-D

TITLE: ACIS eventhist, cc3x3, smtimedlookup Patch Certification Release Notes

DOCUMENT NUMBER: 36-58021.03 REVISION: D

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

D 36-1036 Certify CC3x3/EventHist/smTimedL RFG 08/09/2007
D 36-1036 Rev. C Standard patches

08/15/07
18:53:06 2../../certsrc/cc3x3+eventhist.notes

Flight S/W Patches, Revision C-C-D

==

Title: ACIS eventhist, cc3x3, smtimedlookup Patch Certification Release Notes for Version D

Software Change Order: 36-1036

Build Date: Wed Aug 15 18:53:05 EDT 2007
Part Number: 36-58021.03
Version: D
CVS Tag: cc3x3+eventhist-C-C-D

Std Number: 36-58010
Std Version: C
Std Tag: release-C
Std SCO: 36-1035

Opt Number: 36-58020
Opt Version: C
Opt Tag: release-C-opt-C
Opt SCO: 36-1035

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This certification verifies the operation of
 Continuous Clocking 3x3 Patch in conjunction with
 the Event Histogram and smTimedLookup Patches.

 The certification consists of three tests, copied
 from the original test runs during the Options
 Release. The tests have been modified to load all
 three optional patches, rather than just one of
 them, and to clean up some false failures due
 to timing/pattern matching issues in the tests.

 The tests verify that the patch modes run as they
 did during the original test when they are
 both installed into the system.

 The Continuous Clocking 3x3 (cc3x3) test consists of two
 parts. The first launches a CC3x3 run, whereas the second
 runs CC1x3. This suite performs CC1x3 tests to verify that
 the modifications to the existing BEP Continuous Clocking
 functions do not break the existing CC1x3 functionality. Since
 the FEP software only contains CC3x3 code during CC3x3 runs (this
 is verified by the CC1x3 run), and no BEP functions used by Timed Exposure
 are modified by the patch, the Timed Exposure modes do not need to
 be re-tested as part of this certification.

 Each test sends a series of events on the right side of each quadrant
 (the original test was derived from the test for the rquad
 bug fix), and verifies that the mode runs nominally, and
 produces the expected event list. Since the "stop" critereon
 for the test is a little fuzzy, the runs tend to produce
 additional exposures that aren’t in the file used to check
 the run’s event output. "diff" used in the test produces
 mismatches on the additional exposures produced by the test
 run. Manual check of the run data shows that the event lists
 are replicated correctly by the run. Later, a "wrapping"

08/15/07
18:53:06 3../../certsrc/cc3x3+eventhist.notes

Flight S/W Patches, Revision C-C-D

 comparison may be developed to eliminate this manual step.

 The Event Histogram test uses a similar strategy to
 the CC3x3 test. It starts an Event Histogram run, and
 sends in a series of standard events. It then compares
 the resulting quadrant histograms with an example file
 to verify the results.

 One caveat that arose during the review of the Optional
 patches is that, when the standard patch "zap1expo" is
 present, which it should always be, the first exposure
 of event histogram mode will not contain any events.
 This will cause the first histogram from each FEP quadrant
 to appear to have been integrated for 1 less frame time than
 subsequent quadrant histograms. This is different than Raw
 Histogram mode, which is not affected by the "zap1expo"
 patch. The histogram example file used for this certification
 assumes that no events are sent during exposure 2 (the
 first "real" exposure of the run).

 The smTimedExposure patch is tested by merely running a
 timed-exposure faint run, verifying that the bias and event
 detection phases have been invoked, and then stopping the run.

--
Included Patches:
 eventhist
 cc3x3
 smtimedlookup

--
Test Support Patches:
 printswhouse
 dearepl
 tlmio

--
Test Results:
 smtimedlookup --> PASS
 cc3x3 --> PASS
 eventhist --> PASS
 eventhist --> PASS

08/15/07
20:44:57 1../../certsrc/cc3x3+eventhist+compressall.notes

Flight S/W Patches, Revision C-C-D

TITLE: ACIS eventhist, cc3x3, compressall, smtimedlookup Patch Certification Release Notes

DOCUMENT NUMBER: 36-58021.03 REVISION: D

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

D 36-1036 Certify CC3x3/EventHist/smTimedL RFG 08/09/2007
D 36-1036 Rev. C standard patches

08/15/07
20:44:57 2../../certsrc/cc3x3+eventhist+compressall.notes

Flight S/W Patches, Revision C-C-D

==

Title: ACIS eventhist, cc3x3, compressall, smtimedlookup Patch Certification Release Notes f
or Version D

Software Change Order: 36-1036

Build Date: Wed Aug 15 20:44:56 EDT 2007
Part Number: 36-58021.03
Version: D
CVS Tag: cc3x3+eventhist+compressall-C-C-D

Std Number: 36-58010
Std Version: C
Std Tag: release-C
Std SCO: 36-1035

Opt Number: 36-58020
Opt Version: C
Opt Tag: release-C-opt-C
Opt SCO: 36-1035

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This certification verifies the operation of the
 Continuous Clocking 3x3, Event Histogram, Compress
 All, and Science Mode Timed Lookup Patches.

 The certification consists of two tests, copied
 from the original test run during the Options
 Release. The tests have been modified to load
 all four optional patches, rather than just one
 at a time, and to clean up some false failures due
 to timing/pattern matching issues in the tests.

 The tests verify that the patch modes run as they
 did during the original test when they are
 both installed into the system.

 The Continuous Clocking 3x3 (cc3x3) test consists of two
 parts. The first launches a CC3x3 run, whereas the second
 runs CC1x3. This suite performs CC1x3 tests to verify that
 the modifications to the existing BEP Continuous Clocking
 functions do not break the existing CC1x3 functionality. Since
 the FEP software only contains CC3x3 code during CC3x3 runs (this
 is verified by the CC1x3 run), and no BEP functions used by Timed Exposure
 are modified by the patch, the Timed Exposure modes do not need to
 be re-tested as part of this certification.

 Each test sends a series of events on the right side of each quadrant
 (the original test was derived from the test for the rquad
 bug fix), and verifies that the mode runs nominally, and
 produces the expected event list. Since the "stop" critereon
 for the test is a little fuzzy, the runs tend to produce
 additional exposures that aren’t in the file used to check
 the run’s event output. "diff" used in the test produces
 mismatches on the additional exposures produced by the test
 run. Manual check of the run data shows that the event lists
 are replicated correctly by the run. Later, a "wrapping"

08/15/07
20:44:57 3../../certsrc/cc3x3+eventhist+compressall.notes

Flight S/W Patches, Revision C-C-D

 comparison may be developed to eliminate this manual step.

 The Event Histogram test uses a similar strategy to
 the CC3x3 test. It starts an Event Histogram run, and
 sends in a series of standard events. It then compares
 the resulting quadrant histograms with an example file
 to verify the results.

 One caveat that arose during the review of the Optional
 patches is that, when the standard patch "zap1expo" is
 present, which it should always be, the first exposure
 of event histogram mode will not contain any events.
 This will cause the first histogram from each FEP quadrant
 to appear to have been integrated for 1 less frame time than
 subsequent quadrant histograms. This is different than Raw
 Histogram mode, which is not affected by the "zap1expo"
 patch. The histogram example file used for this certification
 assumes that no events are sent during exposure 2 (the
 first "real" exposure of the run).

 The smTimedExposure patch is tested by merely running a
 timed-exposure faint run, verifying that the bias and event
 detection phases have been invoked, and then stopping the run.

 The Compress All patch is tested by copying an image to
 the image loader that contains several very "noisy" rows
 that are known to be incompressible by the Huffman tables.
 A timed-exposure raw-mode run is executed and the
 pixelCount field of the dataTeRaw packets of a couple of
 raw frames is monitored. The test fails if pixelCount is
 ever zero.

--
Included Patches:
 eventhist
 cc3x3
 compressall
 smtimedlookup

--
Test Support Patches:
 printswhouse
 dearepl
 tlmio

--
Test Results:
 smtimedlookup --> PASS
 cc3x3 --> PASS
 eventhist --> PASS
 eventhist --> PASS
 compressall --> PASS

08/16/07
01:12:08 1../../certsrc/cc3x3+eventhist+compressall+untricklebias.notes

Flight S/W Patches, Revision C-C-D

TITLE: ACIS untricklebias, eventhist, cc3x3, compressall, smtimedlookup Patch Certification
Release Notes

DOCUMENT NUMBER: 36-58021.03 REVISION: D

ORIGINATOR: Peter G. Ford <pgf@space.mit.edu>

LETTER SCO NO. DESCRIPTION APPROVED DATE

D 36-1036 Certify CC3x3/EventHist/smTimedL RFG 08/09/2007
D 36-1036 Rev. C standard patches

08/16/07
01:12:08 2../../certsrc/cc3x3+eventhist+compressall+untricklebias.notes

Flight S/W Patches, Revision C-C-D

==

Title: ACIS untricklebias, eventhist, cc3x3, compressall, smtimedlookup Patch Certification
Release Notes for Version D

Software Change Order: 36-1036

Build Date: Thu Aug 16 01:12:08 EDT 2007
Part Number: 36-58021.03
Version: D
CVS Tag: cc3x3+eventhist+compressall+untricklebias-C-C-D

Std Number: 36-58010
Std Version: C
Std Tag: release-C
Std SCO: 36-1035

Opt Number: 36-58020
Opt Version: C
Opt Tag: release-C-opt-C
Opt SCO: 36-1035

IPCL Number: 36-53204.0204
IPCL Version: N
IPCL CVS Tag: release-N

--
Description:
 This certification verifies the operation of the
 Continuous Clocking 3x3, Event Histogram, Compress
 All, Untrickle Bias, and Science Mode Timed Lookup Patches.

 The certification consists of two tests, copied
 from the original test run during the Options
 Release. The tests have been modified to load
 all four optional patches, rather than just one
 at a time, and to clean up some false failures due
 to timing/pattern matching issues in the tests.

 The tests verify that the patch modes run as they
 did during the original test when they are
 both installed into the system.

 The Continuous Clocking 3x3 (cc3x3) test consists of two
 parts. The first launches a CC3x3 run, whereas the second
 runs CC1x3. This suite performs CC1x3 tests to verify that
 the modifications to the existing BEP Continuous Clocking
 functions do not break the existing CC1x3 functionality. Since
 the FEP software only contains CC3x3 code during CC3x3 runs (this
 is verified by the CC1x3 run), and no BEP functions used by Timed Exposure
 are modified by the patch, the Timed Exposure modes do not need to
 be re-tested as part of this certification.

 Each test sends a series of events on the right side of each quadrant
 (the original test was derived from the test for the rquad
 bug fix), and verifies that the mode runs nominally, and
 produces the expected event list. Since the "stop" critereon
 for the test is a little fuzzy, the runs tend to produce
 additional exposures that aren’t in the file used to check
 the run’s event output. "diff" used in the test produces
 mismatches on the additional exposures produced by the test
 run. Manual check of the run data shows that the event lists
 are replicated correctly by the run. Later, a "wrapping"

08/16/07
01:12:08 3../../certsrc/cc3x3+eventhist+compressall+untricklebias.notes

Flight S/W Patches, Revision C-C-D

 comparison may be developed to eliminate this manual step.

 The Event Histogram test uses a similar strategy to
 the CC3x3 test. It starts an Event Histogram run, and
 sends in a series of standard events. It then compares
 the resulting quadrant histograms with an example file
 to verify the results.

 One caveat that arose during the review of the Optional
 patches is that, when the standard patch "zap1expo" is
 present, which it should always be, the first exposure
 of event histogram mode will not contain any events.
 This will cause the first histogram from each FEP quadrant
 to appear to have been integrated for 1 less frame time than
 subsequent quadrant histograms. This is different than Raw
 Histogram mode, which is not affected by the "zap1expo"
 patch. The histogram example file used for this certification
 assumes that no events are sent during exposure 2 (the
 first "real" exposure of the run).

 The smTimedExposure patch is tested by merely running a
 timed-exposure faint run, verifying that the bias and event
 detection phases have been invoked, and then stopping the run.

 The Compress All patch is tested by copying an image to
 the image loader that contains several very "noisy" rows
 that are known to be incompressible by the Huffman tables.
 A timed-exposure raw-mode run is executed and the
 pixelCount field of the dataTeRaw packets of a couple of
 raw frames is monitored. The test fails if pixelCount is
 ever zero.

 The Untrickle Bias patch is tested by a pair of expect scripts,
 each of which performs 12 tests, one in TE mode, the other in
 CC mode. Each test starts a science run and then terminates it
 in one of the possible ways, viz:

 1: stopScience during bias map creation
 2: double stopScience during bias map creation
 3: startScience during bias map creation
 4: assert/deassert RADMON during bias map creation
 5: stopScience during bias map telemetering
 6: double stopScience during bias map telemetering
 7: startScience during bias map telemetering
 8: assert/deassert RADMON during bias map telemetering
 9: stopScience during event processing
 10: double stopScience during event processing
 11: startScience during event processing
 12: assert/deassert RADMON during event processing

 The tests fail unless all steps complete and return the anticipated
 scienceReport return codes.

--
Included Patches:
 untricklebias
 eventhist
 cc3x3
 compressall
 smtimedlookup

--
Test Support Patches:

08/16/07
01:12:08 4../../certsrc/cc3x3+eventhist+compressall+untricklebias.notes

Flight S/W Patches, Revision C-C-D

 printswhouse
 dearepl
 tlmio

--
Test Results:
 smtimedlookup --> PASS
 cc3x3 --> PASS
 eventhist --> PASS
 eventhist --> PASS
 compressall --> PASS
 untricklebias --> PASS
 untricklebias --> PASS

	Title Page
	Patch Table
	Patch Status
	Problem Reports
	SPR-138
	SPR-140

	SPR-138 Report
	Introduction
	Preliminary Analysis
	A Missing Packet
	The DMA Interface
	Similar Previous Anomalies
	Flight Software Analysis
	A Software patch
	Conclusions and Recommendations
	Applicable Documents
	Abbreviations
	The BEP-to-RCTU Interface
	Telemetry Software Classes
	Telemetry Scenario: Writing a Packet
	The expect Script: "runtest.tcl"

	Change Orders
	ECO 36–1033
	Reason for Change
	Proposed Change
	Controlled Sources
	Testing
	Standard
	Reproduce
	Patch

	ECO 36–1034
	Reasons for Change
	Proposed Change
	Controlled Sources
	Testing
	Reproduce
	Fix

	Standard Release Notes
	Description
	tlmbusy
	fepbiasparity2
	biastiming
	histogramvar
	zap1expo
	digestbiaserror
	corruptblock
	cornermean
	buscrash
	rquad
	condoclk
	histogrammean

	Optional Release Notes
	Description
	reportgrade1
	untricklebias
	deaeng
	cc3x3
	tlmio
	compressall
	ccignore
	eventhist
	printswhouse
	dearepl
	teignore
	smtimedlookup
	ctireport1
	ctireport2

	Source Code
	buscrash
	buscrash.C
	Reproduce Script
	Fix Script

	tlmbusy
	tlmbusy.C
	Reproduce Script
	Fix Script
	Test Script

	Certification
	cc3x3+eventhist
	cc3x3+eventhist+compressall
	cc3x3+eventhist+compressall+untricklebias

