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1.0 Introduction

To distinguish X-ray events within a CCD pixel from background noise, it is necessary to know the
pixel value that would be reported by the analog electronics in the absence of any event or
background, a quantity known as the pixel’s bias level. In high-quality CCDs that have not been
subjected to appreciable radiation dosage, the i’th measurement of this value is closely
approximated by a Gaussian random function exp[-(p1-p0)2/σ2] whose modal value p0 and width σ
are nearly identical for all pixels except for a small number of damaged pixels termed “hot” or
“flickering” according to their anomalous bias level behavior.

During the course of a science run lasting from 103 to 105 seconds, all bias values are expected to
vary with slow changes in the DC level of the analog electronics. These variations are compensated
by “overclocking” the CCD, i.e. reading pixels from the frame store that never received charge from
imaging pixels. The average value of the overclock pixels will directly measure the change in DC
level, and can therefore be used to correct it.

Baseline pixel values may also change slowly across the CCD as a result of light leaks, temperature
inhomogeneities, or other changes in the operating environment. It was originally thought that, after
DC level changes, this would be the most serious systematic error in determining the bias levels,
and it was intended to include special hardware in the ACIS Front End Processors (FEPs) to detect
and compensate for these spatially varying changes in bias value. The algorithm divided each
exposure frame into groups of  pixels and used their modal value, corrected for any change in
average overclock, as an estimate of bias level for the corresponding pixels in the following
exposure. It is described in detail in section 3.2.2.3 of Applicable Document 4.

The situation has changed with the analysis of CCD data from the ASCA mission, which uses
devices that are similar in many ways to those to be flown on ACIS. As the report by Rasmussen
makes clear (see Applicable Document 1), the pixel bias levels of ASCA CCDs changed
significantly, presumably as a result of radiation damage, in a spatially random manner. Bautz has
concluded (in Applicable Document 2) that this phenomenon will most likely affect ACIS CCDs,
and would constitute the leading source of error in the measurement of X-ray energies, unless
corrected by on-board calibration of each pixel. To this end, it has been decided to make significant
alterations to the design of the front-end processor hardware (see Applicable Document 3):

• Remove the hardware that accumulates the  pixel histograms, along with their associ-
ated lookup tables. 

• Add a radiation-tolerant bias map buffer in which to accumulate and store the 12-bit bias
estimates for each pixel. Each FEP will therefore contain a 1.5 Mbyte bias map buffer in
addition to its existing image frame buffer.

• Add hardware that will compare the corresponding bias map value against each pixel input
from the DEA in order to determine threshold crossings.

64 64×

64 64×
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The bias map is too large to be made of radiation hardened devices, so it is anticipated that it will
suffer several SEUs per orbit, especially when AXAF passes through the Earth’s radiation belts. The
map will therefore be protected by a 1-bit parity plane so that the FEPs can detect SEUs and
disregard the possibly false event thresholds. However, once an SEU occurs, that pixel is effectively
lost to science until the bias map is recalibrated. We therefore anticipate the need to recompute the
bias levels at least once per orbit, perhaps more often, and the remainder of this memorandum
details our search for an algorithm or algorithms for computing the bias levels automatically from a
series of calibration exposures.

We begin in Section 2.0 by describing the FEP hardware in greater detail, and discussing its relation
to the DEA and Back-End Processor (BEP). Since many of the more robust bias determination
algorithms require many bytes of temporary RAM per bias value, we pay especial attention to FEP
memory usage. We also describe the operation of the redesigned pixel thresholder hardware, and the
part played by overclocking in compensating for changes in the average threshold level.

The algorithms themselves are discussed in Section 3.0. They fall naturally into three classes,
according to their need for additional RAM to save information about each pixel while they
estimate its bias threshold.

• Algorithms that require no additional RAM beyond the 1.5 Mbyte image map buffer and
bias map buffer. These algorithms execute in a time proportional to N, the number of cali-
bration exposures they make.

• Algorithms that must store all values of a given pixel from N independent exposures in order
to determine its bias threshold. These algorithms execute in a time proportional to N2.

• Algorithms that need to store a constant amount of additional data for each pixel. They exe-
cute in a time proportional to N. 

In general, we shall see that the most robust algorithms fall into the second class, i.e. those that are
potentially the least efficient. It is therefore crucial to compare their behavior against realistic image
data in order to select one or two for inclusion in the FEP flight software. We therefore asked the
ACIS science team to provide us with several sets of test data, as described in Section 4.0, and
copied them to optical discs (CD-R) with accompanying documentation.

We anticipate that the bias maps will be used by ACIS in two ways: either (a) they will start to be
dumped to the ground immediately they are computed, or (b) individual bias values will accompany
each event in the photon event lists that are downlinked during the science exposures. When an
entire bias map is to be dumped, considerable time can be saved by compressing the telemetry
stream. In Section 5.0 we discuss possible compression algorithms.

Section 6.0 reports on a comparison of some of the algorithms introduced in Section 3.0, operating
on the test data described in Section 4.0, using several statistical methods to determine the “best”
algorithm. At the same time, these tests have also proven to be highly effective at locating
anomalous pixels within the CCDs, and we recommend that they be used for that purpose during all
ACIS phases—test, calibration and operation.
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The two statistical techniques that are used in this document, the “Analysis of Variance” (ANOVA)
for the large-scale comparison of bias frames, and the “T Student” test used in Section 7.0 for
estimating differences between bias algorithms operating on small groups of pixels, are summarized
in Appendix A.

1.1 Applicable Documents
1. ASCA-D SIS Memo #557, “Residual Dark Distribution: Modelling the Corner Pixel Distribu-

tion, etc.”, A. Rasmussen, MIT.

2. ACIS Memo #PS-45, “Pixel-by-Pixel Bias Determination for ACIS?”, M. Bautz, MIT.

3. ACIS Memo, “DPA Hardware Specification & System Description”, D. Gordon.

4. ACIS Memo, “Pixel and Bias Bit Maps - Alternative memory Architectures”, D. Gordon,
MIT.

5. MIT-CSR 36-01103, version 3, “ACIS Science Instrument Software Requirements Specifi-
cation”.

6. MIT-CSR 36-02402, version 1, “ACIS Science Instrument Software Preliminary Design
Specification”.

7. MIT-CSR Part #TBD, version 3, “ACIS Hardware Specification and System Description”.

8. “Statistics for Experimenters”, G. Box, W. Hunter, and J, Hunter, Wiley, New York, 1978—
tabulation of Fα(r,s) function values.
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2.0 Problem Requirements

It is expected that Science observations will be conducted in two phases:

• Bias Level Calibration- the system collects data for several consecutive exposures with the
purpose of calculating bias thresholds for all CCD pixels. The calculation uses the values
reported for the same pixel in a certain number of frames, which may, or may not come from
consecutive exposures. At the end of calculation, new bias threshold levels are stored and
used in future event detections. 

• Event detection - the system collects science data frame by frame. For each frame, the sys-
tem locates pixels whose data values exceed the established thresholds, from which it gener-
ates an event list. In “bright” mode, optimized for event throughput, the system subtracts the
thresholds from the raw data, inspects neighboring pixels to identify “split” events, rejecting
those events that do not belong to a set of “grade” patterns, sums charge if split among event
pixels, and reports the results. In “faint” mode, optimized for energy resolution, the system
downloads the detected events along with the thresholds. These thresholds consist of three
terms which are added together for each pixel:

• Uplink Threshold, one value for the entire science observation, defined by explicit uplink
command as part of the observation parameter block.

• Overclock Levels, four values for each frame, representing the average DC level in each
output node of the CCD, calculated from the previous frame.

• Bias Levels, one value for each pixel in the frame, defining the zero-level of that pixel, cal-
culated at the beginning of the observation and possibly recalculated at intervals by
ground request. 

In practice, the bias levels will be stored as 12-bit unsigned integers. To prevent them taking
negative values, the overclock levels will be treated as signed integers, representing the difference
between the DC level of the current exposure and that of the first calibration exposure.

Figure 2-1 represents the flow of data flow between the principal components of the data collection
system that are involved with pixel bias levels. Control commands are omitted.

2.1 Focal Plane

This is an array of 6 CCDs that detect X-rays and ionizing particles. Each CCD generates a set of
analog signals whose voltages are proportional to the charge deposited by the events. The noise
sources are summarized in the following equation taken from Applicable Document 2:

(2.1)

where x,y is the column, row coordinate, i is the frame index, and

•  = bias level.

bi x y,( ) dci x y,( ) pi x y,( ) ri x y,( ) ni x y,( )+ + +=

bi x y,( )
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•  = dark current, which depends on temperature, integration time, and pixel number,
but only varies slowly with time.

•  = contribution from charged particles and diffuse X-ray events;  is a random
variable with a parent distribution that varies slowly with x and y, but which does not have
zero mean.

•  = other spatial variations in bias level which may be time dependent (e.g. from light
leaks).

•  = DC level which may be approximated by a zero-mean, normally distributed ran-
dom variable with no correlation from pixel to pixel. 

FIGURE 2-1.  ACIS Data Flow involving Bias Levels
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2.2 DEA (Detector Electronic Assembly)

Each of six DEAs sends “clocking” signals to a CCD to transfer its image array (  pixels)
to its on-chip frame store (  pixels), then drains the frame store into four serial shift
registers and reads each register into an analog-to-digital converter. Each converter generates a

 array of 12-bit digital pixels, and transfers them to the “Pixel Thresholders”,
accompanied by flags that indicate the first pixel of a new exposure and the presence of overclock
pixels. In addition, each DEA provides CCD clock synchronization, analog pixel amplification, and
removal of noise created by the clocking signals. 

2.3 Pixel Thresholder

A“Pixel Thresholder” stands between each DEA and its corresponding FEP accepting digital data
from the DEA and write them to the FEP’s image buffer. Flags within the data indicate the end of
each row and frame, and the base address of the “Image Pixel Map Buffer” can be selected by the
FEP software. Overclock pixels are also flagged by the DEA and written to a separate buffer in the
FEP. The processing of image and overclock pixels is controlled by a collection flag—if
deactivated, the thresholder ignores all pixels until the next start of frame. This property allows the
FEPs to perform calculations that take longer than the frame readout time, since it prevents the
image map from being overwritten until the FEP has finished examining it.

Digital pixels, starting at the “CCD Frame Initial Row” and continuing to the end of the frame, are
transferred to the image buffer, starting at the “Image Buffer Initial Row” and continuing for a pre-
determined number of rows (or until the physical end of the Image Buffer). The “CCD Frame Initial
Row” and “Image Buffer Initial Row” are determined by the contents of FEP hardware registers
that must be set before processing a new frame.

In a similar fashion, the overclock pixels are transferred from the thresholders to the overclock
buffer starting at an initial CCD address for a requested number of rows (up to a maximum of 1024)
and columns (up to a maximum of 32). The overclock data are stored in an FEP memory buffer
starting at a specified address. The CCD starting address, the number of rows and columns to
transfer, and the FEP buffer address, are all specified by FEP hardware registers that must be set
before processing a new frame (see Applicable Document 5).

The FEP hardware thresholder transfers each DEA pixel to the image pixel buffer and sets the
corresponding bit in the T-Plane buffer indicating whether the pixel value is greater than the
threshold defined by the sum of the corresponding overclock level, the calibrated bias level, and the
uplink threshold. In the event of a parity error in the bias level buffer, the pixel thresholders will set
the threshold bit and assert a memory upset flag. It will be the responsibility of the FEP software to
detect and correct the condition.

1024 1026×
1024 1024×

256 1024×
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2.4 Front End Processor (FEP)

One FEP is assigned to process data from each DEA and from each CCD device. The major
functions of the FEP are to calibrate the bias levels, calculate the average overclock values, and
generate the photon event lists. Since each image frame consists of up to 1.5 Mbytes of data, and the
frame readout time is approximately 2.65 seconds, FEP operations are time critical. The FEP itself
consists of a radiation hardened MIPS “Mongoose” CPU and a variety of random access memory
modules, as shown in Figure 2-2.

FIGURE 2-2.  Mongoose Memory Organization

Several blocks of memory are available. Some are dedicated memory blocks, others are buffers in a
bulk memory. They are the following:
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CPU
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• Image Pixel Map buffer - dedicated radiation-tolerant memory to contain the raw pixel data.
Buffer size is 1K x 1K x 12 bits = 1.536 MBytes

• Bias Level Map buffer - dedicated radiation-tolerant memory to contain the bias level
thresholds. Since this RAM isn’t immune to single event upsets, and the bias levels will
depend on exposure time and details of CCD clocking, it will be necessary to recalibrate the
bias levels at frequent intervals.
Buffer size: 1K x 1K x 12 bits = 1.536 MBytes

• Data Cache Buffer - dedicated radiation-hardened memory, which is used for calculations. 
Buffer size: 128 kBytes.

• Bulk Memory - a contiguous space of radiation-tolerant memory that may be used for multi-
ple purposes, buffer size: 1.5 MBytes. This memory is subdivided into the following areas:

• Overclock buffer - containing the overclock pixel values selected from the DEA by the 
pixel thresholders, maximum buffer size = 4 x 32 x 1024 x 16 bits = 256 KBytes, where:
4 = number of CCD shift registers (output nodes); 256 = maximum number of pixels 
readout per row for each shift register; 32 = number of overclock pixels for each row; 16 
= pixel size

• T-Plane Buffer - contains flags indicating which data pixel values are over the thresh-
olds. Each data pixel is represented by one bit in the T-Plane.
Buffer size = 1K x 1K x 1 bit = 128 KBytes

• Parity Buffer - contains a single bit representing the parity, even or odd, of the corre-
sponding bias level value, buffer size = 1K x 1K x 1 bit = 128 KBytes

• Overclock Level Buffer - containing the results of the overclock level calculation. 
Buffer size is 4 x 16 bits = 8 bytes.

• Free Memory Size - is about 1192 KBytes

In addition, the following thresholder registers are mapped into the processor’s memory space:

• Uplink Threshold - contains the commanded value to use when computing the T-Plane 
values for incoming data pixels, size is 4 32-bit words, one for each DEA output node.

• Pixel Window Information - contains the pixel window size, starting CCD row, and
starting Pixel Map row to use in the calculation, size is 12 32-bit words.

Access to 32-bit words in Cache Memory typically occurs within one machine cycle (0.1 µsec).
Access to bulk memory takes much longer, 0.4–0.5 µsec. The FEP processors also contain DMA
controllers capable of transferring data between bulk memory and cache at about 1 µsec per word
plus setup time.

The remainder of this section describes more fully those FEP features that affect the Bias Threshold
Algorithms. Their operation is shown in Figure 2-3. 
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2.4.1 Overclock Level Calculation

This function calculates the average pixel DC level on a frame by frame basis. The overclock levels
are stored in the “Overclock Level Buffer”. Their values are updated each time a new frame is
received. Four averages are taken, one for each CCD shift register. The results are used by the pixel
thresholders to compensate the pixel data for this noise source. 

2.4.2 Bias Level Calculation

This function calibrates the zero-event pixel levels and stores them in the “Bias Level Map Buffer”.
The calculation is executed for each pixel in the array. At the same time, the parity of each bias level
is calculated and stored in the “Bias Parity Buffer”. This parity is used by the pixel thresholders to
detect isolated bit flips in the bias buffer. A damaged bias value will be detected by the thresholder
and cause the corresponding pixel to be flagged in the T-Plane so that the FEP software can report it.

The data used for the bias level calculation are the raw image pixels generated by the pixel
thresholder from a sequence of calibration exposures, corrected for any change in the node-average
overclock levels. More than one algorithm may be used for these calculations, depending on the
memory and time available, and the accuracy desired.

Memory constraints: The bias calculation will use pixel values from multiple exposures and may
require more FEP memory than is available to store them all simultaneously. This problem can be
resolved by dividing the CCD into strips and repeating the bias calculation for each strip, storing the
bias threshold values into the corresponding locations in the bias buffer.

Calculation time constraints: the calculation may require more CPU time than the interval between
calibration exposures. This problem can be resolved by de-activating the pixel collection flag until
the current exposure frame has been processed.

It is anticipated that the resulting bias levels will be downloaded via the ACIS science telemetry
stream. At 24 Kbits/sec, it would take over 500 seconds to download each FEP bias map, but it is
expected that simple data compression algorithms (see section 4, below) will reduce this time very
considerably.

2.4.3 Event Detection

During a science observation, a program executing in each FEP will examine the threshold
crossings indicated in the T-Plane, determine whether that pixel represents a local maximum value,
and, if so, add it to an event list than is subsequently read by the BEP.

2.5 Back End Processor (BEP)

A single BEP controls the higher-level ACIS functions, i.e. accepting uplink commands, generating
code for DEA clocking, loading code into the FEPs, scheduling exposures, and collecting and
packaging event and housekeeping data for transmission to the downlink telemetry system.
9 of 58



Problem Requirements
FIGURE 2-3.  Front End Processor Data Flow
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3.0 Bias Algorithm Definitions

All the algorithms under consideration assume that the CCDs are to be clocked and exposed in the
same manner as in the subsequent science run. The algorithms are applied to every pixel in each
CCD. They must operate on the pixel data collected during the calibration exposures and cannot use
any per-pixel information transmitted from the ground because the bias threshold levels are
assumed to be time dependent and their calibration requires recent pixel data. 

All algorithms assume that raw pixel values have been corrected for changes in analog level using
the average overclock values from the most recent exposure. This makes the bias levels less
sensitive to slow drifting of the DC component of the DEA preamplifier response. However, it is not
possible simply to subtract the average overclock from the raw pixel values since this would lead, in
some situations, to negative bias levels, which could not be stored in the 12-bit bias map. To avoid
this possibility, the overclock corrections δOi for output node i are defined by the difference
between the overclock values saved from the first calibration exposure Oi and those of the current
exposure Oi, i.e.

δOi = Oi - Oi (3.1)

For the remainder of this document, it will be assumed that “raw” pixel values will already have
been corrected for drift in average overclock by subtracting δOi.

All algorithms are defined by a set of input parameters which must be uploaded from the ground:

• Number of calibration exposures, N

• CCD array window size, usually either 1024 or 1024/N, depending on the algorithm

• Method used to characterize the bias level, e.g., average, median, modal, etc. 

• Rejection threshold levels and confidence measure for the rejection of outlying pixels, e.g., n
times the variance, m times the inter-quartile range (IQR), etc.

• Termination rules, e.g., all bias values must lie within an acceptance range, maximum num-
ber of iterations reached, etc.

All algorithms will generate outputs consisting of 12-bit bias levels which may be compressed and
downlinked to the ground. Some may also generate individual rejection levels, pixel distribution
widths, etc., which will not be reported.

With these broad features in common, the algorithms can be subdivided into three major groups: 

• Those not requiring additional storage—they execute rapidly, but are generally less accu-
rate, particularly when encountering “pathological” pixels.

• Those that must store the value of each calibration pixel—they execute more slowly than the
previous group because they cannot operate on the full area of the CCD at once, but they are
generally more accurate, especially in their treatment of pathological pixels. 

• Algorithms requiring some additional storage, but not for all input values—their execution
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speed and accuracy is intermediate between the other two groups.

3.1 Algorithms Requiring No Additional Storage

We have investigated a class of algorithms that possesses the considerable advantage that they use
no additional FEP memory beyond the Image and Bias Map Buffers and a modest amount of Data
Cache. At any moment during the course of the algorithm, each pixel is represented by only two
quantities—the 12-bit value in the Image map which will be overwritten by each fresh exposure,
and the 12-bit value in the Bias Map whose value must converge to the desired bias threshold level.

The distribution of values, pi, of a pixel observed N times ( ) may be approximated by a
narrow Gaussian, exp[–(pi–p0)2/σ2], with the addition of a few outlying values, especially those
with pi >> p0 produced by X-rays or ionizing particles. p0 is, by definition, the modal value and σ
(<< p0) is the width, typically a few data units. For new CCDs, not yet subjected to radiation
damage, both p0 and σ are nearly identical from pixel to pixel, except for a few pathological
“hot” or “flickering” pixels.

When a CCD is damaged by radiation, it is anticipated that p0 and σ will increase with time, and at
rates that vary randomly from pixel to pixel. Such behavior has been reported in Applicable
Document 1 from a study of the CCDs aboard the ASCA observatory. Algorithms that use no
additional storage are unable to estimate σ from pi, so they concentrate on the modal value p0. Once
this has been computed for all pixels, its variance (<p02>/N)–<p0>2 serves as a good approximation
to <σ2>. 

3.1.1 Pixel Conditioning

The algorithms start by examining a series of exposures to “condition” the pi values and derive bi,
an estimate of p0. After the first exposure, the best estimate of b1 is clearly p1. After the i’th
exposure, two possible algorithms yield improved values of bi, viz.

bi  =  min(bi–1, pi) (3.2)

which guarantees that, after a number of exposures, none of the bi will retain anomalously high
values from X-ray or ionizing particle events. The resulting bi will generally, of course, be less than
p0 by a few σ, and it will be seriously compromised if even a few of the pi possess anomalously low
values. A rather more accurate conditioning can be achieved by the following two-step algorithm:

bi  =  pi  if  pi < (bi–1 – T1), (3.3)

and then,

bi  =  C pi + (1–C) bi–1  if  pi < (bi–1 + T2), (3.4)

otherwise,

bi  = bi–1 (3.5)

1 i N≤ ≤
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i.e. if the new value pi is much less than the previously stored value bi, let it replace the stored value.
Otherwise, if the new value isn’t much larger than the stored value, use a running average to better
approximate the “mean” pixel value, bi. Optimum choice of the thresholds T1 and T2, and of the
partitioning factor C, will depend on the expected pixel distribution functions themselves. The
effect of anomalously low values can be mitigated by applying a modal filter immediately after the
conditioning phase, e.g. if any bias value is found to be less than all of its neighbors by more than
some constant, the value should be replaced by the median of the 8 surrounding values.

3.1.2 Estimate of the Modal Value

After N conditioning exposures, the Bias Map Buffer contains values bN that are guaranteed to lie
within a few σ’s of the modal values p0. The bN can now be used as rejection thresholds to identify
X-ray and ionizing particle events in subsequent calibration exposures, and thereby improve their
own values in the process. This is achieved by making a further set of M exposures. The pixel values
pi , 0 < i < M, are subjected to the following two-step algorithm:

• For each pixel in the fresh image buffer, set

pi  = 4095 if  pi > (bi–1 + T3) (3.6)

where T3 is a threshold value. In addition, the 8 neighbors of any pixel that meets this criterion
may also receive a contribution from the event that caused the central pixel to lie above the
threshold. These neighboring pixels are therefore also reset to a value of 4095. 

• The Image Map pixels are re-examined and those with values less than 4095 are used to
refine the Bias Map values,

bi  = C pi + (1 – C) bi–1 (3.7)

Although this algorithm guarantees that bi will converge to the neighborhood of p0 for all
positive C < 1, bi will eventually execute a random walk with width ~Cσ. In practice, the
choice of C must be balanced against the exposure count M to optimize the width of the bN+M
distribution versus total calibration time .

3.1.3 Discussion

The principal advantage of this class of algorithms is that they are very simple to implement—just a
few lines of computer code—requiring no DMA transfers between Image Map and D-Cache,
eliminating the need to reset the Initial Image Store address or the CCD Window Initial Address.
Preliminary tests show that the resulting bias maps compare favorably with those generated from
“strip–by–strip” algorithms. However, they do have some weaknesses, as follows:

• They converge on p0, the modal pixel values. This would be satisfactory if the widths σ were
identical for each pixel over the lifetime of the CCD since a bias threshold value of, say,
p0+3σ would be a robust discriminator of energy deposition. However, this is not even true
of undamaged CCDs—the width of flickering pixel values can be many times the average σ,

t M N+∝
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and the situation is expected to deteriorate as the CCDs absorb high doses of radiation. The
choice of bias threshold, p0+Tb, must be made carefully—if Tb is too low, flickering pixels
will appear as events; if too high, low-energy events will go unreported. 

• Since all parts of the final Bias Map are calculated after the last calibration exposure, there is
no opportunity to copy the bias values to the downlink telemetry system while the bias is
being calculated. The time required to compress and transmit the six Bias Maps, ca. 12 min-
utes assuming 75% compressibility (see Section 5.0), must therefore be added to the bias
calibration time.

• These algorithms rely on particular properties of the pixel distributions. For instance, if
equation 3.2 or 3.3+3.5 are used to condition the bias values, the presence of anomalously
low pixel values, pi << p0, will start the second phase of the algorithm in a poorly condi-
tioned state and the number of subsequent exposures, M, may be insufficient for equation
3.7 to change bi so that |bi–p0| <= Cσ, as desired. This situation can be alleviated by apply-
ing an additional “grading” process at the end of the conditioning phase in which the anom-
alously low values of bN are identified and replaced by better estimates, e.g. by the median
of the bN of the surrounding pixels.

3.2 Algorithms Requiring Additional Storage

These algorithms need to store all calibration pixel values before determining the optimum
threshold level. They require that the FEP analyze the CCD image in strips, copying several
exposures of the same strip into separate portions of the image buffer, calculating the bias threshold
levels, transferring them to the equivalent locations within the bias buffer, and then repeating the
same procedure for the remaining strips. If s is the strip size and N is the number of exposures
required to determine the bias of a single pixel, the storage needed for the samples is sN, and this
will be re-used for the remaining strips. The full calibration time Tc is given by rNTf, where r is the
number of strips, and Tf is the duration of a single exposure frame. For example, Tc for N samples
collected by dividing the CCD image into N strips and storing the N samples for each strip in
portions of the “Image Pixel Map” buffer is proportional to N2. Note that under usual CCD clocking
conditions, the minimum value of exposureTime is about 2.67 seconds—the time taken to transfer
the contents of the full frame store through the output nodes.

The following sub-sections examine a number of algorithms in this class. They use the following
terms:

• overclockCorrectionj = the average overclock correction for the j’th output node

• xi = (raw pixel value) – overclockCorrectionj

• N = number of exposures used to characterize each pixel

• k = a confidence-level measure, typically setting the rejection threshold to be kσ, where σ is
the width of a pixel’s distribution.
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3.2.4 Truncated Mean - Rejection Based on σ

This algorithm calculates the mean and standard deviation σ, of N values of a pixel. It then rejects
values that diverge from the mean by more than a specified σ (e.g. those 3σ higher or lower than the
mean, equivalent to a confidence level of 99.73%), and then recalculates the mean and σ.

Definition: (3.8)

(3.9)

Rejection rule: (3.10)

The algorithm is executed by successive iterations. The mean and σ are calculated, then the outliers
are rejected and the mean and σ are recalculated. The algorithm is repeated until the termination
rule is satisfied. The value k can be thought of as an estimated value derived by Gaussian
distributions; e.g. k = 2 implies a probability of 5% that good pixel values are being rejected. The
termination rules are defined as any of the following:

• All pixel values are within an acceptance range.

• The maximum number of iterations was reached.

• The number of remaining pixels is less or equal to the minimum number accepted.

The algorithm is expected to work best with Gaussian or symmetric heavy-tailed distributions in the
presence of outlier points for which the assumption of normality does not hold. These outlier points
are rejected and the remaining data are treated as Gaussian.

The calculation is speeded up by saving the intermediate values:  and . During the
rejection phase, rejected values are subtracted from ,  and the sample number is updated. 

3.2.5 Median

The algorithm calculates the median of N pixel values. It sorts them in ascending order, and
identifies the central value, thereby rejecting the outliers since they will be sorted to one end of the
list or the other. Once the {xn} are sorted, the formula for the median is:

, N odd (3.11)

, N even (3.12)

A suitable rejection rule is based on the interquartile range (IQR) which indicates the distance
between the upper and lower quartile:
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 and (3.13)

A value of k = 3 can be considered a good approximation to reject severe outliers. The termination
rule for the median is defined as follows:

• All pixel values are within an acceptance range.

• The maximum number of iterations was reached.

The algorithm is expected to work best with Gaussian or symmetric heavy-tailed distributions with
few outlier points which have large σ, but zero mean. It fails if the area in the tails is large1, and is
somewhat influenced by points with very large values, but the rejection of contaminated sources is
particularly simple.

3.2.6 Modal (Peak)

Modal algorithms calculate the maximum of the pixel distribution. They collect N exposures,
generate a histogram whose bin size is a fraction of the total range of pixel values, and identify the
peak bin. They are expected to work best with distributions that possess a single sharp maximum.
Outlier points are easy to eliminate, but the number of samples must be large enough to permit a
histogram to be constructed, or else the sparse histogram must be smoothed in order to identify the
modal value. 

A preliminary evaluation of modal algorithms indicates that, for a given level of bias threshold
accuracy, this class requires a larger number of exposures than the other algorithms in this group.

3.2.7 M-Estimators

These algorithms perform maximum-likelihood estimates of fitting the distribution to a class of
functions derived from a particular regression model. The residuals are approximated by a weighted
least squares (WLS), and the model parameters are fitted by regression. These algorithms are
applied iteratively until there is a negligible change from one iteration to the next.

M-Estimator algorithms are expected to work best with skewed distributions or distributions in
which the outlying values are important. The measurement errors are not distributed normally, but
have heavier-than-normal tails. Their probability density depends on their residuals, scaled by
weight factors which can be assigned to each point. Several probability density models can be used
to estimate the weight, each one reflecting a different behavior among the outliers. 

3.2.7.1 Weight Mean Estimator with Tukey Functions

This class of algorithms calculates the mean and σ2 and then uses Tukey bi-weight functions to
estimate the weights. These are defined by: 

1.  Press, William H., etc. “Numerical Recipes in C” 14.1 “Median and Mode”

x xmed k–  IQR≤ x xmed k+  IQR≥
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, |z| < c (3.14)

, |z| > c (3.15)

where: z(xi) = (xi -m)/σ is the scaled residual, xi is the observed value. m and σ are the estimated
mean and standard deviation, respectively, and c is a suitably chosen threshold. The algorithm is
defined by the following steps:

a. Calculate the mean and σ2

(3.16)

(3.17)

b. Calculate the weight mean estimator, scaled residuals, weights, and weighted mean, :

(3.18)

, (3.19)

, (3.20)

(3.21)

c. Calculate the new σ2 with the equation:

(3.22)

d. Repeat steps b and c until a pre-determined termination rule is satisfied.

3.2.7.2 Weight Median Estimator

This algorithm calculates the median, M, and estimates the MAD (Median Absolute Deviation) by
the equation

MAD = 1.483 M[|xi - M(xi)|], i = 1,N (3.23)

This algorithm is similar to the Weight Mean Estimator, with the mean is replaced by the median,
and σ replaced by the MAD. It is considered more robust than the weight mean because the
calculation of σ is less sensitive to large deviations in the distribution shape.

w z( ) z 1 z2

c2
----–

 
 
  2

=

w z( ) 0=

x
1
N
---- xi

i 1 N,=
∑=

σ2
xi x–( )

2

i 1 N,=
∑

N 1–
----------------------------------=

W

z xi( )
xi x–( )

σ
------------------=

w xi( ) z xi( ) 1
z xi( )

c
------------ 

 
2

–
2

= z c≤

w xi( ) 0= z c>

W w xi( ) xi⋅
i 1 N,=
∑ 

  w xi( )
i 1 N,=
∑ 

 ⁄=

σ2 w xi( ) xi W–⋅[ ]
2

i 1 N,=
∑=
17 of 58



Bias Algorithm Definitions
3.3 Algorithms Requiring Some Additional Storage

These algorithms calculate the bias levels to some precision using one of the algorithms of the
preceding section, and then update these values using empirical rules which serve to speed up the
calculation. Their implementation requires that the CCD image be subdivided into strips similar to
the previously described algorithms, but they require a smaller number of exposures for each strip
because the full set of pixel values is only used for the initial estimate of bias level. The subsequent
levels are calculated by successive approximations using all pixels from the CCD image at one time.

The storage needed for the initial phase of these algorithms is the same as that for the previous
group. The duration of the entire calibration is given by:

(3.24)

where:

• N = total number of calibration exposures

• Q = number of exposures for the second phase of the algorithm

• r = number of strips

• Te= duration of a single exposure

• Ttot= total calibration time

For example, Ttot is proportional to (N-Q)2 + Q for an N exposure calibration obtained by making
N-Q exposures for the initial bias threshold estimation and Q exposures for the final calculation.

3.3.8 Truncated Mean - Dynamic Updating

This algorithm is divided into two parts. In the first, the mean and σ are computed using the
truncated mean equations (3.8-3.10), but the calculation uses a smaller number of exposures (Q)
than necessary to compute reliable bias values. Outliers are rejected based on this σ value in the
manner described in Section 3.2.4. At the end of this phase of the calculation, the bias levels are
stored in the bias buffer.

In the second phase, the hardware pixel thresholder is turned on before starting a second set of
exposures and those pixels above threshold events are ignored. The dynamic mean is calculated for
the remaining pixels by a weighted average obtained from the new pixel value, as follows:

(3.25)

where:

• bi = mean estimation after processing frame i

• pi = new raw pixel value in frame i

• n = the number of samples used for the bias calculation, a number that will be incremented

Ttot r N Q–( )⋅ Q+[ ]  Te=

bi
n 1–( )

n
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i 1–

1
n
---pi 1–+=
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each time a new sample is added. At the beginning of the dynamic calculation, it is set equal
to N, the number of samples used for the first phase of the calculation.

These algorithms are expected to work best for Gaussian or symmetric heavy-tailed distributions
with outlying points for which the assumption of normality does not hold. The outlier points are
rejected and the remaining data are treated as Gaussian. The algorithm fails if the mean of the tails
is large2.

3.4 Scenarios

All algorithms except those that use no additional storage will probably transfer the input pixel
values to the data cache to speed up subsequent calculations, which will most probably operate on a
few rows at a time. The “hybrid” algorithms discussed in Section 3.3 will also use the data cache or
bulk memory to store partial sums. Each calibration algorithm will require the combined assistance
of the FEP thresholders, the FEP processors, and the BEP.

The pixel thresholders will be instructed to copy the pixel data from a particular range of CCD rows
into a set of strips in the image pixel buffer. To decrease the calculation time, the opportunity should
be taken to copy these values from the image pixel buffer to bulk memory during pixel data
collection, provided the read and write operations don’t interfere with one another.

The front-end processors must control the registers in the pixel thresholders that control the pixel
strip collection and storage, then execute the specific algorithm, and regulate the data transfer from
image pixel buffer to data cache and from there to bulk memory (possibly via DMA transfer). 

The back-end processor must start the bias calculation and initializes its parameters. It may also be
required to collaborate with the FEPs in compressing and downlinking the bias maps while they are
being created.

Figure 3-1 shows a scenario in which the three hardware units act together to perform a bias
calibration that requires that all pixel values be examined together. The steps are as follows:

• Expose the CCD N times, copying the same strip of CCD rows into N separate blocks of
Image Buffer.

• For each pixel in the strip, copy its N values to the data cache.

• Calculate the bias and rejection levels for this pixel.

• Apply the rejection rule and iterate the if necessary.

• Calculate the parity of the bias value. 

• Transfer the bias and parity levels from the data cache to the bias level map buffer.

• Repeat the process with another strip of CCD pixels until the bias map is complete.

2.  Press, William H., etc. “Numerical Recipes in C” 14.1 “Median and Mode”
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FIGURE 3-1.  Bias Collection Sequence Scenarios

The following storage buffers are used for this process: 

• The image pixel map buffer is divided into strips containing N samples of the same strip of
CCD image pixels. 

• The data cache stores the N sample data (2K x N), sample number indicating the pixel num-
ber not rejected (1K), bias level calculated (2K), rejection levels (1K). The algorithm might
store intermediate results to speed up this calculation. 

• The bias level map buffer stores the results of the bias level calculation. These values are
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transferred to the buffer as soon as they are available. At any later time, the BEP may com-
press them and copy them to downlink telemetry.

A summary of the storage and exposure times for the major algorithms is reported in Table 3-1,
where s is the strip size, n is the number of strips, N is the total number of exposures, Tf is the frame
readout time,and Q (< N) is the number of “conditioning” exposures used by some algorithms.
Since the strips must be stored simultaneously in the Image Buffer, .

TABLE 3-1.Algorithm Summary

Class of Algorithm Storage Size
Exposure

 Time (seconds)

Algorithms requiring additional storage s N n N Tf

Algorithms not requiring additional storage one image N Tf

Algorithms requiring some additional storage s Q (n Q + N - Q) Tf

n N∝
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4.0 Test Data Selection

In order to test the algorithms described in the previous section, a series of data sets must be used.
After discussions with the ACIS science team, the following characteristics were considered
necessary:

• 100 or more consecutive full frames from the same CCD.

• Data from both front-side and back-side illuminated CCDs.

• The CCDs should be exposed to 4 sources:

• Ambient (no source)

• A soft X-ray spectrum, e.g. CK, AlK, etc.

• A hard X-ray spectrum, e.g. Fe55.

• A hard X-ray spectrum, e.g. Fe55, accompanied by a gamma source, e.g. Co60.

• All data should be paralleled by sets from the same CCDs after subjecting them to the aver-
age radiation dose to be anticipated for ACIS after 5 years of on-orbit operation.

In addition, it was stipulated that all images should be in 16-bit FITS format, with an overclock
region in each row of each output node, and each data set should be fully documented.

The CCDs contained 1026 rows of 1024 pixels each, and were clocked out in 4 nodes, digitized into
12 bits and recorded in 16 bits, although the preamplifier levels were frequently set sufficiently high
that pixel values above 4095 were not uncommon. Apart from these bias level variations, the system
gain was kept as constant as possible—typically within ±1% of nominal. The contents of each
image line are shown in Table 4-1. Note the presence of underclocks, overclocks, and 3 throw-away
pixels at the end of each output node.

The measurements were made on two CCDs, one front-side illuminated (FI), the other back-side
(BI), in late 1994, and the resulting FITS images were compressed and copied to a set of CD-R
disks, each including documentation. The details are shown in Table 4-2.

TABLE 4-1. Pixel Arrangement in Test Files

Bytes Contents Bytes Contents

0–3 Node A underclocks 680–683 Node C underclocks

4–259 Node A image pixels 684–939 Node C pixels

260–336 Node A overclocks 940–1016 Node C overclocks

340–343 Node B underclocks 1020–1023 Node D underclocks

344–599 Node B image pixels (reverse order) 1024–1279 Node D image pixels (reverse order)

600–676 Node B overclocks 1280–1356 Node D overclocks
 22 of 58



Test Data Selection
TABLE 4-2. Data Sets used for Bias Algorithm Evaluation

CCD ID Status Illumination Frames Date Volume Pathname

ccid17-12-4

(FI)

none 200 12/06/94 ac_0002c ccid17-12-4/bias

pre-irradiation AlK 200 12/07/94 ac_0001c ccid17-12-4/aluminum

OK 200 12/07/94 ac_0001c ccid17-12-4/oxygen

Fe55+Co60 200 12/06/94 ac_0002c ccid17-12-4/fe55co60

Fe55 100 12/05/94 ac_0005c ccid17-12-4/fe55

none 150 12/20/94 ac_0008c ccid17-12-4/bias

none  50 12/20/94 ac_0009c ccid17-12-4/bias

post-irradiation AlK 200 01/10/95 ac_0008c ccid17-12-4/aluminum

OK 200 01/10/95 ac_0008c ccid17-12-4/oxygen

Fe55 199 12/20/94 ac_0009c ccid17-12-4/fe55

Fe55+Co60 200 12/20/94 ac_0009c ccid17-12-4/fe55co60

ccid17-38-3

(BI)

none 200 12/09/94 ac_0006c ccid17-38-3/bias

AlK 200 10/20/94 ac_0007c ccid17-38-3/aluminum

OK 200 12/01/94 ac_0003c ccid17-38-3/oxygen

pre-irradiation CK 200 12/01/94 ac_0006c ccid17-38-3/carbon

Fe55+Co60 200 12/09/94 ac_0003c ccid17-38-3/fe55co60

Fe55 (-100C)  12 12/09/94 ac_0005c ccid17-38-3/fe55c100

Fe55 (-110C) 100 12/09/94 ac_0005c ccid17-38-3/fe55c110

Fe55 (-115C) 100 12/09/94 ac_0005c ccid17-38-3/fe55c115

Fe55 (-120C) 100 12/09/94 ac_0005c ccid17-38-3/fe55c120

none 100 01/12/94 ac_0004c ccid17-38-3/bias

AlK 200 01/11/94 ac_0004c ccid17-38-3/aluminum

post-irradiation CK 200 01/11/94 ac_0004c ccid17-38-3/carbon

none 100 01/12/94 ac_0010c ccid17-38-3/bias

OK 200 01/11/94 ac_0007c ccid17-38-3/oxygen

Fe55 200 01/12/95 ac_0010c ccid17-38-3/fe55

Fe55+Co60 200 01/12/95 ac_0010c ccid17-38-3/fe55co60
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5.0 Bias Map Compression

Since bias maps will contain many pixels with values lying in a narrow range, it will be possible to
apply a simple non-destructive compression algorithm to reduce the number of bits that must be
downlinked. Unless the variance of the bias values changes significantly during the mission, the
recommended compression scheme is the Huffman First Difference. It is applied as follows:

• A set of 8192 Huffman strings is prepared. These are varying-length bit strings with the spe-
cial property that their length can be determined from their parity properties, i.e. any two
Huffman strings can be distinguished even when they have been concatenated.

• The shortest Huffman string is associated with data value 0, the next shortest with data value
+1, the next with –1, the next with +2, and so forth.

• Each row of Bias Map data is separately compressed and communicated to the telemetry
system as a single data record. It begins with the row index 0–1023, followed by the 12–bit
value of the first Bias Map value in that row. Subsequent 12-bit values are first subtracted
from the preceding 12-bit value, and the associated Huffman string H(pn+1–pn) is written to
the telemetry record.

• Two special pixel values—denoting bad pixels and those whose bias values have suffered a
parity error and are therefore unreliable—are given special treatment: they are exempted
from differencing and compressed to special values. After transmitting such a value, e.g.
H(Pn), the next field will be H(pn+1–pn–1), provided that pn+1 is not itself either of the two
special values.

When the telemetry records are received on the ground, the row number and first 12-bit value are
extracted, followed by the individual Huffman strings. These latter are used as indices into an
inverse of the original Huffman table to recover the Bias Table differences, and thence to the
complete Bias Table.
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6.0 Data Analysis

6.1 Overview

The raw data that are used for bias calibration must be collected by the CCDs in the presence of
several types of radiation and by various kinds of pixels, termed “good”, “hot”, “flickering”, and
just plain “bad”. The calibration algorithms must distinguish between the following event
signatures:

• X-rays—isolated pixels, or small groups of pixels, with high ADUs.

• Ionizing Particles—typically larger groups of pixels with high ADUs. 

The pixel values are also expected to vary for other reasons:

• Random variations from pixel to pixel that may be compensated by bias calibration.

• Random time-dependence of the value of a single pixel.

• Small systematic variations due to temperature, DEA gain, etc., which are partially compen-
sated by averaging the overclocks from each DEA output node.

• Defective or “hot” pixels with anomalously high data values that are generally independent
of exposure time and are present in several consecutive exposures.

• Pathological Pixels—those that possess an abnormal distribution of values in the absence of
events, e.g., rectangular or double peaked distributions.

The purpose of analyzing the test data of Section 4.0 is to quantify the variation of real pixel values
in the presence of events, and to see how they impact the bias level calculation. To observe the
greatest possible variety of behaviors, it has been necessary to use full CCD frames and to examine
entire images. On the other hand, the algorithms themselves may be affected both by the number of
events occurring in a given pixel, and by their energy, and if we wish to compare one algorithm
against another we must use a limited number of observations with precisely known characteristics.
The statistical techniques used for analyzing these data sets, which are formally presented in
Appendix 8.0, must therefore be able to compare bias level values from large images with very
many pixels, as well as from small data sets. They must identify systematic bias level variations
from image to image (i.e., bad pixels) in particular pixel locations, and estimate the statistical
significance of variations in the bias level values.

6.2 Bias Calculation 

The data used for the bias calculations are first corrected for changes in the average output node
overclock values. The following corrections were applied:

(6.1)

where

p ′ ij pij oi n, κ+–=
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•  indicates the pixel data at CCD row i and column j, corrected for overclock variations.

•  indicates the raw pixel data at CCD row i and column j.

•  represents the mean of the overclocks in the ith row. n is the number of overclocks used
in the calculation.

• the constant κ was added to the right hand side of equation 6.1 to avoid negative numbers.
For this analysis, a value of 200 was used.

This overclock correction differs from that to be used in the flight system, and was chosen to
counteract the higher noise level in the calibration data, which used prototype data collection
hardware. Since each row of pixels from each output node was accompanied by 77 overclock values
(see Table 4-1), the average could be calculated for each row and node without significant sampling
error.

The bias levels were calculated from sets of ten consecutive image frames. The algorithms
themselves were variants of the mean and median algorithms described in Section 3.2. Three
different versions of the mean algorithm were used: the simple mean (MEAN–I1L1), the mean with
rejection of pixel values greater than ±σ, as described in Section 3.2.4 (MEAN–I2L1), and the mean
with rejection of pixel values greater than ±2σ (MEAN–I2L2). To these was added the 50% median
algorithm described in Section 3.2.5 (MEDIAN).

6.3 Objectives

There were three:

• Visualize and quantify the range of bias level variations.

• Identify the existence of areas in the images with anomalous bias level values.

• Determine the dependence of the bias level values on particular factors, using the data con-
tent itself.

The visualization of bias level variations necessitates the examination of entire images and was used
to quantify the range of these variations. The identification of areas with high bias levels also
required the visualization of entire images and was used to locate bad and/or “hot” pixels. To
investigate the dependency of bias level values from the data content itself required a knowledge of
that content, was therefore limited to small data sets, and was used to compare the performance of
the various algorithms. 

6.4 Bias Level Variations

The objective of this phase of the analysis was to quantify the range of variations of the bias level
calculation across an entire CCD frame. This was accomplished by applying a single algorithm
(MEAN–I2L1) to three data sets, and then calculating the maximum, minimum, mean, and σ of
each bias pixel’s level, and by counting the number of bias values greater than a specified threshold. 

p ′ ij
pij

oi n,
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The data sets used were the FITS frames (from 0010 to 0019) collected from the pre-irradiated
backside-illuminated CCD 17–18–3, (1) in absence of X-ray sources, and then illuminated by X-ray
sources emitting (2) AlK X-rays and (3) Fe55 X-rays with Co60 γ-ray contamination. These data sets
were named, respectively, ccid17-38-3/bias, ccid17-38-3/aluminum, and ccid17-
38-3/fe55co60, and the results of this survey for each output node is reported in Table 6-1.

Table 6-1 shows that the variations in the minimum bias values are negligible, whereas the
maximum variations change considerably. The mean appears quite stable, while the standard
deviation σ varies over a limited range. The numbers of bias levels greater than a given threshold
indicate the impact of the high bias level values on the entire image. As shown, the number of these
high values is negligible, and this is confirmed by the σ values.

6.5 The Identification of Anomalous Pixels

The analysis also identifies damaged pixel locations, tests whether they remain constant or change
from exposure to exposure, and whether their values change over longer time scales. These are best
achieved by calculating the bias levels for entire CCDs, and then analyzing the results with the
ANOVA techniques. The resulting F factors, defined in Section A.1, can be interpreted as indices of
pixel health—those whose F values exceed the values of Fα (tabulated in Applicable Document 8)
at a particular level of significance α, corresponding to the number of degrees of freedom of the

TABLE 6-1. Summary Of Bias Level Variations

X-Ray
Source Fit Frames Node

Bias Level

Number of Bias Level
Values above Threshold

(Threshold)

Min1 

1. a minimum value of 0 indicates a defective pixel.

Max2 

2. values of 4095 were assigned to defective pixels.

Mean s 205 210 220 240

 1 186 1092 201.34 4.0 31849 1135 5 3

none 0010 – 0019 2 188 4095 201.34 11.24 23688 362 15 8

3 188 3666 201.34 8.11 23842 369 11 7

4 187 4088 201.35 9.0 23952 928 281 14

1 188 536 201.15 3.19 21547 442 12 1

AlK 0010 – 0019 2 0 4095 201.22 8.03 11958 89 20 5

3 189 4095 201.22 8.72 18286 236 17 4

4 0 671 201.06 3.37 21677 661 19 1

1 184 1161 201.35 4.23 31546 1251 73 42

Fe55+Co60 0010 – 0019 2 188 4095 201.38 11.27 23886 544 75 38

3 187 3640 201.37 8.09 24253 462 68 40

4 187 4085 201.41 9.0 24418 984 312 36
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experiment, are assumed to be either defective or contaminated by events that were not rejected
during the bias calculation. 

A more precise way of identifying bad pixels is to calculate the F values from two sets of bias
levels—derived from two sets of raw data produced at different times from the same CCD. The F
values are compared, and areas in the CCD are identified, where the Fs for both data sets are higher
than the tabulated Fα. This technique gives more reliable information on areas of bad pixels because
the probability is low that two different sets of measurement of the same pixel will be contaminated
by events or particles that were not rejected by the bias calculation.

Unfortunately, no information on the performance of the bias algorithms themselves can be
extracted from this analysis because, if the algorithm identifies events and removes their effects, the
bias values correspond to good pixels and the success of the algorithm is not in question. When the
bias algorithm does not identify the event, it yields an anomalous value that is confused with a bad
pixel.

6.5.1 Data Sets

The data sets used for this analysis came from CCID 17-38-3, a back-side device that had not been
irradiated. The frames were collected (1) in absence of X-ray sources, and in presence of X-ray
sources corresponding to (2) AlK X-rays and (3) Fe55 X-rays with Co60 γ-ray contamination. The
names of these data sets were, respectively, ccid17-38-3/bias, ccid17-38-3/aluminum,
and ccid17-38-3/fe55co60.

The bias levels were calculated for each pixel in the CCD, using several algorithms—MEDIAN,
MEAN-I2L2 and MEAN-I2L1, as defined in Section 6.2. For statistical analysis, two sets of bias
values were generated using two sets of image frames. Each set contained three groups of data
(labelled “none”, “AlK”, and “Fe55Co60”), corresponding to no X-Ray sources, AlK sources, and
Fe55 X-Rays + Co60 γ-rays. This was repeated 5 times for each data set, so a total of 150 image
frames was used for each set—10 for each bias calculation, 5 replications of each, and 3 different
X-Ray sources.

Each group of CCD frames exposed to different X-ray sources contained a number of bad and hot
pixels, along with a number of X-ray and background events. In general, the events do not affect the
analysis that follows because the number that are not rejected by any of the bias algorithms is much
smaller than the total number of pixels.

6.5.2 Statistical Analysis

The one-way and two-way ANOVA methods used were used to perform the factor analysis.

• One-way classification—the “treatments” are the X-Ray sources (three in this case) and the
5 “replications” are the repeated bias calculations executed for the same pixel from different
groups of calibration frames. The total number of bias levels used in this analysis is 15 and
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their division into repetitions and treatments is shown in Table 6-2. 

The same analysis is repeated for each algorithm. The results give information about the
general health of each pixel.

• Two-way classification—the “rows” are the X ray sources (3 in this case), the “columns” are 
the algorithms (also 3), and the (5) replications are the repeated bias calculations executed 
for the same pixel from different groups of calibration frames. The total number of bias lev-
els used in this analysis is 45 and their division into repetitions and treatments is shown in 
Table 6-3. 

The results tell us about the simultaneous dependency of the bias level on the choice of X-
Ray source and bias algorithm.

6.5.2.1 F Distribution within the CCD

Figure 6-1 illustrates the dependence of F on CCD row number for several anomalous columns of
CCID 17-38-3. The Fs show considerable variation from column to column—in some there is a
relatively sharp peak in the middle of noise, in others the peak is approximately rectangular, while
others contain only isolated pixels scattered at random row locations.

TABLE 6-2. One-Way Anova Classification To Identify Bad and Hot Pixels

Treatment

Repetitions

1 2 3 4 5

None Bias level Bias level Bias level Bias level Bias level

AlK Bias level Bias level Bias level Bias level Bias level

Fe55+Co60 Bias level Bias level Bias level Bias level Bias level

TABLE 6-3. Two-Way Anova Classification to Identify Bad and Hot Pixels

Treatment

Algorithm

MEAN I2L2 MEAN I2L1 MEDIAN

None 5 Bias levels 5 Bias levels 5 Bias levels

AlK 5 Bias levels 5 Bias levels 5 Bias levels

Fe55+Co60 5 Bias levels 5 Bias levels 5 Bias levels
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FIGURE 6-1.  Distribution of Fs in Selected CCD Columns

6.5.2.2 Summary of ANOVA Results

The results from both ANOVA techniques are summarized by identifying the maximum F value,
their mean and standard deviation, and the number of pixels with F greater than the tabulated Fα—
two values of α were used, one corresponding to a 5% significance level and the other to 1%. The
calculation was performed for each CCD output node, for both of the duplicate data sets, and for
both ANOVA techniques. The results for the one-way model are summarized in Table 6-4, those for
the two-way model in Table 6-5.

The one-way model results reported in Table 6-4 indicate that: 

• The maximum F values vary considerably from node to node. However, the mere presence
of high values is not a reliable measure of CCD health since they could result from no more
than a handful of pixels.

F values calculated by ANOVA one-way model;
treatment: X-Ray Sources, Bias Level Algorithm: MEDIAN
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• The mean F is not statistically significant for three of the nodes of this CCD, but it is signif-
icant for the fourth. The mean and its standard deviation give some indication of the CCD
health, but this is not a robust index because a small number of very high values can greatly
affect both the mean and the standard deviation.

• The total number of pixels with F values greater than the tabulated Fα is almost independent
of bias algorithms, and is approximately the same for bias levels calculated from different
data sets. It represents the number of pixels that have a bias level variation greater than the

TABLE 6-4.  Results of the One-Way ANOVA Model (3 X-Ray Sources, 5 Replications)

Algorithm Data Set Node

F Values

Max Mean Sigma

Number of Pixels with F > 

5% =4.46 1% = 8.65

1 59.38 1.27 1.59 10829 1537

MEAN I2L2 1 2 4457.23 1.41 9.17 12923 2198

3 279437 2.42 546.54 10712 1521

4 11923533 47.05 23288.0 12048 2386

1 110.06 1.27 1.60 10641 1583

MEAN I2L1 1 2 4111.55 1.39 8.76 12505 2027

3 274945.34 2.39 537.58 10603 1534

4 9484628 37.67 18524.61 11707 2273

1 109.65 1.27 1.62 10810 1630

MEDIAN 1 2 4963.41 1.39 10.20 12551 2018

3 309202.94 2.52 604.38 10569 1473

4 8429955.0 33.72 16464.76 11699 2303

1 3815.48 1.34 8.58 11525 1733

MEAN I2L2 2 2 13667.26 1.49 27.10 14027 2245

3 190971.1 2.34 394.02 11055 1555

4 15454921.0 60.53 30185.29 12768 2503

1 3948.88 1.33 8.85 11323 1653

MEAN I2L1 2 2 9158.15 1.44 18.37 13359 2168

3 225103.55 2.33 445.02 10934 1534

4 15454921.0 60.51 30185.30 12351 2378

1 3927.22 1.33 8.78 11427 1650

MEDIAN 2 2 12929.29 1.45 25.58 13414 2133

3 272606.25 2.61 543.96 10793 1607

4 11590624.0 45.75 22637.87 12282 2365

Fα

Fα Fα
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residual error at the α level of significance. The pixels identified by this criterion might be
either “bad” or merely “hot”, and further analysis is needed to see whether the high bias
level values were not merely the result of unidentified events. The number of pixels with F
greater than Fα is about 1% of the total number of pixels in the frame for a 5% level of sig-
nificance and about 0.2% for 1% level of significance.

The two-way model analyzes simultaneously the effect of X-Ray sources and bias algorithms. The
results for the entire area of a CCD image frame are summarized in Table 6-5. These indicate the
general behavior of the CCD but they are not sensitive to some anomalous conditions. To
summarize:

• The choice of X-ray source is statistically significant for the bias level calculation, but the
choice of algorithm is not. The ANOVA technique separates the effects of sources from
those of algorithms and allows the differentiation between the two factors. 

• The algorithm factor is not significant in the bias level calculation. When the results with
(and without) X-Ray sources are compared, the algorithm factor increases the data variabil-

TABLE 6-5. Results of the Two-Way ANOVA Model 
(3 X-Ray Sources, 3 Algorithms, 5 Replications)

Data 
Set Node Factor

F Values

Max Mean Sigma

Number of Pixels with F > 1

1. The tabulated values of  correspond to 2 and 36 degrees of freedom, respectively.

5% =3.28 1% =5.30

1 1 X-Ray Sources 259.35 3.39 4.12 91742 51612

Algorithms 4.5 .2 .22 10 0

2 X-Ray Source 13452.44 3.74 27.7 97962 56609

Algorithms 5.53 .23 .253 25 2

3 X-Ray Source 861241 6.90 1683.85 91193 50953

Algorithms 5.89 .22 .24 15 1

4 X-Ray Source 29227940 115.69 57085.69 92318 52353

Algorithms 4.90 .22 .242 23 0

2 1 X-Ray Source 11689.43 3.56 26.05 93921 53494

Algorithms 6.30 .20 .23 21 2

2 X-Ray Source 34656.30 3.91 68.84 100750 59123

Algorithms 5.22 .24 .26 26 0

3 X-Ray Source 674308.94 6.73 1346.80 92237 52050

Algorithms 5.392 .22 .24 14 1

4 X-Ray Source 41727608.0 163.27 81498.96 94738 54487

Algorithms 5.01 .22 .24 21 0

Fα

Fα

Fα Fα
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ity and merely confuses the ANOVA analysis. This does not imply that the bias level is
insensitive to the choice of algorithm, merely that it is not possible, by examining an entire
CCD, to identify those pixels and events in which the bias calculation depends on the choice
of algorithm.

• For output nodes A and B (columns 1-512), the X-Ray source factor is not significant at a
5% level, but it is significant for nodes C and D (columns 513-1024). The results from this
model agree with those of Table 6-4 (one-way ANOVA) for nodes A, B, and D, but differ for
node C (columns 513-768), where the source factor is significant in two-way ANOVA but
not in one-way. This contradictory behavior might be explained by the large variability
added by the algorithm factor.

• The behavior of the maximum, mean, and variance of F values follows the same trends as
seen in Table 6-4 for the one-way ANOVA model.

• The number of pixels with Fs greater than the tabulated Fα is greater than in the one-way
analysis because the number of bias levels used in the two-way analysis is triple that in the
one-way case and the algorithm factor therefore increases the variability. About 9% of the
pixels have an F value greater than Fα for a 5% level of significance and about 5% of them
exceed it at the 1% level.

6.5.2.3 Comparison of the ANOVA Results from the Duplicate Data Sets

A more precise identification of bad and hot pixels can be obtained by comparing the Fs calculated
from the two duplicate data sets. The Fs resulting from the ANOVA analysis were represented as
pixel arrays, compared, and those pixels with Fs higher than the tabulated Fα were identified. The
images contain zero for all pixels with F values less than the tabulated Fα and ten for the others.
They readily identify the CCD areas containing anomalous pixels—they appear as long or short
sections of columns or unique bad pixels surrounded by good pixels. The bad columns are in every
output node, the isolated pixels are distributed evenly, although a relatively large concentration is
noticeable at the top of the image. 

Figure 6-2 shows those F values higher than the tabulated Fα for both data sets in two areas of the
CCD. It used the ANOVA one-way model applied to bias levels calculated by the MEAN-I2L1
algorithm. The upper image (rows 1-256) shows an area of high density of bad or hot pixels
centered in the first rows of the CCD, and some segments of bad columns numbered 4, 893, and
1018. The lower image (rows 769-1024) shows segments of bad columns numbered 270, 893, and
1018.
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FIGURE 6-2.  Bad and Hot Pixel Image

Figure 6-3 shows a series of histograms prepared from the same data, identifying the number of
pixels per columns with Fs higher than the tabulated Fα in both data sets. They also show the
number of bad and hot pixels in each column. In general, the columns containing an high number of
bad pixels are independent of the choice of bias algorithm, and the ANOVA techniques identifies
them with few exceptions. 

Comparing the results from the ANOVA one-way model as applied to the bias levels calculated by
the three algorithms shows that the CCD columns with bad pixels are common to every algorithm
except in the case of a single column, which is only seen to be anomalous with the bias levels
calculated by the MEAN–I2L2 and MEDIAN algorithms. This might be because MEAN–I2L2 has
a larger acceptance range than MEAN–I2L1 and might reject less data. The increased number of
bad columns reported by the MEDIAN algorithm relative to MEAN–I2L1 might be attributed to the
fact that MEDIAN is data dependent and might generate higher values if the data set contains
proportionately higher data values.

The results from the ANOVA two-way model show a higher number of bad pixels than the ANOVA
one-way model. This result can be attributed to the greater number of bias level values used in the
analysis and to the added variations due to the algorithm factor.

Pixels with F >  in each of two sets of data of the same CCD, both calculated by the one-way ANOVA model (treatment: 
X-ray sources; algorithm: MEAN-I2L1). The anomalous pixels cluster in columns and in rows at the top of the CCD. 

NOTE: the levels of grey in these images have been chosen to emphasize bad pixel morphology. 

Fα
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FIGURE 6-3.  Distribution of Bad and Hot Pixels as a Function of CCD Column Number

6.5.2.4 Conclusions

The results from this analysis may be summarized as follows:

• It is better to examine the bias algorithms one at a time because their simultaneous measure-
ment complicates the factor analysis. In the remainder of this report, bias algorithms will be
considered separately.

• The number of bad and hot pixels is consistent from frame to frame.

• The comparison between F images of bias levels generated from duplicate sets of data is a
good way of locating bad and hot CCD pixels. 

• The identification of anomalous pixels might be obscured by X-Ray events.
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Plot A: 2-way ANOVA model
F2,36 p=0.05 = 3.28

Plot B: 1-Way ANOVA Model
Bias levels from MEAN-I2L1
F2,8 p=0.10 = 3.11

Plot C: 1-Way ANOVA Model
Bias levels from MEAN–I2L2
F2,8 p=0.10 = 3.11

Plot D: 1-Way ANOVA Model
Bias levels from MEDIAN
F2,8 p=0.10 = 3.11

F2,36 p=0.05 values > 250

Columns 0 1 257 270 513 768 769 893 1018

Count 292 395 426 301 292 300 442 927 284

F2,8 p=0.10 values > 50

Columns 1 4 257 270 768 769 893 1018

Count 81 92 105 183 56 95 511 121

F2,8 p=0.10 values > 50

Columns 1 4 257 270 769 893 1018

Count 64 91 79 175 77 777 107

F2,8 p=0.01 values > 50

Columns 1 4 257 270 768 769 893 1018

Count 60 91 74 175 52 72 776 105

Comparing pixels with Fs >  in each of two separate sets of data 
from CCID17-38-3, a back-illuminated CCD, before irradiation.

Fα
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7.0 Algorithm Comparison

The data used for the bias calculation have been collected in the presence of external X-rays, high
energy particles, and calibration sources, because the events cannot be eliminated during the bias
calibration periods. These events vary in energy from about 100 eV to 10 KeV, but are small in
number. Their energy can be absorbed by a single pixel or split between two or more neighboring
pixels in varying proportions. The present study was limited to energies between 72 and 316eV,
because its purpose was to evaluate the minimum energy of X-Ray that could be detected above the
noise level.

The bias calculation uses consecutive observations of the same pixel. The number of events that can
occur within this pixel during the calibration period depends on the number of observations and
duration of each. For this study, the number of events is considered to vary between 0 and 3 events.
The goals are as follows:

• To calculate the bias level with different algorithms in the presence and absence of events,
and to estimate the average bias values for a fixed number of replications.

• To compare the differences between average bias levels calculated by different algorithms
applied to the same data sets.

To rank the algorithms according to their responses to different conditions, two data sets were
prepared—eventless data are experimental data sets from real CCD frames that were selected so
that they not contain any events and correspond either to the same pixel or to different pixels that
have similar bias values. Simulated data are eventless data sets where “events” of a known energy
have been added. Multiple events are simulated by adding the same value to more than one pixel
belonging to the set used to calculate a particular bias value. 

7.1 Eventless Data

The choice of data to be used was made in two steps: (a) identification of a group of possible pixels
from a large number of CCD images, and (b) extraction of a smaller sample group from it. The
initial pixel identification was made from the comparison images discussed in Section 6.5 by
identifying those pixels with F less than some predetermined value, in this case 1.0. This value is

TABLE 7-1.  Bias Level Calculation for Identifying Eventless Data

Pixels

X-Ray Source

none AlK Fe55+Co60

pixel 0 10 replications 10 replications 10 replications

pixel 1 10 replications 10 replications 10 replications

... 10 replications 10 replications 10 replications

pixel 19 10 replications 10 replications 10 replications
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more restrictive than the expected value, but it was chosen to reduce the number of pixels to
examine—twenty were chosen

The values of each selected pixel were then extracted from 100 raw frames for each X-Ray source
(three hundred raw frames for each pixel), and the bias levels were calculated using the simple
mean algorithm with no rejection (MEAN–I1L1). This is more sensitive to data variations than the
other algorithms and can better identify the presence of events in raw data.

The pixel configuration used for choosing the “eventless” group from the pixel list is shown in
Table 7-1. The minimum and maximum bias level values were identified and their means and
variances were calculated for each group of ten bias level replications. These values are tabulated in
Table 7-2.

TABLE 7-2. The Characteristics of “Eventless” Pixel

Pixel Id
X-Ray 
Source Bias Levels

Min 
Bias 
Level

Max 
Bias 
Level

Bias
Level
Range

Bias 
Level
Mean

Bias 
Level

Variance

pixel 0
s=34804

x y 1012 33

None 

AlK 

Fe55+Co60

201 198 201 198 199
202 203 197 197 198

202 197 202 199 199
200 200 202 198 201

196 198 202 204 203
200 199 201 196 199

197

197

196

203

202

204

6

5

8

199.4

200.0

199.8

4.24

2.8

6.76

pixel 1
s=70070

x y 438 68

None

AlK

Fe55+Co60

202 202 199 202 197
201 200 197 204 199

201 204 196 202 202
202 200 198 200 200

199 199 198 202 206
203 197 200 201 199

197

196

197

204

204

206

7

8

9

200.3

200.5

200.4

4.81

4.65

6.44

pixel 2
s= 72022

x y 342 70

None

AlK

Fe55+Co60

199 195 199 202 201
197 198 201 200 198

202 197 200 198 199
197 199 201 205 196

199 201 199 197 200
200 199 200 200 198

195

196

197

202

205

201

7

9

4

199.0

199.4

199.3

4.0

6.64

1.21

pixel 3
s=72080

x y 400 70

None

AlK

Fe55+Co60

196 199 204 197 195
197 201 201 200 195

198 197 198 202 200
203 196 197 199 197

201 199 198 199 195
198 196 200 200 196

195

196

195

204

203

201

9

7

6

198.5

198.7

198.2

8.05

4.81

3.56
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pixel 4
s=72383

x y 703 70

None

AlK

Fe55+Co60

203 201 202 202 203
200 200 200 208 200

204 200 203 199 202
200 202 200 203 204

196 207 202 203 203
201 201 204 200 203

200

199

196

208

204

207

8

5

11

201.9

201.7

202.2

5.49

3.01

7.4

pixel 5
s=72504

x y 824 70

None

AlK

Fe55+Co60

199 199 197 197 201
200 200 205 199 199

197 200 203 200 198
256 201 206 198 205

193 198 196 201 204
205 205 199 196 201

197

197

193

205

256

205

8

59

12

199.60

206.4

199.8

4.64

281.44

15.36

pixel 6
s=73312

x y 608 71

None

AlK

Fe55+Co60

200 203 201 200 200
197 198 200 200 207

204 198 203 201 197
202 197 201 203 198

204 197 198 205 230
199 202 200 204 198

197

197

197

207

204

230

10

7

33

200.6

200.4

203.7

6.84

6.44

84.21

pixel 7
s=76029

x y 253 74

None

AlK

Fe55+Co60

197 200 207 209 204
205 201 205 199 205

203 199 201 206 202
206 201 200 202 203

200 203 203 205 201
199 202 202 211 204

197

199

199

209

206

211

12

7

12

203.2

202.3

203

12.96

4.81

10.0

pixel 8
s=77638

x y 838 75

None

AlK

Fe55+Co60

201 199 201 201 198
198 196 200 202 201

195 201 198 197 259
200 199 199 202 257

200 198 200 200 197
198 202 197 203 202

196

195

197

202

259

203

6

64

6

199.7

210.7

199.7

3.21

563.01

4.21

pixel 9
s=79073

x y 225 77

None

AlK

Fe55+Co60

202 201 205 205 201
198 204 208 197 204

205 219 204 201 200
203 201 201 199 202

204 199 204 202 202
202 203 201 207 197

197

199

197

208

219

207

11

20

10

202.5

203.5

202.1

10.25

29.65

6.89

TABLE 7-2. The Characteristics of “Eventless” Pixel

Pixel Id
X-Ray 
Source Bias Levels

Min 
Bias 
Level

Max 
Bias 
Level

Bias
Level
Range

Bias 
Level
Mean

Bias 
Level

Variance
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pixel 10
s=322496

x y 960 314

None

AlK

Fe55+Co60

202 199 201 200 203
198 199 201 203 202

199 201 203 202 198
198 197 201 204 197

198 202 202 202 197
196 199 201 201 379

193

196

197

203

204

379

10

7

183

199.60

200.0

217.70

6.84

5.80

2895.21

pixel 11
s=323313

x y 753 315

None

AlK

Fe55+Co60

203 204 201 202 202
196 202 201 204 203

202 202 205 202 205
200 197 206 201 204

202 201 201 199 203
201 198 201 202 202

196

197

198

204

206

203

8

9

5

201.80

202.40

201.0

4.76

6.64

2.0

pixel12
s=324802

x y 194 317

None

AlK

Fe55+Co60

201 202 198 199 195
201 200 197 198 205

199 195 203 199 201
205 199 202 201 198

202 197 203 199 202
197 201 204 201 201

195

195

197

205

205

204

10

10

7

199.60

200.20

200.70

7.24

7.16

5.01

pixel 13
s=325051

x y 443 317

None

AlK

Fe55+Co60

206 204 201 199 205
200 208 201 201 204

203 206 204 201 204
202 201 205 204 202

199 203 205 201 208
205 205 199 203 202

199

201

199

208

206

208

9

5

9

202.90

203.2

203.0

7.69

2.56

7.40

pixel 14
s=325391

x y 783 317

None

AlK

Fe55+Co60

202 202 202 203 203
201 204 201 200 204

200 200 215 200 206
197 201 204 201 204

206 207 202 202 195
201 201 202 201 201

200

197

195

204

215

207

4

10

12

202.20

202.80

201.80

1.56

22.56

9.36

pixel 15
s=325594

x y 986 317

None

AlK

Fe55+Co60

198 199 200 199 205
201 199 203 200 201

201 200 202 201 199
201 201 197 199 204

199 200 205 200 196
202 201 198 200 200

198

197

196

205

204

205

7

7

9

200.50

200.50

200.10

4.05

3.25

5.09

TABLE 7-2. The Characteristics of “Eventless” Pixel

Pixel Id
X-Ray 
Source Bias Levels

Min 
Bias 
Level

Max 
Bias 
Level

Bias
Level
Range

Bias 
Level
Mean

Bias 
Level

Variance
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It is clear from Table 7-2 that pixels 5, 6, 8, 10, 16, 17 and 18 possess a higher variance than the
others. The sets of pixel values that produce these large variances values possess one or more bias
values that are considerable higher than the remainder. For example, pixel 8 has a variance of
563.01 and two high bias level values: 259 and 257. The 259 value came from the raw data values:
776, 199, 204, 203, 194, 198, 191, 200, 221, and 207, whereas the 257 value was calculated from
the raw values: 195, 201, 202, 197, 209, 180, 214, 191, 217, and 759. Both sets have one or two
values higher than 200 and indicate the presence of events. The pixels with the high variances were
considered ill-fitted to the purpose of comparing algorithms and were eliminated.

The pixels chosen had a range of less than 15 between maximum and minimum, and a variance of
less than 25. Two set of five pixels were chosen, the first containing pixels 0–4, the second of pixels
11–15, and the two-way ANOVA model was applied to both sets. The ANOVA two-way
classification for verifying the properties of these two sample groups is shown in Table 7-3.

pixel 16
s=325840

x y 208 318

None

AlK

Fe55+Co60

205 204 197 199 196
199 204 199 200 197

200 203 201 196 201
199 199 207 197 201

194 279 205 200 197
202 199 199 200 197

196

196

194

205

207

279

9

11

85

200.00

200.40

207.20

9.40

8.64

580.76

pixel 17
s=325236

x y 628 317

None

AlK

Fe55+Co60

203 200 204 200 196
199 200 201 201 204

203 200 204 203 196
199 200 199 203 200

248 200 205 196 199
197 200 203 200 201

196

196

196

204

204

248

8

8

52

200.80

200.70

204.90

5.36

5.61

212.49

pixel 18
s=325488

x y 880 317

None

AlK

Fe55+Co60

198 196 202 198 204
203 199 201 200 198

198 199 200 200 251
213 195 197 198 204

202 200 198 199 200
202 203 200 201 201

196

195

198

204

251

203

8

56

5

199.90

205.50

200.60

5.89

252.65

2.04

pixel 19
s=325634
x y 2 318

None

AlK

Fe55+Co60

203 205 199 200 198
198 199 203 197 196

201 201 201 196 203
197 201 198 194 194

196 203 204 202 201
198 195 203 199 199

196

194

195

205

203

204

9

9

9

199.80

198.60

200.0

7.76

9.44

8.60

TABLE 7-2. The Characteristics of “Eventless” Pixel

Pixel Id
X-Ray 
Source Bias Levels

Min 
Bias 
Level

Max 
Bias 
Level

Bias
Level
Range

Bias 
Level
Mean

Bias 
Level

Variance
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The two factors in this analysis are (1) the X-ray sources to which the CCD were exposed during the
data collection (even if no event was collected by these pixels) and (2) the pixel number
corresponding to the chosen pixel. The bias calculation used the simple MEAN-I1L1 algorithm and
was then repeated for MEAN-I2L2, MEAN-I2L1, and MEDIAN to provide a better indication of
the algorithm sensitivity to data variations and to improve the subsequent comparisons with
simulated data.

The results of the two-way ANOVA analysis are reported in Table 7-4, including the tabulated  at
a significance level of 0.05. The relative size of F versus Fα determines whether the variance of the
two factors and their interaction has a larger variation than the residual error at this level of
significance. When F < Fα, the null hypothesis is assumed. Similar results were found for all four
algorithms and both data sets are summarized in Table 7-4. Since there were insufficient data frames
available to generate simulated data for a single pixel, it was decided to combine the data from
different pixels even if their values are not statistically equal.  

To overcome this problem, it was decided to compare the values obtained by the eventless and
simulated models and to identify their variations; also to repeat the analysis twice—one for each
data set—and then compare the results. This comparison would hopefully confirm the common
behavior. 

TABLE 7-3. Two-way ANOVA Classification to Analyze Eventless Data

Pixels

X-Ray Source

none AlK Fe55+Co60

pixel 1 10 replications 10 replications 10 replications

pixel 2 10 replications 10 replications 10 replications

... ... ... ...

pixel 10 10 replications 10 replications 10 replications

TABLE 7-4. Eventless Model Summary Results

Factors

Null Hypothesis

Valid Invalid

Pixel Number Pixels are different

X-Ray Source Data from same pixel and different X-Ray sources are equal

Interaction There is no interaction between pixels and X-Ray sources

Fα
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7.2 Simulated Data

The simulated data were generated by adding “events” of known energy to the eventless data.
Multiple events in the same data set were simulated by adding multiple instances of the same ADU
value to different pixels belonging to the same data set. The energy factor was assigned to the pixel
number and event number factor to the X-Ray source. The “events” added to the eventless sample
have the following specifications:

• Energy: five levels of 20, 40, 60, 80, and 100 in ADU units, corresponding to energies of
approximately 72, 144, 216, 288, and 316 eV.

• Event number: three levels corresponding to one, two, and three events in the same set used
for calculating the bias level.

For each energy and each event factor, ten replications of the same condition were generated. The
experiment configuration is represented in Table 7-5.

This configuration is equivalent to that of Table 7-3 used for characterizing the eventless data, but in
Table 7-5 the pixel id is replaced by the energy and the X-Ray source by the number of simulated
events. 

The bias level was calculated for each pixel in the same way as for the eventless model. Four
algorithms were used: MEAN–I1L1, MEAN–I2L2, and MEAN–I2L1, and MEDIAN. The two-way
ANOVA model was applied to both data sets, and the results are represented in Table 7-6 along with
the tabulated Fα at significance level of 0.05.

The conclusions to be drawn from Table 7-6 are summarized in Table 7-7, which indicates that the
bias levels are dependent on the event energy at the 0.05 significance level, whereas the dependency
on event number depends on the choice of algorithm.

The interaction between the two factors (energy and number of events) is statistically significant for
two of the algorithms (MEAN-I1L1 and MEAN-I2L2) and not for the others (MEAN-I2L1 and
MEDIAN). It appears that the interaction between the two factors is significant when the variations
generated by the factors are themselves significant.

TABLE 7-5. Two-way ANOVA Classification To Analyze Simulated Data

Approximate 
Energies

Events

One Event Two Events Three Events

72 eV 10 replications 10 replications 10 replications

144 eV 10 replications 10 replications 10 replications

216 eV 10 replications 10 replications 10 replications

288 eV 10 replications 10 replications 10 replications

316 Ev 10 replications 10 replications 10 replications
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TABLE 7-6. Simulated Model ANOVA Two-Way Model Results

Data 
Set ID Algorithm Factor

Degrees of 
Freedom

 Mean 
Square

Calculated 
F

Tabulated
 (p=.05)

1 MEAN I1L1 Energy 4 2779.547 507.9720 2.45

Event Number 2 918.360 167.833 3.07

Interaction 8 95.403 17.435 2.02

Residual Error 135 5.472

MEAN I2L2 Energy 4 1756.080 183.109 2.45

Event Number 2 1940.790 202.369 3.07

Interaction 8 239.605 24.984 2.02

Residual Error 135 9.590

MEAN I2L1 Energy 4 204.213 24.997 2.45

Event Number 2 1.27 0.155 3.07

Interaction 8 11.457 1.402 2.02

Residual Error 135 8.17

MEDIAN Energy 4 147.813 16.27 2.45

Event Number 2 26.823 2.952 3.07

Interaction 8 2.347 0.258 2.02

Residual Error 135 9.085

2 MEAN I1L1 Energy 4 2414.820 338.421 2.45

Event Number 2 889.803 124.700 3.07

Interaction 8 98.415 13.792 2.02

Residual Error 135 7.136

MEAN I2L2 Energy 4 1260.053 107.499 2.45

Event Number 2 1922.823 164.043 3.07

Interaction 8 246.972 21.070 2.02

Residual Error 135 11.721

MEAN I2L1 Energy 4 178.753 19.374 2.45

Event Number 2 29.830 3.233 3.07

Interaction 8 7.977 0.865 2.02

Residual Error 135 9.227

MEDIAN Energy 4 116.780 12.511 2.45

Event Number 2 111.323 11.927 3.07

Interaction 8 5.955 0.638 2.02

Residual Error 135 9.334

Fα
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The MEAN-I1L1 algorithm contains no pixel rejection criterion and the resulting bias levels always
respond to the presence of a simulated event. The results from this algorithm shown in Table 7-6
should be considered as a control case for rating the performance of the other algorithms.

Table 7-6 shows that the MEAN-I2L2 algorithm is sensitive to energy level, to event number, and to
the interaction between them. This can be explained as follows: the presence of events yields a
higher σ than their absence. Since the algorithm rejects pixels whose values deviate from the mean
by more than ±2σ, the presence of events increases the acceptance range, and therefore the number
of rejected events decreases.

The MEAN-I2L1 algorithm is seen to be sensitive to the energy level but less so to the number of
events, which can be explained as follows: as in the MEAN-I2L2 case, the presence of events
increases the acceptance range and decreases the rejection level, but the acceptance range is smaller
and the number of rejected events increases. The weaker dependence on the number of events may
be due to rejection level limits—if the data used for the bias level calculation have values in the
neighborhood of the rejection level, they will sometimes be rejected, sometimes not, and the result
will become sensitive to the presence of additional noise. 

TABLE 7-7. Simulation Model - ANOVA Two-Way Model Results

Algorithm Factor

Null Hypothesis

Valid Invalid

Mean I1L1 Energy Bias Calculation depends on energy

Events Bias Calculation depends on event num-
ber

Interaction Bias Calculation depends on Energy/
Event interaction

Mean I2L2 Energy Bias Calculation depends on energy

Events Bias Calculation depends on event num-
ber

Interaction Bias Calculation depends on Energy/
Event interaction

Mean I2L1 Energy Bias Calculation depends on energy

Events Data set 1: Bias Calculation is 
independent on event number

Data set 2: Bias Calculation depends on 
event number

Interaction Bias Calculation is independent 
on Energy/Event interaction

Median Energy Bias Calculation depends on energy

Events Data set 1: Bias Calculation is 
independent on event number

Data set 2: Bias Calculation depends on 
event number

Interaction Bias Calculation is independent 
on Energy/Event interaction
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The MEDIAN algorithm is also sensitive to the energy level but less so to the number of events.
This algorithm sorts the data values, so when the number of higher value pixels increases, so does
the bias level. The bias level values depend upon the values of the eventless data—if several sets
contain predominately low pixel values, the MEDIAN algorithm will generate a low bias value and
will be not affected by the few higher pixel values. Conversely, if several sets contain mostly higher
pixel values, the MEDIAN algorithm may pick one of these higher values.

The comparison between the two pixel data sets indicates that the residual errors are less for the first
set than for the second one. This variation might be responsible of the rejection level at the border
condition because the data used for the bias calculation might have more variations.

7.3 Comparison Between Eventless and Simulated Models

Since the energy factor used data from different pixels that were not statistically equivalent, it was
necessary to compare the F values calculated from the two models, eventless and simulated, as
shown in Table 7-8. This indicates that each MEAN algorithm shows an increase in F

corresponding to the energy factor and therefore that each algorithm depends on the event energy.
The F values for the number of events also show an increase and indicate a dependency on that
factor.

The comparison of results from eventless and simulated data for the MEDIAN algorithm shows an
increase in F corresponding to the number of events, but none for event energy. Presumably the bias
values increased with the number of events because the number of low level data values decreased.
This algorithm is less sensitive to event energy because it sorts the pixel values and the resulting
bias value only depends on the number of pixels containing events and not on the precise value of
the event pixel itself.

TABLE 7-8. Eventless and Simulated Models Summary Comparison

Algorithm Factor

F Values 

Eventless Model Simulated Model

Data Set 1 Data Set 2 Data Set 1 Data Set 2

MEAN I1L1 Pixel Number/Energy 18.193 12.728 507.972 338.421

X-Ray Source/Event Number 0.066  0.253 167.833 124.700

MEAN I2L2 Pixel Number/Energy 19.135 18.454 183.109 107.409

X-Ray Source/Event Number 0.019 0.026 202.369 164.043

MEAN I2L1 Pixel Number/Energy 18.654 17.752 24.997 19.374

X-Ray Source/Event Number 0.003  0.053 0.155 3.233

MEDIAN Pixel Number/Energy 16.723 17.515 16.27 12.511

X-Ray Source/Event Number 0.119 0.276 2.952 11.927
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To better characterize the algorithms, the factor mean effects and the confidence intervals between
mean differences were calculated for both classes of model. The factor mean effect represents the
difference between the factor mean and the experimental grand mean, while the confidence interval
is the minimum statistically-significant difference between a pair of factor mean effects. The
confidence interval is defined by , where

• t is the t-Student value, tabulated in Applicable Document 8, for the factor’s degrees of free-
dom;

• s is an estimate of the sigma of the factor mean difference. In this case, we use the square
root of the residual error, which is a good estimator once the factor dependencies have been
eliminated;

• n is the number of replications.

Two factors were considered— X-Ray source and pixel number for the eventless model, and energy
and event number for the simulated model. Their mean effect values for a particular set of test pixels
are shown in two figures, Figure 7-1 for the eventless model and Figure 7-2 for the simulated-event
model. Each graph shows the factor mean effects calculated for four algorithms operating on the
same data set.

FIGURE 7-1.  EventLess Model: Bias Level Residual for Two-Way ANOVA

Figure 7-1 indicates that the differences between mean effects for the eventless model are within the
confidence interval for the X-Ray factor but not for the pixel factor—the pixel interval confidence is
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approximately ±1.9 and some differences are greater than this value. This behavior is observed in
each algorithm. Figure 7-2 shows that the differences between energy mean effects for the
simulated event model are not within the confidence interval for all algorithms; also that the
differences between event number mean effects are outside the confidence interval for some
algorithms and dependent on internal pixel noise for others.

FIGURE 7-2.  Simulated Model: Bias Level Residual for Two-Way ANOVA

The energy dependence also differs according to the chosen algorithm. This is shown more clearly
in Figure 7-3 and Figure 7-4 which represent the expected bias values calculated from the ANOVA
model for the same data set.The figures confirm the previous result, and provide more insight into
the variation of bias level as a function of the separate factors.
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FIGURE 7-3.  EventLess Model: Expected Bias Level Values for Pixel, X-Ray Sources

Figure 7-3 indicates that the variations of the expected bias levels with respect to the choice of X-
Ray source are within the level of confidence for each algorithm, whereas the variations with
respect to the pixel number depend upon the pixel. The graphs do not show any variation of expect
value with respect to the choice of algorithm.

Figure 7-4 shows that the variations of the expected values with respect to the number of events and
energy depend upon the choice of algorithm. The expected data from the MEAN-I1L1 and
MEAN-I2L2 algorithms show a dependency on event energy and on number of events that is
considerably larger than the confidence level, whereas the dependency of the MEAN-I2L1 and
MEDIAN algorithms is at the border line of the confidence level.

The results from the eventless and simulated event models are summarized in Table 7-9. The study
clearly indicates that both the MEAN-I2L1 and MEDIAN algorithms provide “robust” values of
pixel bias in the presence of energetic and soft events, with a slight preference in favor of
MEAN-I2L1.
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FIGURE 7-4.  Simulated Model: Expected Bias Level Values for Energy, Event Number

TABLE 7-9. Eventless and Simulated Model Summary Results

Algorithm Factor 

Dependency

Eventless Model Simulated Model

MEAN I1L1 Pixel Number/Energy YES YES - heavy dependency

X-Ray Source/Event Number NO YES - heavy dependency

MEAN I2L2 Pixel Number/Energy YES YES - heavy dependency

X-Ray Source/Event Number NO YES - heavy dependency

MEAN I2L1 Pixel Number/Energy YES YES - slight dependency

X-Ray Source/Event Number NO Depend on the internal noise

MEDIAN Pixel Number/Energy YES YES - slight dependency

X-Ray Source/Event Number NO Depend on the internal noise
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8.0 Conclusions

While the factor analysis of Section 6.0 proves to be most effective in identifying anomalous pixels,
neither it nor Student’s test described in Section 7.0 is capable of pointing to a particular bias
algorithm as the best under all possible circumstances of CCD type, illumination source, or history
of irradiation. Of those tested, both the MEDIAN and the MEAN–I2L2 (iterated mean with 2–σ
outlier rejection) proved to be highly effective in circumstances under which less than 30% of the
samples of a given pixel contain events. For a set of 10 bias exposures from a CCD containing 106

pixels, experiencing 10,000 “events” per exposure, this will affect less than one pixel.

We recommend that both MEDIAN and MEAN–I2L2 algorithms are implemented in the ACIS
FEPs, along with a version of the algorithm described in Section 3.1. The former require at least
100 exposures, the latter at least 40, but none is capable of processing each frame within a nominal
2.6 second readout time. From a preliminary analysis of prototype computer code, the additional
calibration time will amount to approximately 120 seconds for MEDIAN and MEAN–I2L2 and 60
seconds for the algorithm involving no additional storage.
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Appendix A.  Statistical Techniques

A.1 Analysis Of Variance

The analysis of variance (commonly referred to, both in the literature and within this document, by
the acronym ANOVA) investigates simultaneously data sets that were obtained from several
observations. Is is assumed that some of the sets (termed “replications”) were gathered under
identical conditions, whereas others were gathered under changing conditions that involve one or
more “factors”. Data sets collected under a change of factors are said to belong to a “level”.

These techniques are applied to random observations and calculate additive means and variances.
More precisely, they partition the total sum of squares of deviations from the overall mean into two
or more component sums of squares, each of which is either associated with a particular factor or
with the experimental measurement error. They subdivide the total number of degrees of freedom
between the different sums of squares, and compare the effect on the mean of the factors and their
levels, corresponding to the component sums of squares, by using a set of statistical tests (F tests)
that indicate whether the observed differences in mean factor effects are real or random. 

Compared with less sophisticated statistical techniques, these methods yield conclusions of greater
generality because (1) the same hypothesis can be applied simultaneously to several factors and
several levels of the same factor, and (2) the interactions between factors can be identified at the
same time. 

In the present case, these techniques can test the dependency of the choice of bias algorithm on the
energy and number of CCD events. Several models of analysis of variance are available. In this
document we concentrate on One-Way and Two-Way classifications.

A.1.1 One-Way Classification or One Factor Experiment

In this model the data are classified according to one factor, termed a “treatment”, namely the
illumination source (or lack thereof) to which the CCD was exposed while the data were being
collected.

In general, the ANOVA technique compares data from N different treatments, where each treatment
has been replicated M times. It separates and estimates the variances among and within treatments,
and determines whether the values are dependent on the treatments. In our case, it can be used to
determine whether the bias level values calculated by a single algorithm from data collected in
presence of different X-ray sources are dependent on those sources.

The naming conventions used by this model are illustrated in Table A-1,where N is the total number 
of treatments, M the total number of replications of the same treatment, n is the generic treatment 
and m is the generic replication, and xn,m are the bias values corresponding to treatment n and 
replication m.
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We assume (1) that the replications xn,m on the same treatment represent random samples from a
normal population, and (2) that their mean values and variances are additive. A mathematical model
that might describe such a set of data is:

(A.1)

where

• µ = grand mean

• αn = deviation of the n-th treatment mean from the grand mean

• en,m = residual error of the m-th data receiving treatment n from the mean treatment m-th. 

The en,m have independent normal distribution with mean zero, and the  are not independent but
satisfy the condition . Associated with such a model is the decomposition of the
observations:

(A.2)

where:

•  represents the general data from the observations.

•  indicates the grand mean and is identified by µ in the
mathematical model.

•  indicates the n-th treatment mean (mean of the n-th row).

•  is the deviation of n-th treatment mean from the grand mean and is represented
in the mathematical model by .

•  is called the residual error because it represents what it is left over after the
grand mean and treatment differences have been allowed for.

This test model has two independent sources of variations operating at the same time which are:

TABLE A-1. ANOVA One-Way Data Configuration

Treatments
Replications 

1 m M

1 x1,1 x1,m x1,M

2 x2,1 x2,m x2,M

n xn,1 xn,m xn,M

N xN,1 xN,m xN,M

xn m, µ α n e+ n m,+= 1 n N≤ ≤ 1 m M≤ ≤

αn

αn
n 1 N,=
∑ 0=

xn m, X Xn X–( ) xn m, Xn–( )+ +=

xn m,

X
1

N M×
---------------- xn m,

n 1 N m, 1 M,= =
∑×=

Xn
1

M
------- xn m,

m 1 M,=
∑×=

αn Xn X–=

αn

en m, xn m, Xn–=
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• analysis error, corresponding to the variance among treatments.

• sampling error, corresponding to the variance within treatments or the residuals.

The resulting variance is the sum of the separate variances and is expressed by the equation:

(A.3)

where:

(A.4)

(A.5)

While V represents the total variance, the first term on the right hand side of equation A.3 indicates
the variance among treatments, and the second the variation within treatments or the residual error.
The algebraically equivalent form for numerical work is represented by Table A-2.

To test the “null” hypothesis—that data values do not depend on treatments—it is necessary to
evaluate F, the ratio between the mean square among treatments and the mean square within
treatments, and compare it with the tabulated Fα(r,s) function (Applicable Document 8), where r is
the numerator degrees of freedom and s is the denominator degrees of freedom and α indicates the

TABLE A-2. Analysis of Variance for One Factor Experiments with Replications

Source of 
Variation Variation Mean Square

Mean 
Square
Degrees 

of 
Freedom F

F
Degrees 

of 
freedom

Among Treatments Vn N - 1

numerator 
N-1

denominator 

Within treatments Ve 

Total variance V 
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∑
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significance level at which to verify the hypothesis. We accept the null hypothesis at a significance
level of α if the calculated F does not exceed the tabulated Fα, whereas, if the null hypothesis is
false, the F test will fail and the treatments are shown to be statistically distinct.

For example, let the model represent the bias levels calculated by an algorithm from data collected
in the presence of various sets of X-ray sources. If the null hypothesis is true, the choice of source
will not affect the bias calculated by that algorithm, whereas, if the F test fails, the bias level
calculation is affected by the presence of the X-rays.

The  in equation A.1 are indices of the treatment variations with respect to the grand mean, µ,
and their representations are a useful indicator of the corresponding treatment n-th. The expected
values from the grand mean can be calculated by the equation , which represents the
mean of each treatment, and these values can be used to evaluate treatment differences.

A.1.2 Two-Way Classification or Two Factor Experiments

In this model the data are classified in two dimensions, described by two factors which vary
simultaneously. In general the model compares data sets that have been influenced by two different
factors, each of which possesses several levels, and the measurements have been replicated M times.
The model separates and estimates the variances of the two factors, the interaction between them,
and the residual measurement error. It determines whether the data are dependent on the factor
levels or on their interactions.

In the present example, the model can determine whether the bias values calculated by a particular
algorithm from data collected in the presence of events depends on the number of events in the
original data and their energy. The same bias calculation is repeated several times with different
data corresponding to the same factor levels.

The naming conventions for this model are illustrated in Table A-3. In the literature, the two factors
are generally called Rows and Columns because they are estimated by sums on rows and columns
of the table representing the data configuration. They have nothing whatever to do with rows and
columns of an X-ray CCD. In this example, N is the number of row levels, P the number of column

TABLE A-3. ANOVA Two-Way Data Configuration

Factor 1 (Rows) 

Levels

Factor 2 (Columns)

Level 1 Level P

Replication 1 Replication M Replication 1 Replication M

1 x1,1,1 x1,1,M x1,P,1 x1,P,M

2 x2,1,1 x2,1,M x2,P,1 x2,P,M

. . ... ... ...

N xN,1,1 xN,1,M xN,P,1 xN,P,M

αn

xn
ˆ µ αn+=
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levels, and M the number of replications. We assume that the replications xn,p,m on the same row
and column levels represent random samples from a normal population, and possess additive means
and variances. The mathematical model that might describe such a set of data is:

, , , and (A.6)

and where:

•  = grand mean

•  = deviation of the row mean effect at level n from the grand mean

•  = deviation of the column mean effect at level p from the grand mean

•  = interaction between row mean at level n and column mean at level p (a joint effect,
beyond the total of their individual effects)

• en,p,m = residual error of the m-th data receiving row 1 at level n and column 2 at level p. 

The ei,j,m have an independent normal distribution with mean zero, and the  and  are not
independent but satisfy the conditions . The dependency of the interaction is
expressed by the condition: . Associated with such a model is a decomposition of the
observations:

(A.7)

where:

• xn,p,m indicates the general data from the observations

•  indicates the grand mean.

•  indicates the mean of the n-th row.

•  indicates the mean of the p-th column.

•  is the deviation of n-th row mean from the grand mean and is represented in the
mathematical model by .

•  is the deviation of the p-th column mean from the grand mean and is represented in
the mathematical model by 

•  indicates the interaction between the row at level n and the col-
umn at level p and is represented in the mathematical model by 

•  is called the error residual because it represents what it is left over after
the grand mean and factor differences and their interactions have been allowed for.
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This model has two or more independent sources of simultaneous variation, and the resulting
variances are the sum of the separate variances. These sources of errors are: 

• Vc — error among rows (replications of rows)

• Vr — error among columns, (replications of columns) 

• Vi — error due to the interactions between rows and columns

• Ve — sampling error (replications of the same row and column levels)

These error sources operate independently, and the total variation is obtained by summing them:

(A.8)

where: 

(A.9)

(A.10)

(A.11)

(A.12)

The left hand side of equation A.8 indicate the total variance V, the first term on the right the
variance between rows Vr, the second term the variance between columns Vc, the third the variance
due to the interactions between columns and rows Vi, and the fourth the residual variation Ve.

An equivalent form of this model is represented in Table A-4. In this case, the “null” hypothesis, i.e.
that the results are statistically independent of one or more factors, can be tested by calculating the
three F functions listed in the 5th column, and comparing their values with tabulated  (see
Applicable Document 8), where r are the degrees of freedom of the numerator and s the degrees of
freedom of the denominator.

, , and  in equation A.6 are indices of the variation among the two factors, and their
interaction at the n-th and p-th levels with respect to the grand mean, µ. These parameter
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representations are a useful indicator of the corresponding factors and interactions. Their values are
calculated by partitioning equation A.8. The expected values calculated from the grand mean and

, , and  can be calculated by the equation , which represent the mean
with respect to rows, columns, and their interactions at level n and p. The values calculated by this
equation can be used to evaluate differences between data corresponding to different factor levels.

A.2 Student’s T Test

This test allows us to estimate if there are significant differences between treatments, to calculate
confidence intervals for bias level differences, and to estimate the minimum significant differences
between bias levels. It permits us to establish a metric with which to compare one bias algorithm
against another. The test is valid for any sample size and is a good approximation, especially for
large samples, even if the population is significantly non-normal. 

In general, Student’s “T Score” is calculated by the equations:

(A.13)

TABLE A-4. Analysis of Variance for Two Factor Experiments with Replications
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where:

• y1 and y2 are two values corresponding to the factor 1 and factor 2 at a specified level

• n1 and n2 are the number of replications corresponding to the factor 1 and factor 2

• σ is the sigma corresponding to the experiment

• s1 and s2 are the estimated sigma for the data corresponding to the factor 1 and factor 2

The test rejects the hypothesis that the two values belong to the same population with a significance
level α if their “T Score” value exceeds the value of  (tabulated in Applicable Document 8) with
degree of freedom (n1+ n2 – 2). For multiple comparisons, the confidence interval κ for difference
means of the i-th and j-th treatments, calculated by the analysis of variance, is estimated as follows:

(A.14)

where:

•  indicates the observed difference between the p-th and q-th treatments.

•  indicates the tabulated value of t for ν degrees of freedom within treatments.

•  is the estimated variance of treatment differences when σ is estimated by the
mean square difference within treatments of s2.

The minimum significative difference between treatments is estimated by comparing the mean
calculation with respect to a standard treatment,3 and is defined by:

(A.15)

3.  Special data sets used as benchmarks to compare against specific treatments.
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