Huffman Coding of ACIS Pixel Data

Part Number 36-56102

Version 1.1
July 29, 1996

Contents

Introduction « v v v v vt i e e e e e e e e e e e e e e ettt e
Huffman Coding . . . v v v v ittt ittt et ettt ettt ittt
First Differences . o v v v v vt it ittt e e ittt et et e e
Truncated Huffman Tableso vttt ittt it ittt ettt et ne et eeeeeneesnns
Compression by ACIS Flight Software.o v vt v ittt ittt i ittt i i i i e e

Generating a Huffman Table oo v v ittt it ettt e
6.1 Setup e e
6.2 File Compression e e e
6.3 File Decompression e
6.4 Diagnostic Output e

S O W N

0 0000 ~1 O U i A N M

Listing a Huffman Table o o o0ttt i e e e e it i e

8 Recovering from Telemetry Errors . . . v oot i i ittt i ittt ettt 9
8.1 Missing Minor Frames L 10
8.2 Single Bit Error within a Compressed Packet 10

9 Appendix — The huff.c Program it i et ettt e 11

1 Introduction

In order to make the best use of the available down-link bandwidth, ACIS 12-bit pixel data may be compressed
by the flight software. The method chosen is known as the “Truncated Huffman First-Difference” algorithm
which employs static compression tables. This memorandum describes the algorithm in some detail, and
explains how to generate the tables and how to use them to decompress pixel and bias data.

The algorithm was first described by D. A. Huffman in Proceedings of the Institute of Radio Engineers, vol.
40, pp. 1098-1101, 1952. The benefit of taking first differences before compressing image pixels has been
discovered many times since, notably by L. Soderblom of USGS for the Voyager Project.

ACIS Huffman Coding 2 HUFFMAN CODING

2 Huffman Coding

The intent of the algorithm is to translate the input, consisting of a set of 12-bit integers, into an equal
number of varying-length bit strings'. Compression is achieved by assigning short strings to the more
common integers. We require that the mapping be lossless, i.e., reversible, and static, independent of the
values of the input integers.

Figure 1: Huffman Coding Tree

If the N integers {i} occur with probabilities p;, the minimum number of bits required to code a string of
L such integers is given? by s = —L > p;log, p;. If the p; are identical, i.e. all integers equally probable,
s = Llogy N, e.g., in our case, N = 4096 and s/L = 12. An “optimal” algorithm would encode integer ¢ with
—log, p; bits, but this is not, in general, a whole number so more bits must be assigned. Huffman coding
approximates the {p;} by inverse powers of 2, i.e. p; = 2~™: with integer m;, and then encodes {i} with m;
bits.

The assignment of bit strings to input integers is accomplished as follows: the {p;} are sorted and the two
smallest values are replaced by a compound entity whose p; ; = p; + p;. The process is repeated until a
single element remains, with p = 1, representing all {i}. The process is shown graphically in Fig.1. The
integers {i} become leaves of a tree, associated with which are bit strings whose values may be determined
by traversing the tree, starting at the top, and concatenating 1 or 0 depending on which sub-branch was
taken. Each original i has been assigned a bit string of length m, where m is the sub-branch depth, and the
iterative construction has guaranteed that each p; is assigned to the nearest 2™.

The coding tree serves two purposes—to generate the bit strings from the {p;}, and then to decompress a
compound bit string, since it is only a matter of starting at the top of the tree and taking the 0-branch or the
1-branch depending on the value of the next input bit. Eventually, the path will end at a leaf representing
the decoded value. The search then resumes at the top of the tree.

The Huffman tree is not particularly useful when compressing the original integers. This is best done by
storing the varying length strings in an array indexed by the uncompressed value, i. In general, this array
may be sparse, i.e., if some p; = 0, there is no reason to include j in {¢}. Indeed, including it will reduce the
overall efficiency of the algorithm to compress the remaining {i}. This would not, however, be acceptable in
the present circumstances since we must assume that ACIS pixels will take on all values within the range
0-4095, and all must therefore be assigned compression strings.

1This is the reverse of the popular Lempel-Ziv algorithm, which translates varying length input strings into fized length
output. Its major advantage over the Huffman scheme is that it can adapt to changes in input distribution, but its use is ruled
out for ACIS telemetry because a loss of part of the compressed string prevents the remainder from being decoded.

2e.g. Gallager, R.G., Information Theory and Reliable Communication, New York, Wiley, 1968. In analogy with statistical
mechanics, s is termed the entropy of the coded string.

ACIS Huffman Coding 3 FIRST DIFFERENCES

3 First Differences

The most important function for our Huffman algorithm will be in reducing the size of the pixel bias maps
that must be downlinked at frequent intervals, e.g. whenever ACIS clocking parame-ters are changed. Each
Front End Processor (FEP) will typically contribute 4 arrays of 12-bit integers, each consisting of 1024 x256
elements. Within each array, the element values {b;} are well described by a Gaussian random distribution
p; = exp|—(b; — by)?/0?], and the mean bias level by is expected to vary from one array to the next. The
width of the distribution, o, is generally the same for all CCDs of a particular type (Front-Illuminated ws.
Back-Tlluminated), but is expected to increase with time on orbit as the CCDs suffer radiation damage.
Typical values of o range from 2-3 for new front-illuminated devices, 3-4 for new back-illuminated ones, and
6-12 for devices that have been irradiated to simulate several years in AXAF’s orbit.

If we were to compress the raw bias values without allowing for the change in by between output nodes and
CCDs, we would have to use separate trees for each distribution. A particularly simple way of avoiding this
is to subtract each bias value from its neighbor and then compress the resulting {b.} = {b;+1 — b;}, which
will closely approximate a Gaussian random distribution with zero mean (b = 0) and width o. Since the
bias maps are compressed a row at a time, there will be either 2 or 4 node boundaries per row, depending
on whether 2 or 4 output nodes are in use.

A change in by from node to node would therefore produce a single “uncommon” ¥, value. An isolated
anomalous bias value would, of course, result in a pair of outlier b values. Since the flight software already
uses two bias values, 4094 and 4095, for special purposes, we have decided to treat them separately. The
ACIS compression algorithm therefore reads as follows:

o Beginning with the first pixel of the last row® of the bias map, each 12-bit value b; is inspected.

o If b; is 4094 (signifying a parity error) or 4095 (signifying a bad pixel or column), it will be encoded as
a special Huffman string.

o Otherwise, b; is subtracted from the value of the previous pixel (disregarding those valued 4094 or
4095) and the result is used as an index into a table of Huffman strings. The table has 8187 entries
representing the input range from —4093 to +4093.

o At the start of the process, the “previous” pixel is assumed to have a value of zero.

o After each pixel is compressed, a check is made to see whether the output telemetry packet is full.
If so, the current partially-compressed row is dropped, the telemetry packet written, and a fresh one
started at the beginning of the row. In this manner, each packet will contain a maximal number of
whole rows.

typedef struct { /* Huffman compression table */
unsigned tableld; /* 32-bit table identifier */
unsigned lowLimit; /* 4093 - zero difference index */
unsigned tableSize; /* number of entries in table */
unsigned huffTruncCode; /* tab[-3]: truncated table code */

unsigned huffBadBiasCode; /* tab[-2]: BAD_BIAS code */

unsigned huffBadPixelCode; /* tab[-1]: BAD_PIXEL code */

unsigned tab[8187]; /* code table (tableSize entries) */
} HUFFTAB;

Figure 2: ACIS Compression Table

The structure of a full-size compression table is shown in Fig.2. It consists of a header containing six 32-bit
unsigned integers followed immediately by the 8187 32-bit integer array. The first header element, tableld, is
a 32-bit quantity that identifies this particular table. Its value is not used by the flight software. The second

3The maps are downlinked in reverse order, beginning with the row farthest from the frame store. This is done so that the
bias values close to the HRMA focus are received first. Within a row, the pixel order is as on the CCD, beginning with the first
column that would be read from node A, etc.

ACIS Huffman Coding 5 COMPRESSION BY ACIS FLIGHT SOFTWARE

element, lowLimit, determines the index of the table element that encodes a particular pixel difference, viz.
(b;—b;—1+4093—1owLimit). Unless the table is truncated (see below), lowLimit will be zero. The size of the
tab[] array is recorded in the third header element, tableSize. Use of shorter tables is described in the next
section. The fourth header element, huffTruncCode, is also reserved for truncated tables. The remaining
pair of header elements, huffBadBiasCode and huffBadPixelCode, are used to encode, respectively, bias
values of 4094 (bias parity error) and 4095 (bad pixel or column).

Figure 3: Huffman Table Element

The string begins at bit 32 — L and ends at bit 31 (the most significant). The
bit length L is stored in bits 0 — 4. Bits 31 — L through 5 are unused.

The tab[] elements, and the three special header codes, are 32-bit unsigned integers containing a varying
length bit string and its length. The length is contained in the 5 least-significant bits; the string is stored
in little-endian order, i.e. its least significant bit corresponds to the root of the tree and its most significant
bit—in the most significant bit of the 32-bit field—to the branch immediately above the “leaf” node, as
illustrated in Fig.3. The longest string that can be specified in this format is therefore 27 bits. The little-
endian convention is also followed when writing the telemetry packets—the first n—bit string is written to
the n low order bits of the first output word, etc.

4 Truncated Huffman Tables

Since the full-length tables are uncomfortably large for the D-cache RAM available in the ACIS back-end
processor, provision has been made to use shorter tables with tableSize< 8187. The compression algorithm
is identical to that described in the preceding section except that the table index, b; —b; 1 +4093—1owLimit,
is tested. If it is less than zero or greater than tableSize—1, the value is not contained in the table so the
12-bit pixel value is prefixed with the huffTruncCode string and written to the output uncompressed.

The pixel value is treated as “special” in the same way as 4094 and 4095, i.e. it is excluded from differencing.
This process is illustrated in Fig.4. The huffTruncCode string must be no longer than 15 bits. This allows
the string, its 5-bit length, and the uncompressed 12-bit pixel value to be held in a single 32-bit data register,
and speeds up the compression algorithm.

5 Compression by ACIS Flight Software

All data compression within the ACIS Back End Processor is handled by instances of the HuffmanTable
class, each applying a particular Huffman table (or none at all). The public methods are as follows:

HuffmanTable: :HuffmanTable ()

creates an “empty” table, i.e. one that will not perform compression unless a table is supplied by a subsequent
call to LoadTable().

void HuffmanTable::LoadTable(const unsigned *icacheAddr)

loads into D-cache a compression table from an array of 32-bit words starting at addr in instruction cache.
The array length is determined by the value of the tableSize field, i.e. ((HUFFTAB *)icacheAddr) >
tableSize. All instances of HuffmanTable share the same D-cache table. The consequences of this are

ACIS Huffman Coding 5 COMPRESSION BY ACIS FLIGHT SOFTWARE

The following array of input pixels is to be compressed with a 256—element table. The
value of lowLimit is 3965 (i.e. 4093-128). Note that value of the fourth pixel is 4095,
indicating that it is a member of the bad pixel or column list.

204 201 210 4095 202 202 200 766 208 200 202 206 201

Step 1: the pixels are differenced with their neighbors, but special values (4094 and 4095)
are excluded.

204 -3 9 4095 -8 0 -2 b66 -558 -8 2 4 -5
Step 2: 4093-lowlimit is added to each difference to generate offsets into tab[]:
332 125 137 * 120 128 126 694 -430 120 130 132 123

Step 3: offsets less than zero or greater than 255 (i.e. tableSize-1) are rejected; the
original 12-bit pixel values will be prefixed with huffTruncCode and will be excluded
from differencing. Therefore, since this applies to the 8th pixel, the 9th pixel (208) will
be differenced with the 7th (200):

* 125 137 * 120 128 126 * 136 120 130 132 123
Step 4: the tab[] strings are output:

huffTruncCode 204 tab[125] tab[137] huffBadPixelCode tab[120]
tab[128] tab[126] huffTruncCode 766 tab[136] tab[120] tab[130]
tab[132] tab[123]

Figure 4: Example of a Truncated Compression Table

discussed below. If icacheAddr is NULL, no table will be loaded and subsequent calls to PackData will not
use Huffman compression.

Boolean HuffmanTable::PackData(const unsigned short *inPtr, unsigned &inLength, unsigned *outPtr,
unsigned &outlength)

compresses an array of inLength 16-bit words beginning at inPtr into the output buffer beginning at outPtr.
The length of the output buffer is outLength 32-bit words.

PackData returns TRUE if the last word of the output buffer is partially full; otherwise, it returns FALSE.
It also updates inLength and outlength so the caller can determine whether the output buffer was long
enough to hold the entire compressed input buffer.

A HuffmanTable object remembers the state of the last PackData call. The next time its PackData method
is invoked without an intervening reset, it will remember whether the first word was partially filled from the
previous call.

If a HuffmanTable instance is created and its PackData method is used without any prior LoadTable call, or
if the most recent LoadTable call specified an icacheAddr of NULL, no compression will be performed—the
least significant 12 bits of each 16-bit pixel will be packed into the output buffer.

void HuffmanTable: :reset(unsigned lastNum)

resets the private variables that remember the state of the most recent call to PackData. This is called
before creating a new telemetry packet. lastNum will be subtracted from the first pixel value before it is
compressed.

ACIS Huffman Coding 6 GENERATING A HUFFMAN TABLE

To conserve fast memory (D-cache), all instances of LoadTable copy the compression tables into the same
location. This has the following consequences:

e The biasThief process, which compresses the individual FEP bias maps into telemetry packets, must
fully compress one map before going on to the next. It cannot interleave the packets from separate
FEPs since they may require different compression tables.

o Within a given science run, all raw mode telemetry must be compressed by the same Huffman table.

e The biasThief cannot be used during a raw mode science run since it would contend for the same
compression table.

6 Generating a Huffman Table

The huff program (see appendix) performs all phases of table building:

o reads a FITS image file and generates a pixel-difference frequency histogram
o creates a Huffman tree from the histogram

o creates a Huffman table from the tree

o uses the table to compress the original FITS image

e creates a Huffman tree from the table

e uses the tree to decompress the compressed file

o compares the result to the original FITS file
The command syntax is
huff [-b] [-r] [-i %d] [-n size]l [-m ntrunc] [-t table] in out

where in is a FITS file containing 16-bit pixels. If the byte order of the pixels doesn’t match that of the
host computer, use the -b flag to swap pairs of bytes. The Huffman table will contain size elements (the
default is 8187) plus the 6-element header. The tableId value will be set to id. The compressed image will
be written to out.

If the -t option is specified, the binary Huffman table will be written to the file named table. Alternatively,
if the -r flag is specified, a previously computed Huffman table will be read from table. The byte order
within external tables is always little-endian.

huff creates the histogram of pixel differences from the values of the low-order 12 bits of each pixel in in,
keeping a separate count of pixels valued 4094 and 4095. Any unfilled histogram entries are given the value
of 1. If this were not done, the resulting table would have no entry corresponding to this pixel difference.
Although not needed for compressing this particular image, the table couldn’t be used to compress other
images that might contain this pixel difference.

When size is less than 8187, huff also separately counts the pixel differences that lie outside the range
of the table, and this count is treated as a separate entry in the histogram. After creating the Huffman
tree and table, the length of the bit string corresponding to this out-of-range value is inspected. If longer
than 15 bits, it is interchanged with the longest string that is shorter than 16 bits. Since this exchange is
somewhat arbitrary, an alternative method is provided by the -m option. This supplies an integer ntrunc
to be added to the out-of-range histogram entry and hence to decrease the length of the bit string assigned
to out-of-range differences. The user invokes huff with various choices of ntrunc until the program reports
a satisfactory out-of-range code length that didn’t force a reallocation of table indices. Note that this only
affects the efficiency of the table—it will still compress any Zn file whatever the value of ntrunc.

To help understand the program, here is a brief description of each procedure, grouped by function:

ACIS Huffman Coding 6 GENERATING A HUFFMAN TABLE

6.1 Setup
unsigned short *openFits(char *in, unsigned *nx, unsigned *ny)

Open the FITS file in, return its size (nx columns in ny rows) and a pointer to a fresh input buffer.

unsigned *makeHistFromFile(char *infile, int bswap, unsigned nmisc)
Read the FITS file infile and return a pointer to its pixel-difference histogram. If bswap is non-zero, the

input pixels are first byte-swapped. The number of histogram elements will be size, and, when this is less
than 8187, the out-of-range histogram count will be increased by nmisc.

NODE *makeTreeFromHist(unsigned *hist, unsigned size, unsigned min)

Convert the histogram hist into a Huffman tree, returning a pointer to its root node. The histogram
contains size elements and the element corresponding to zero pixel difference is hist [4093] -min.

void makeTableFromTree(unsigned code, unsigned len, NODE *np, unsigned *tab)

Called iteratively to transform a Huffman tree anchored by np into a pre-allocated Huffman table tab[].
code, the Huffman code of length len bits, is built up a bit at a time by each iteration.

int compareLeafFreqs(NODE **a, NODE **b)

Called by library function qsort() to compare the frequency fields in a pair of tree leafs.

void insertSort(NODE #*npp, unsigned ii)

Resort the npp [] pointer array, dimension ii, into ascending pixel frequency. On entry, only the first element
is (possibly) out of order, so an efficient shift-sort is performed.

HUFFTAB *makeHuffFromFile(char *infile, int bswap, unsigned size, unsigned nmisc)

Read the FITS file infile and return the address of its Huffman compression table. bswap is non-zero if
the input pixels are to be byte-swapped. The number of pixel-difference elements will be size, and, when
this is less than 8187, the out-of-range histogram count will be increased by nmisc.

NODE #*makeTreeFromTable (HUFFTAB *huff)

Transform Huffman table huff into a tree, returning a pointer to its root.

NODE #*addLeafToTree(NODE *np, int val, unsigned code, unsigned len)

Called recursively from makeTreeFromTable to locate the node in the tree np corresponding to the bit string
code of length len, and to create a leaf node at that location.

HUFFTAB *readTable(char *table)

Called to read a Huffman table from the file table and return a pointer to it.

ACIS Huffman Coding 6 GENERATING A HUFFMAN TABLE

void writeTable(char *outfile, HUFFTAB x*huff)

Called to write the Huffman table huff to the file outfile.

6.2 File Compression
void compressFile(char *infile, int bswap, char *outfile, HUFFTAB *huff)

Compress the FITS file infile using the Huffman table huff and write it to outfile.

unsigned compressArray(unsigned short *in, unsigned inlen, unsigned *out, HUFFTAB *huff, unsigned
initval)

Compress inlen elements of pixel array in[] to the out[] array using the Huffman table huff. The first
pixel will be subtracted from initval.

6.3 File Decompression
void uncompressFile(char *infile, int bswap, char *tmpfile, HUFFTAB xhuff)

Decompress the file tmpfile using the Huffman table huff. Compare each decompressed row with the
contents of the FITS image infile. If bswap is non-zero, the input pixels are first byte-swapped.

unsigned uncompressArray(unsigned *in, unsigned inlen, unsigned short *out, unsigned outlen,
NODE *root, unsigned offset, unsigned initval)

Decompress outlen 12-bit pixels from the in[] array using the Huffman tree anchored at root. Add initval
to the first decompressed value. Write the output to the out[] array. Return 1 if exactly inlen elements
are unpacked. Otherwise, return 0 to indicate an unpacking error.

6.4 Diagnostic Output

The following stderr output is to be expected from huff:

$ huff -b -n 256 biasfile compfile

biasfile: input bytes 1572864 bits 1024x1024x12 mean 4093.03 sigma 35.61
Pixel frequency: max 423694 misc 2201 badpix O badbias 0O

Huffman 256 code lengths: min 1 max 20 misc 9 badpix 20 badbias 20

compfile: compressed to 526292 bytes (33.46%)
compfile: wuncompressFile was successful

On the command line, -b indicates that the input FITS image “biasfile” was created by a CPU with the
opposite byte-order (e.g. DecStation vs. Sun). The -n option specifies that the Huffman table is to have
only 256 elements.

huff reads biasfile and reports its size, mean histogram index, and RMS deviation about the mean. It
lists the number of counts in the largest histogram element (max), the number of out-of-range differences
(misc), the number of bad pixels valued 4095 (badpix), and the number of bias errors valued 4094 (badbias).

The next output line lists the length in bits of the most frequent Huffman string (min), the least frequent
(max), the out-of-range string (misc), and the strings assigned to bad pixels (badpix) and bias errors (bad-
bias).

Finally, huff reports the size of the compressed file, the compression factor, and, hopefully, that the decom-
pression step completed without any error being detected.

ACIS Huffman Coding 7 LISTING A HUFFMAN TABLE

7 Listing a Huffman Table

The following Perl script will read a binary Huffman table and write its contents to stdout, listing the decimal
values of the header fields and the strings in the compression table:

#! /usr/local/bin/perl
die "$ARGV[O]: $!\n" if $ARGV[0] && ! open(STDIN,$ARGV[0]);
die "$ARGV[O]: $'\n" unless read(STDIN,$buf,65536) > 24;

($id,$min,$len,@val) = unpack(’Vx’, $buf);

@tit = qw(tabid lowlim tabsize trunc badbias badpix);

for ($id,$min,$len) {
printf "%7.7s %d\n", shift(@tit), $_;

}

for (@val) {
printf "%7.7s %2d %s\n", shift(@tit), $_ & 31,
join(’’,reverse(split(//,unpack(’B’.($_ & 31),pack(’N’,$_)))));
@tit = ($i++ - 4093 + $min) unless Otit;

The following output was generated from a truncated table that contained 32 table entries. It is optimized
to compress a bias map with a standard deviation of 8.2:

tabid 1234 -3 4 1000
lowlim 4077 -2 4 1010
tabsize 32 -1 4 1101
trunc 8 01001000 0 4 1111
badbias 12 000111010001 1 4 1110
badpix 12 000111010000 2 4 1100
-16 11 00011101001 3 4 1001
-15 10 1011010000 4 4 0110
-14 9 000111011 5 4 0011
-13 8 00011100 6 4 0000
-12 8 10110101 7 5 01111
-1 7 0100101 8 5 00010
-10 6 000110 9 6 010011
-9 6 101100 10 7 1011011
-8 b 01000 11 7 0001111
-7 5 01110 12 8 01001001
-6 5 10111 13 9 101101001
-5 4 0010 14 10 1011010001
-4 4 0101 15 10 0001110101

Figure 5: Example of a Huffman Table

After the first three header variables, tabid, lowlim, and tabsize, the second column lists the length of the
Huffman strings and the third column shows their bit-string values, with the least significant bit on the left,
i.e. the left-most bit corresponds to the root of the Huffman table. The numeric values in the first column
refer to the difference indices, i.e. a pixel difference of +8 will be coded as the string ‘00010’ whose decimal
value is 8. (The strings are displayed with their least significant bit leftmost).

ACIS Huffman Coding 8 RECOVERING FROM TELEMETRY ERRORS

8 Recovering from Telemetry Errors

The BEP’s bias thief will compressed timed-exposure bias maps into dataTeBiasMap packets one row at a
time until the maximum packet size, 1023 32-bit words, is exceeded. Since the Huffman algorithm typically
achieves compression factors of 35%, each packet will contain an average of 7 rows of 1024 values and will
span 6 telemetry minor frames in Format 2 (ACIS in the focus). The situation is different in raw mode,
where the dataTeRaw and dataCcRaw packets each contain a single row of pixels with a typical compression
factor of 50%. They will occupy no more than two minor frames in Format 2.

Once the ACIS packets are ingested by the spacecraft telemetry system, they are assigned Reed-Solomon
strings and any subsequent bit errors can be detected and, in most cases, corrected on the ground. Before
that time, however, the telemetry packets may experience SEUs while waiting to be written from the BEP’s
general purpose memory. It is therefore necessary to consider two types of damage to packets containing
compressed strings: the loss of an entire minor frame, and the effect of a single bit error.

8.1 Missing Minor Frames

Assuming that only one minor frame is missing, the task is to interpret the remainder of the packet. For
dataTeRaw or dataCcRaw packets, which will usually span no more than two minor frames, the packet
header itself is also likely to be missing, so its length must be deduced by first locating the synch word that
starts the next packet, then counting back over one or more pad bytes.* For dataTeBiasMap packets, this
will occur less frequently—most bad minor frames will contain only compressed pixel strings.

The remainder of the packet can only be decompressed correctly if the starting bit of a Huffman string can
be identifier and if the value of the previous pixel can be computed. Although it is not, in general, possible
to achieve these goals with 100% reliability, the following scheme should work in most cases.

Begin by decompressing the remainder of the packet assuming that bit n is the start of a Huffman string
and that the previous decompressed pixel value was 0. Since any infinite bit string can be represented by a
sequence of Huffman strings, this process will yield a set of N,, pixel values {b;,},0 < i < N,,. Some choices
of n can be eliminated immediately, i.e. those in which N,, exceeds the number of possible pixels, where
the span of values max;{b; ,} — min;{b; ,} exceeds 4095, and where the last Huffman string is truncated.
This process should be repeated for all values of n from 0 to one less than the length of the longest Huffman
string.

When the packet is a dataTeBiasMap and it is known to contain one or more bad pixels or columns, which
will be represented by huffBadPixelCode strings, the absence of those strings can be used to eliminate
various choices of n.

The most probable choice among the surviving values of n may now be estimated by comparing the decom-
pressed pixel arrays {b; , } with the averages over the number of columns, N, of the pixels of that particular
CCD reported in the remaining packets, {B,,},0 < m < N, i.e. the following estimator function should be
minimized with suitable weights o,,:

bi,n +cp — Bm ?

Om

(1)

where m = (i — N,,) mod N,,. i.e., m is the column index corresponding to pixel i, counting back from
the end of the packet. The sum should, of course, omit b; ,, with values of 4094 and 4095. For compressed
raw pixel packets, values of b;, larger than some threshold should also be omitted since these probably
correspond to events. Finally, before choosing the smallest p,, the starting offsets ¢; must be computed.
This is easily done by solving the equation

N,—1
an C bzn _Bn
Pn oy Znton=Pn (2)

n
ey, P Om

4with the possibility that these could represent the end of the damaged packet itself. If this situation arises frequently, it
can be eliminated by choose a Huffman table such that no string ends with the 8-bit pad sequence.

10

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

for ¢,,. The choice of column weighs o, will depend on the type of packet and on the characteristics of the
particular CCD. Typically, the columns at the edge of an output node boundary should be given greater
weight (smaller o,,) since the change in average bias at that location will provide the most useful evidence
for the correct choice of bit offset n.

8.2 Single Bit Error within a Compressed Packet

Unlike the previous case, in which an entire minor frame was dropped, there is no guarantee that this problem
will be detected. It will sometimes announce itself, e.g. when the number of decompressed elements differs
from the number expected in the header, or when a bias value that is known to be a member of the bad
pixel or column list is reported as “good”.

If an array of N integers, each occurring with probability p;, is compressed by a set of optimal Huffman strings
of bit length {l;}, i.e. I; > —log, p;, the most probable length for the resulting string is Ly = NXp;l; bits.
When the compression is repeated for sets of such integers, L will vary about this value. For instance, if {p;}
is Gaussian with zero mean and standard deviation o, i.e. p; = C~texp(—i?/a2),l; > logy C+ (ia/0?) logy €,
and the L values will execute a random walk about Ly with a standard deviation given by o’ N/2. If, however,
a single bit is flipped in the compressed string, the decompressed length, N’, will, on average, exceed N
since the number of bits used in the last 32-bit word of the compressed packet is not recorded. For optimal
Huffman codes, the variation in N’ resulting from random bit flips depends critically on the values of the
shortest [;. If the n most probable strings are all of equal length, the probability that a randomly applied
bit error will occur within one of them is P, = NXp;l;/L, where the sum is over these n values, and the
probability that this will merely change one string of length Iy into another of the same length is 27 ‘nPp,,.
For the example in Fig.5, 0 = 8.2,n = 12,1 =4, P, ~ 0.38. From a Monte Carlo simulation, the probability
that the decompressed length will be exactly (N'), the nearest integer to the mean of N’ is 0.48 with a
standard deviation of about 0.3.

It is clear that we cannot rely on a change in the size of the decompressed array to signal a bit error in the
compressed string. Even if certain pixels are known to be "bad”, and therefore represented by the special
value 4095, a bit error will have a high probability of changing a single element without affecting subsequent
elements. Since each element represents a difference of pixel values, the result will be that all subsequent
decompressed values will be in error by the same (small) value.

In conclusion, since there is no reliable method of detecting a bit error in a compressed data packet, these
should be accompanied by a checksum. Once the error has been detected, its location can be determined by
flipping each bit in turn of the compressed array, decompressing it, and seeking the minimum value of the
estimator represented by Eq. 1.

9 Appendix — The huff.c Program

Module Name: $Source: /delcano/h2/pgf/acis/huff/RCS/huff.c,v $
Purpose: Construct and test Huffman table for FITS input
Assumptions: Input from 16-bit FITS file

Part Number: TBD

Author: Peter G. Ford <pgf@space.mit.edu>

References:

Copyright: Massachusetts Institute of Technology 1996

$Log: huff.c,v $
Revision 1.7 1996/11/07 00:50:10 pgf
add -h flag to write histogram to stderr

EE R

Revision 1.6 1996/07/29 17:11:14 pgf

11

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

rename ’last’ to ’initval’

Revision 1.5 1996/07/29 16:24:27 pgf
add ’initval’ parameter to compressArray() and uncompressArray()

Revision 1.4 1996/07/23 17:15:23 pgf
read and write external HUFFTAB in little-endian format

Revision 1.3 1996/04/29 17:10:30 pgf

add tableId to HUFFTAB and -i flag to caller arguments
change previous -i flag to -r

change tableOrigin to lowLimit in HUFFTAB

add code in readTable() to check for valid lowLimit

Revision 1.2 1996/04/27 03:49:17 pgf
add -i option and readTable() function to support it

Revision 1.1 1996/04/17 21:33:19 pgf
Initial revision

¥ X X X X X X X X K X X X X X X X X X *

Function: Construct a pixel histogram from a FITS file.
Then build a Huffman table and compress the file.
Finally, decompress the file.

——— */

#include <stdio.h>

typedef struct { /* Huffman table */

unsigned tableld; /* table itentifier */

unsigned lowLimit; /* 4093 - zero difference index */
unsigned tableSize; /* number of normal entries in table */
unsigned huffTruncCode; /* tab[-3]: misc code */

unsigned huffBadBiasCode; /* tab[-2]: BAD_BIAS code */

unsigned huffBadPixelCode; /* tab[-1]: BAD_PIXEL code */

unsigned tab[1]; /* code table */

} HUFFTAB;

typedef struct leaf { /* Element of Huffman tree */

struct leaf *left; /* less frequent branch */
struct leaf *right; /* more frequent branch */
unsigned freq; /* branch frequency */

int val; /* leaf value or VAL_ code */

} NODE;

[K —mm
Pixel masks and special values
——— */

#define PIXEL_MASK Oxfff /* pixel value */

#define BAD_PIXEL Oxfff /* ignore this pixel */

12

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

#define BAD_BIAS Oxffe /* ignore this bias */

#define HUFF_MASK OxffffffeO /* string area of code */

#define COUNT_MASK 0x1f /* length of code */

#define TRUNC_MAX (32-12-5) /* max length of spill */

[k
Special Huffman tree leaf values
——— */

#define VAL_BADPIX -1 /* bad pixel leaf val */

#define VAL_BADBIAS -2 /* bad bias leaf val */

#define VAL_MISC -3 /* out-of-range pixel */

#define VAL_NONE -4 /* leaf is a branch */

K
Huffman table indices
——— */

#define HIST_MAX 8187 /* max pixel entries */

#define HIST_SIZE 8192 /* histogram size */

#define HIST_MID (HIST_MAX/2) /* center of hist[] */

#define HIST_MISC (HIST_SIZE+VAL_MISC) /* hist misc index */

#define HIST_BADBIAS (HIST_SIZE+VAL_BADBIAS) /* hist bad bias index */

#define HIST_BADPIX (HIST_SIZE+VAL_BADPIX) /* hist bad pixel index */

K
Routines
——— */

unsigned short *openFits(char *, unsigned *, unsigned *);

unsigned *makeHistFromFile(char *, int, unsigned);

void compressFile(char *, int, char *, HUFFTAB *);

void uncompressFile(char *, int, char *, HUFFTAB x);

HUFFTAB *makeHuffFromFile(char *, int, unsigned, unsigned, int);

HUFFTAB *readTable(char *);

void makeTableFromTree(unsigned, unsigned, NODE *, unsigned *) ;

int compareLeafFreqs(NODE **, NODE **);

NODE *makeTreeFromTable (HUFFTAB %) ;

NODE *addLeafToTree(NODE *, int, unsigned, unsigned);

NODE *makeTreeFromHist(unsigned *, unsigned, unsigned, int);

void insertSort(NODE #**, unsigned);

unsigned compressArray(unsigned short *, unsigned, unsigned *,
HUFFTAB *, unsigned);

unsigned uncompressArray(unsigned *, unsigned, unsigned short *, unsigned,
NODE *, unsigned, unsigned);

void writeTable(char *, HUFFTAB x*);

void swap4(unsigned *pp, unsigned count);

extern char *malloc(unsigned);

[/ ksksksk sk sk ok oo o o o ke ok ok ok ok sk stk sk sk sk ok ok o o s ko ok ok sk sk sk sk sk sk sk o o o koo ok sk sk sk sk sk sk sk ok ok sk ok ko ok ok
Main: parse command line arguments, build trees, compress, decompress

***/

main(int argc, char *argv[])

13

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

{
unsigned size = HIST_MAX; /* Huffman table size */
char *table = NULL; /* output table file %/
int hout = 0; /* =1 to write pixel histogram */
int bswap = 0; /* =1 to byte-swap FITS pixels */
int init = 0; /* =1 to read table from -t */
int id = 0; /* table ID for new table */
unsigned nmisc = 2; /* number of miscellaneous counts */
HUFFTAB *huff; /* Huffman table */
while (*++argv && **argv == ’-7)
if (argv[0][1] == ’b’ && ! argv[0][2])
bswap++;
else if (argv[0][1] == ’r’ && ! argv[0][2])
init++;
else if (argv[0][1] == ’h’ && ! argv[0][2])
hout++;
else if (argv[0][1] == ’i’ && (argv[0][2] || argv[il))
id = atoi(argv[0][2] ? argv[0]+2 : *++argv);
else if (argv[0][1] == ’n’ && (argv[0][2] || argv([1l))
size = atoi(argv[0][2] 7 argv[0]+2 : *++argv);
else if (argv[0][1] == ’'m’ && (argv[0][2] || argv[1]))
nmisc = atoi(argv[0][2] 7 argv[0]+2 : *++argv);
else if (argv[0][1] == ’t’ && (argv[0][2] || argv[1]))
table = argv[0][2] 7 argv[0]+2 : x++argv;
else
fprintf (stderr, "bad -%c value\n", argv[0][1]), exit(1);
if (init) {
huff = readTable(table);
size = huff->tableSize;
} else {
huff = makeHuffFromFile(argv[0], bswap, size, nmisc, hout);

huff->tableld = id;
if (table) writeTable(table, huff);
}
compressFile(argv[0], bswap, argv[1], huff);
uncompressFile(argv[0], bswap, argv[1], huff);
exit (0);
}

/***

makeHuffFromFile: construct Huffman table from input file
stk ok sk skok ok sk sk ok sk sk sk sk ok ok sksk sk ok skskosk sk ok sk sksk sk ok skskok ok skskosk sk sk sksk ok ok skskosk sk sk sksk sk sk sk sk sk ok ok /

HUFFTAB *makeHuffFromFile(char *infile, int bswap, unsigned size,
unsigned nmisc, int hout)

{
HUFFTAB *huff;
unsigned len, maxlen = 0, jj, temp;
int ii;

huff = (HUFFTAB *)malloc(sizeof (HUFFTAB)+(size-1)*sizeof (unsigned));
huff->tableSize = size;

14

ACIS Huffman Coding

huff->lowLimit = HIST_MID-size/2;
makeTableFromTree(0, O,
makeTreeFromHist (
makeHistFromFile(infile, bswap, nmisc),
size, huff->lowLimit, hout),
huff->tab) ;
len = huff->huffTruncCode & COUNT_MASK;
if (len > TRUNC_MAX) {
for (len = jj = ii = 1; ii < size; ii++) {
temp = huff->tab[ii] & COUNT_MASK;
if (temp <= TRUNC_MAX && temp > len)
jj = ii, len = temp;
}
temp = huff->huffTruncCode;
huff->huffTruncCode = huff->tab[jj];
huff->tab[jj]l = temp;
fprintf (stderr,
"Warning: Huffman table rearranged %d 0x%08x <=> 0x%08x\n",
jj, huff->huffTruncCode, temp) ;
¥
for (ii = -3; ii < (int)size; ii++)
if (maxlen < (huff->tab[ii] & COUNT_MASK))
maxlen = huff->tab[ii] & COUNT_MASK;
fprintf (stderr,
"Huffman %d code lengths: min %d max %d misc %d badpix %d badbias %d\n",
size, huff->tab[HIST_MID-huff->lowLimit] & COUNT_MASK, maxlen, len,
huff->huffBadPixelCode & COUNT_MASK,
huff->huffBadBiasCode & COUNT_MASK) ;
return huff;

unsigned *makeHistFromFile(char *infile, int bswap, unsigned nmisc)

{

unsigned short *inbuf;
unsigned *hist, nx, ny, val, last, x, y;
double sum, sumsq, npix, sqrt(double);

inbuf = openFits(infile, &nx, &ny);
hist = (unsigned *)malloc(HIST_SIZEx*4);
bzero(hist, HIST_SIZEx*4);

for (npix = sum = sumsq =y = 0; y < ny; y++) {

if (fread(inbuf, 2, nx, stdin) !'= nx)
perror(infile), exit(l);
if (bswap)

swab(inbuf, inbuf, 2*nx);

last = inbuf[0] & PIXEL_MASK;

if (last == BAD_PIXEL || last == BAD_BIAS)
last = 0;

for (x = 1; x < nx; x++)

15

9 APPENDIX — THE HUFF.C PROGRAM

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

if ((val = inbuf([x] & PIXEL_MASK) == BAD_PIXEL)
hist [HIST_BADPIX]++;
else if (val == BAD_BIAS)
hist [HIST BADBIAS]++;
else {
last = val-last+HIST_MID;
hist[last]++;
sum += (double)last;
sumsq += (double)last*(double)last;

npix++;
last = val;
}
}
free(inbuf) ;

hist [HIST_MISC] = nmisc;

fprintf (stderr, "%s: input bytes %d bits %dx%dx12 mean %.2f sigma %.2f\n",
infile, (3*nx*ny)/2, nx, ny, sum/npix, sqrt((sumsq-sum*sum/npix)/npix));

return hist;

void makeTableFromTree(unsigned code, unsigned len, NODE *np, unsigned *tab)
{
if (np == NULL)
fprintf (stderr, "Error: null leaf pointer in makeTableFromTree\n"),
exit(1);
if (np->val == VAL_NONE) {
makeTableFromTree(code, len+l, np->right, tab);
makeTableFromTree(code+(1 << len), len+l, np->left, tab);
} else {
tab[np->val] = (code << (32-len)) | len;
}

NODE *makeTreeFromHist(unsigned *hist, unsigned size, unsigned min, int hout)

{
NODE *nodes[HIST_SIZE], **npp = nodes, *np;
int ii;

if (min < 0 || min+size > HIST_MAX)
fprintf (stderr, "bad -n value: %d\n", size);

/* allocate a leaf node to each pixel value */
for (ii = 0; ii < HIST_SIZE; ii++) {

if (ii < min || (ii >= min+size && ii < HIST_MISC))
hist [HIST_MISC] += hist[iil;
else {

16

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

np = *npp++ = (NODE #*)malloc(sizeof (NODE));
np->freq = hist[ii] ? hist[ii] : 1;
np->val = ii < HIST_MISC ? (ii - min) : (ii - HIST_SIZE);
np->left = np->right = NULL;
}
}
gsort(nodes, ii = npp-nodes, sizeof (NODE *), compareLeafFregs);
/* build branch nodes to connect the leaves */
for (npp = nodes, np = *npp; ii-- > 1;) {
np = (NODE *)malloc(sizeof (NODE)) ;
np->right = *npp++;
np->left = *npp;
np->val = VAL_NONE;
np->freq = np->right->freq + np->left->freq;
*npp = np;
insertSort (npp, ii);
}
fprintf (stderr,
"Pixel frequency: max %d misc %d badpix %d badbias %d\n",
hist[HIST _MID], hist[HIST MISC], hist[HIST BADPIX], hist[HIST BADBIAS]);
if (hout)
for (ii = 0; ii < HIST_SIZE; ii++)
if (hist[ii])
fprintf (stderr, "%4d %d\n", ii, hist[ii]);
return np;

}

[k
compareLeafFreqs: called from gsort() to compare two leaf frequencies
——— */

int comparelLeafFreqs(NODE **a, NODE #*xb)

{

return a[0]->freq - b[0]->freq;

}

K
insertSort: insertion sort of node npp[0] into nppl[] array
——— */

void insertSort(NODE #**npp, unsigned ii)

{

NODE *np;

for (np = nppl0]; ii-- > 1 && np->freq > nppl[l]l->freq; npp++)
nppl[0] = nppli];
npp[0] = np;
}

/***

compressFile: compress ’infile’ to ’outfile’ using Huffman table ’huff’
sk sk sk sk sk sk sk sk sk sk sk ok o o ok ko ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ks okok /

void compressFile(char *infile, int bswap, char *outfile, HUFFTAB *huff)
{

17

ACIS Huffman Coding

9 APPENDIX — THE HUFF.C PROGRAM

FILE *fp;
unsigned nx, ny, y, *outbuf, nw;
unsigned short *inbuf, outlen;

inbuf = openFits(infile, &nx, &ny);
outbuf = (unsigned *)malloc((nx+1)*4);

if ((fp = fopen(outfile, "w")) == NULL)
perror (outfile), exit(1);

furite(&nx, 1, 4, fp);
furite(&ny, 1, 4, fp);

for (y = nw = 0; y < ny; y++) {
fread(inbuf, nx, 2, stdin);
if (bswap)
swab(inbuf, inbuf, 2*nx);
outlen = compressArray(inbuf, nx, outbuf, huff, 0);
fwrite(&outlen, 1, 2, fp);
fwrite(outbuf, outlen, 4, fp);
nw += outlen;
}
fclose(fp);
free(inbuf) ;
free(outbuf) ;
fprintf (stderr, "%s: compressed to %d bytes (%.2f%%)\n",
outfile, 4*nw+8, (800.0*nw)/(3*nx*ny));

compressArray: use Huffman table ’huff’ to compress ’in’ array to ’out’

——— */

unsigned compressArray(
unsigned short *in,
unsigned inlen,
unsigned *out,

/%
/%
/%

input pixel array */
number of input pixels */
output array */

HUFFTAB *huff, /* Huffman table */
unsigned initval /* previous pixel value */
)
{
unsigned *outorg = out; /* saved output origin */
unsigned val; /* input pixel value */

unsigned code;
unsigned bitlen = 12;
unsigned acc = 0;
unsigned bitout = 0;
unsigned trunc;

int index;

/%
/%
/%
/%
/%
/%

coded pixel value */

length of ’code’ in bits */
output register */

length of ’acc’ in bits */
truncated pixel code */
Huffman table index */

/* construct code for truncated pixels */
trunc = (12 + (huff->huffTruncCode & COUNT_MASK)) |
((huff->huffTruncCode & HUFF_MASK) >> 12);

18

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

/* compress the array */
while (inlen--) {
if (huff) {
/* load the next pixel */
switch (val = *in++ & PIXEL_MASK) {
case BAD_PIXEL:
code = huff->huffBadPixelCode;
break;
case BAD_BIAS:
code = huff->huffBadBiasCode;
break;
default:
index = (val+(HIST_MID-huff->lowLimit))-initval;
initval = val;

if (index < 0 || index >= huff->tableSize)
code = trunc | (val << 20);

else
code = huff->tab[index];

break;

}
bitlen = code & COUNT_MASK;
code >>= 32 - bitlen;
} else
code = *in++;

/* append ’code’ to ’acc’ x/

acc |= code << bitout;

if ((bitout += bitlen) >= 32) {
bitout -= 32;
*out++ = acc;
acc = code >> (bitlen - bitout);

}

}

/* anything left to save? */
if (bitout > 0)
xout++ = acc;

/* return output word count */
return out - outorg;

}

/KoK ok skskok o sk sk o ok sk ok o o ok sksk ok o ook sk ok sk o ok kb o ook sk o ok sksk o s ok sk sk o ok sk ok ok sk ko o ok ok
uncompressFile: decompress ’tmpfile’ using Huffman tree ’root’ and
compare the result to the original ’infile’
Kok 3k oK 3k 3K ok K oK 3 ok 3 oK 3 oK 3K oK oK 3K oK 3 oK 3 oK 3 oK 3k ok 3k K ok 3K ok 3K oK 3 oK 3 ok 3k ok 3K oK 3k 3K ok 3 ok 3 ok 3K oK 3k ok 3k K ok 3k ok 3k ok ok Kok Kok sk ok kk /

void uncompressFile(char *infile, int bswap, char *tmpfile, HUFFTAB xhuff)
{

FILE *fp;

NODE *root;

unsigned nx, ny, x, y, ii, maxlen, *tmpbuf = NULL;

unsigned short *inbuf, *cmpbuf, tmplen;

19

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

root = makeTreeFromTable (huff);
inbuf = openFits(infile, &nx, &ny);
if ((fp = fopen(tmpfile, "r")) == NULL)

perror (tmpfile), exit(1l);
if (fread(&ii, 4, 1, fp) !'= 1 || ii !'= nx)

fprintf (stderr, "Ys: bad x-dim: %d (not %d)\n", tmpfile, ii, nx);
if (fread(&ii, 4, 1, fp) !'= 1 || ii != ny)

fprintf (stderr, "Ys: bad y-dim: %d (not %d)\n", tmpfile, ii, ny);
cmpbuf = (unsigned short *)malloc(nx*2);

for (y = maxlen = 0; y < ny; y++) {
if (fread(inbuf, 2, nx, stdin) != nx)
perror(infile), exit(1);
if (bswap)
swab(inbuf, inbuf, nx*2);
if (fread(&tmplen, 2, 1, fp) != 1)
perror (tmpfile), exit(1);
if (tmplen > maxlen) {
if (tmpbuf) free(tmpbuf);
tmpbuf = (unsigned *)malloc((maxlen = tmplen)*4);
}
if (fread(tmpbuf, 4, tmplen, fp) != tmplen)
perror (tmpfile), exit(1);
if (luncompressArray(tmpbuf, tmplen, cmpbuf, nx, root,
HIST MID-huff->lowLimit, 0))
fprintf (stderr, "Y%s: decompression fails at line %d\n", tmpfile, y),
exit(1);
for (x = 0; x < nx; x++)
if ((inbuf[x] & PIXEL_MASK) != cmpbuf [x])
fprintf(stderr, "Y%s: line %4d col %4d orig %5d unpk %5d\n",
tmpfile, y, x, inbuf[x], cmpbuf[x]);
}
fclose(fp);
free(inbuf);
free (tmpbuf) ;
free(cmpbuf) ;
fprintf (stderr, "Ys: uncompressFile was successful\n", tmpfile);

makeTreeFromTable: construct a Huffman tree from Huffman table ’huff’

——— */

NODE #*makeTreeFromTable (HUFFTAB *huff)

{

NODE *root = NULL;

unsigned tab[HIST_SIZE];

int ii;

for (ii = -3; ii < (int)huff->tableSize; ii++)
root = addLeafToTree(root, ii,

huff->tab[ii] & HUFF_MASK, huff->tab[ii] & COUNT_MASK);

bzero(tab, sizeof(tab));

20

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

makeTableFromTree (0, 0, root, tab+3);
if (bcmp(tab, &huff->huffTruncCode, 4*(huff->tableSize+3)))
fprintf (stderr, "failed to construct Huffman tree\n");

return root;

}

K
addLeafToTree: add a new leaf to a Huffman tree
——— */

NODE *addLeafToTree(NODE *np, int val, unsigned code, unsigned len)

{

if (np == NULL) {

np = (NODE *)malloc(sizeof (NODE));

np->left = np->right = NULL;

np->freq = O;

np->val = VAL_NONE;
¥
if (len == 0)

np->val = val;
else if (code & (1 << (32 - len)))

np->left = addLeafToTree(np->left, val, code, len-1);
else

np->right = addLeafToTree(np->right, val, code, len-1);
return np;

}

K
uncompressArray: use Huffman tree ’root’ to unpack array ’in’ to ’out’
——— */

unsigned uncompressArray(

unsigned *in, /* input packed array */

unsigned inlen, /* number of input elements */

unsigned short *out, /* output array */

unsigned outlen, /* maximum length of output */

NODE *root, /* Huffman tree */

unsigned offset, /* Huffman table zero difference index */
unsigned initval /* previous unpacked value */

)

{

unsigned code; /* unpacking buffer */

unsigned bitlen; /* length of unpacking buffer */
unsigned temp; /* scratch */

NODE *np = root; /* Huffman tree pointer */

while (inlen-- > 0) {
code = *in++;
bitlen = 32;
while (bitlen--) {
np = (code & 1) 7 np->left : np->right;

21

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

code >>= 1;
switch (np->val) {
case VAL_NONE:
continue;
case VAL_BADPIX:
*out++ = BAD_PIXEL;
break;
case VAL_BADBIAS:
*out++ = BAD_BIAS;
break;
case VAL_MISC:
if (bitlen >= 12) {
initval = *out++ = code & Oxfff;
code >>= 12;
bitlen —-= 12;
} else {
temp = code;
if (inlen-- == 0)
return O;
code = *in++;
initval = *out++ = (temp | (code << bitlen)) & Oxfff;
bitlen += 20;
code >>= 32-bitlen;
}
break;
default:
initval = *out++ = np->val+initval-offset;
break;
}
if (--outlen == 0)
return inlen == 0;
np = root;
}
}
return O;

}

/***

openFits: open a FITS file using stdin, read its header, return nx,ny
***/

unsigned short *openFits(char *infile, unsigned *nx, unsigned *ny)

{
char hdr[2880];
int ii, neof, bits = 0;

if (freopen(infile, "r", stdin) == NULL)
perror(infile), exit(1l);

*nx = *ny = 0;
do {

if (fread(hdr, sizeof(hdr), 1, stdin) != 1)
perror(infile), exit(1);

22

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

}

/

for (ii = 0; ii < 2880 &% (neof = strncmp(hdr+ii, "END ", 4)); ii += 80) {
sscanf (hdr+ii, "NAXIS1 = %d", nx);
sscanf (hdr+ii, "NAXIS2 = %d", ny);
sscanf (hdr+ii, "BITPIX = %d", &bits);
}
} while(neof);

if (bits != 16 || *nx <= 0 || *ny <= 0)
fprintf (stderr, "Ys: bad FITS header\n", infile), exit(1);

return (unsigned short *)malloc(*nx*2);

ok ok ok ok ok ok ok o ok o ok 3k ok sk ok ok ok ok s ok o ok o ok ok sk ok ok ok ok s ok s ok o ok sk ok sk ok ok ok ok ok s ok o ok sk ok sk ok ok ok ok ook o ok ok ok ok ok ok ok ok K

readTable: read Huffman table from file ’file’
st 3 ok ok sk ok ok sk ok ok ok ok sk ok ok ok 3 ok ok sk ok ok ok 3 ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok sk sk sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ko /

HUFFTAB *readTable(char *table)

{

}

/

A%

{

FILE *fp;
HUFFTAB *huff;
unsigned size;

if ((fp = fopen(table, "r")) == NULL || fseek(fp, OL, 2))
perror(table), exit(1);

huff = (HUFFTAB *)malloc(size = ftell(fp));

if (fseek(fp, OL, 0) || fread(huff, size, 1, fp) != 1)
perror(table), exit(1);

(void)fclose(fp);

swap4 ((unsigned *)huff, size/4);

fprintf (stderr, "¥s: id %d size %d low %d\n", table,
huff->tableld, huff->tableSize, huff->lowLimit);

if (huff->lowLimit+huff->tableSize >= HIST_MAX)
fprintf (stderr, "¥s: bad lowLimit value\n", table), exit(1);

return huff;

>k >k 3K 3k ok ok ok 5k 5k 3k 5k ok >k >k >k >k >k 3k 5k 3k 5k 3k 5k 3k 5k %k %k %k >k >k >k 5k 5k 5k 5k 5k %k >k %k %k %k %k >k >k >k 5k >k 5k %k 5k %k %k >k >k %k >k >k >k >k >k >k >k %k %k %k >k >k *k *k *k *k

writeTable: write Huffman table ’huff’ to file ’outfile’
stk ok ok ok ok ok sk ok ok ok ok sk ok ok ok o ok ok sk ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok sk ok ook ok sk ok ok sk ok sk ok ok ok ok ok ok ok k ok ko kok kK ok k ko /

oid writeTable(char *table, HUFFTAB *huff)

FILE *fp;
unsigned size = sizeof (HUFFTAB)+(huff->tableSize-1)*sizeof (unsigned) ;

if ((fp = fopen(table, "w")) == NULL)
perror(table), exit(1);

swap4 ((unsigned *)huff, size/4);

if (fwrite(huff, size, 1, fp) != 1)
perror(table), exit(1);

(void) fclose(fp);

swap4 ((unsigned *)huff, size/4);

23

ACIS Huffman Coding 9 APPENDIX — THE HUFF.C PROGRAM

/***

swap4: perform byte-reversal of 32-bit array
stk ke sk sk ok ok sk ok ok sk sk sk sk sk ke sksk sk sk ok sk ok sk sk ksl sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk ok ok /

void swap4(unsigned *pp, unsigned count)
{
#ifndef mips
#ifndef vax
while (count-- > 0) {
int ii = *pp;
*xpp++ = ((ii & Oxff) << 24) | ((ii & O0xf£f00) << 8) |
((ii >> 8) & 0x£ff00) | ((ii >> 24) & Oxff);
}
#endif vax
#endif mips

24

	Contents
	1 Introduction
	2 Huffman Coding
	3 First Differences
	4 Truncated Huffman Tables
	5 Compression by ACIS Flight Software
	6 Generating a Huffman Table
	6.1 Setup
	6.2 File Compression
	6.3 File Decompression
	6.4 Diagnostic Output
	7 Listing a Huffman Table
	8 Recovering from Telemetry Errors
	8.1 Missing Minor Frames
	8.2 Single Bit Error within a Compressed Packet
	9 Appendix — The huff.c Program

