

M

ASSACHUSETTS

 I

NSTITUTE

OF

 T

ECHNOLOGY

C

ENTER

FOR

 S

PACE

 R

ESEARCH

N

AME

D

ATE

 Checked:

 Approved:

 Released:

 Scale: Sheet of

 Size Code Identification No. Drawing No. Rev.

R

EVISIONS

Rev ECO No. Description Checked Approved Date

1.0 N/A Initial Release PGF RFG 06/26/96

2.0 N/A Update for Flight S/W Beta release PGF RFG 01/07/97

3.0 N/A Update for Flight S/W Release 1.0 PGF RFG 02/07/97

3.1 N/A Update for Flight S/W Release 1.5 PGF RFG 06/20/97

01/13/97

ACIS Software Test Tools

T 80230 36-55001 3.1

NONE i 147

 Drawn:

P. Ford

t

M

ASSACHUSETTS

 I

NSTITUTE

OF

T

ECHNOLOGY

C

ENTER

FOR

 S

PACE

 R

ESEARCH

C

AMBRIDGE

, M

ASSACHUSETTS

 02139ACIS

MIT CSR

D
ra

fACIS Test Tools

MIT 36-55001 Rev. 3.1

June 20, 1997

Revision Log

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CENTER FOR SPACE RESEARCH
CAMBRIDGE, MASSACHUSETTS 02139

REVISION
LOG

TITLE:
ACIS Test Tools

DOC. NO.
36-55001 Rev. 3.1

Revision Date
mm/dd/yy

ECO
No.

Section(s)
Affected Reason Approval

pre-release
0.6

03/13/96 — All Initial Release —

pre-release
0.7

05/23/96 —

§2.2 Rename pseudo-packets

—

Tables
3 & 4

Rename fields and add lengths and offsets

Table 5 Rename packet classes

§3.1
Add description of processScience & Table
6

Table 7 Add dump, reset, and stop commands

§3.3
Update buildCmds examples to reflect
IP&CL changes

§4.3 Reword parts of genPixelImages description

§7.6 Update frame-buffer function description

1.0 06/26/96 — Cover
Update cover sheet to show part number and
revision level

RFG
06/29/96

2.0 10/03/96 —

Cover Added revision log and TBD list

RFG

§2.1
Added to the description of filterServer, fil-
terClient, and shim

§2.6 Added description of hardware commands

§3.1
Reorganized buildCmds description;
reworded Tables 7 and 8. Added Table 9.

§3.2 Added lcmd description

§3.3 Moved ltlm description from §5.

§3.4
Reworded processScience description and
updated Table 10

§3.6 Added runacis description

§5 Removed ltlm and tlmsim descriptions

§6 Rewritten from ECO 567

§9 Rewritten from the contents of ~acis/tools

Appendix A Updated
ii of iii • ACIS Test Tools June 20, 1997 12:43 pm

3.0 11/22/96 —

Table 5 Changed engineering pseudopacket format

RFG

Table 6 Added to describe irig-b format

§3.4 Replaced processScience with psci

§5 New section describing psci

§10 Added numerous new manual entries.

3.1 06/20/97 — §5 Describe the -B, -T, and -s options.

Revision Date
mm/dd/yy

ECO
No.

Section(s)
Affected Reason Approval

Items to be Determined

Definition of CTUE no-op channel values ...5
Location of next-in-line data within minor frames ...7
IP&CL mnemonic for select eeprom command ...11
GUI for monitorEngineering ...17
Format of processEngineeringData output ...17
Location of next-in-line data within minor frames ...116
Definition of CTUE no-op channel values ...139
ACIS Test Tools Rev. 3.1 • viJune 20, 1997 12:43 pm

Items to be Determined
vii • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

Table of Contents

Table of Contents

1.0 Introduction 1

2.0 GSE Transport Tools 3
2.1 sendCmds 3
2.2 cclient 3
2.3 cserver 3
2.4 shim 3
2.5 getPackets 4
2.6 filterServer 4
2.7 filterClient 5
2.8 Transport Tool Interfaces 5

2.8.1 Stdin to sendCmds 5
2.8.2 Stdout from filterClient 6
2.8.3 filterClient arguments 8

3.0 GSE Test Tools 9
3.1 buildCmds 9

3.1.1 buildCmds Examples 13
3.2 lcmd 15
3.3 ltlm 15
3.4 psci 16
3.5 analyzeData 17
3.6 runacis 17
3.7 monitorDeaHousekeeping 17
3.8 monitorEngineeringData 17
3.9 monitorScience 17
3.10 processEngineeringData 17

4.0 Image Tools 18
4.1 getImages 18
4.2 putImages 18
4.3 genPixelImages 18
4.4 loadFitsImage 18
4.5 genObjectImage 18
4.6 generateExpectedData 19
4.7 Image Tool Interfaces 19

4.7.1 stdin to putImages 19
4.7.2 Output from getImages 19

5.0 The psci Command 21
5.1 Packet Field Verification 21
ACIS Test Tools Rev. 3.1 • viiiJune 20, 1997 12:43 pm

Table of Contents

5.2 Packet Logging 23
5.3 Monitor Output 24
5.4 Science Event Modes 24
5.5 Event Frame Timestamp Files 27
5.6 Histogram Files 28
5.7 Raw Mode 28
5.8 Bias Files 29
5.9 Memory Readout 29
5.10 Huffman Tables 30
5.11 Pseudopackets 31
5.12 Architecture 31
5.13 Tests applied to packet fields 35

6.0 Simulated ACIS Telemetry 42
6.1 fepCtlTest—simulate the ACIS front-end processor 42
6.2 dumpring—display ring-buffer records 44
6.3 tlmsim—create simulated telemetry packets 46

6.3.1 Bias Map 46
6.3.2 Timing 46
6.3.3 Miscellaneous 47

6.4 Examples 48

7.0 ACIS Timing Algorithms 50
7.1 The Timeline of Single Exposure Time Modes 50
7.2 The Timeline of Alternating Exposure Time Modes 52

8.0 Frame Buffer Specification 53
8.1 Significant Changes in this Version 53
8.2 Terms 53
8.3 Initial Requirements/Specifications 53
8.4 Basic Design Concept 54
8.5 Operating Modes 54

8.5.1 Ramp Mode 54
8.5.2 Normal Mode 55

8.6 Directive Functions 55
8.6.1 “EXXX” Last Pixel Flag (LPF) 55
8.6.2 “Annn” Repeat Segment “nnn” times (RS)

“Xnnn” Segment Length argument (SL) 55
8.6.3 “7nnn” Repeat Frame “nnn” times (RF) 55
8.6.4 “6000” Go (TBR) 55

8.7 Current Status 56
8.8 Proposed Additional Features 56

8.8.1 Front Panel Status LEDs 56
8.8.2 Error LED(s) 56

9.0 ACIS Data Analysis and Database 57
ix • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

Table of Contents

9.1 Data Format 57
9.2 Raw Image Format 57

9.2.1 FSF Format 61
9.2.2 ARV Format 62
9.2.3 IDL Format 62

9.3 Analysis Procedure 62
9.3.1 ACISANAL1 63
9.3.2 ACISANAL2 64
9.3.3 Data Products 65

9.4 Utility Software 68
9.5 Database 68

10.0 UNIX Commands 70
10.1 ACISshell 70
10.2 acisBepUnix 71
10.3 acisFepUnix 72
10.4 acispkts 73
10.5 bcmd 75
10.6 buildCmds 79
10.7 cclient 94
10.8 cserver 95
10.9 diff6 96
10.10 dumpring 98
10.11 fepCtlTest 99
10.12 fepImage2 101
10.13 filterClient 102
10.14 filterServer 103
10.15 genObjectImage 104
10.16 genPixelImages 110
10.17 getPackets 115
10.18 lcmd 118
10.19 lerv 120
10.20 lhuff 121
10.21 loadFitsImage 122
10.22 logGet 124
10.23 ltlm 125
10.24 monitorScience 127
10.25 processDEAhkp 129
10.26 psci 130
10.27 runacis 135
10.28 sciglue 138
10.29 sendCmds 139
10.30 shim 141
ACIS Test Tools Rev. 3.1 • xJune 20, 1997 12:43 pm

Table of Contents

10.31 tlmsim 143
10.32 writeCCB 146

Appendix A Test Tool Status 148
xi • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

List of Figures

June 20, 1997 12:43 pm ACIS Test Tools • xii

List of Figures

FIGURE 1. Test Tool Overview . 1

FIGURE 2. ACIS Test Tools . 2

FIGURE 3.

psci

 build architecture . 31

FIGURE 4. Relative coordinate system of a subframe array
with respect to the full frame array. . 58

FIGURE 5. Sequence of pixel values from 3x3 pixel island
stored in the event record of an FSF. . 61

FIGURE 6. Sequence of pixel values from 3x3 pixel island
stored in ARV format.. 62

FIGURE 7. A sample light curve . 66

FIGURE 8. A sample PH histogram/spectrum. 66

FIGURE 9. A sample primary calibration file . 67

FIGURE 10. A sample readout noise file. 67

List of Tables

List of Tables

TABLE 1. Command Type and Channel Definition . 5

TABLE 2. sendCmds Command Formats . 5

TABLE 3. Header Format and Content . 6

TABLE 4. Science Frame Pseudo-Packet Format and Content 7

TABLE 5. Engineering Pseudo-Packet Format and Content. 7

TABLE 6. IRIG-B Field Format and Contents . 8

TABLE 7. filterClient packet classes. 8

TABLE 8. Serial Commands to BEP Software . 9

TABLE 9. Serial commands to BEP Hardware. 11

TABLE 10. Pulse Commands to PSMC Hardware . 11

TABLE 11. Output files and streams generated by psci . 22

TABLE 12. Example of formatted packet logs . 23

TABLE 13. Packet monitor stream written to stdout . 25

TABLE 14. Extended Vanderspek (ERV) record format. 26

TABLE 15. A sample ERV event file in ASCII format . 26

TABLE 16. Contents of an event frame timestamp file. 27

TABLE 17. Contents of an ASCII histogram file . 28

TABLE 18. Examples of FITS file headers. 29

TABLE 19. ASCII dump of a Huffman block containing multiple tables 30

TABLE 20. Sample enum.aux file . 32

TABLE 21. An example of tlm.aux. 33

TABLE 22. An example of cmd.aux . 34

TABLE 23. Tests applied to individual ACIS packet fields. 36

TABLE 24. fepCtlTest Command Syntax . 43

TABLE 25. Summary of products from ACISANAL2 . 65

TABLE 26. Header Format and Content . 115

TABLE 27. Science Frame Pseudo-Packet Format and Content 116

TABLE 28. Engineering Pseudo-Packet Format and Content. 116

TABLE 29. IRIG-B Field Format and Contents . 117

TABLE 30. Command Type and Channel Definition . 139

TABLE 31. sendCmds Command Formats . 139
xiii • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

List of Tables

TABLE 32. CTUE command . 146

TABLE 33. CTUE command block . 146
ACIS Test Tools Rev. 3.1 • xivJune 20, 1997 12:43 pm

List of Tables
xv • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

Introduction

1.0 Introduction

This is a description of the software tools being developed to test ACIS flight software, to support
ACIS EGSE, and to perform end-to-end tests of the instrument. It is a joint effort of the ACIS
flight software and GSE teams, and includes a detailed description of the command and image
definition languages and bit-level descriptions of the several interfaces between sub-components.

The tools are divided into three categories: “GSE Transport Tools” are responsible for sending
commands to the instrument and receiving telemetry in reply; “GSE Test Tools” generate the
commands from human-readable scripts, interpret the telemetry packets, and analyze their
contents; and “Image Tools” are responsible both for reading images from the analog units
(DEAs) and for creating and writing images to the digital units (FEPs). The general relationship
between these three tool groups is represented in Figure 1; the details are in Figure 2.

FIGURE 1. Test Tool Overview

The interface between the Image Tools and ACIS, the “Image Loader”, is described in Section 8.0
on page 53, and science data formats of use in analyzing the “GSE Test Tools” output are
described in Section 9.0. Some alternative image tools are described in Section 10.0. The current
status of tool development is shown in Appendix A.

GSE Transport GSE Test Tools

Image Tools
high speed tap

image loader pixels

commands

data

commands

packets

commands

data files

image generation commands

FITS files

ToolsA
C

S
I

ACIS Test Tools Rev. 3.1 • 1 of 148June 20, 1997 12:43 pm

June 20, 1997 12:43 pm2 of 148 • ACIS Test Tools Rev. 3.1

se
nd

C
m

ds

R
C

T
U

C
T

U
E

S H I M

ge
tP

ac
ke

ts
A

X
A

F

bi
na

ry
 c

om
m

an
d

st
re

am

fil
te

rS
er

ve
r

sc
ie

nc
e

pa
ck

et
s

data request

packets

bu
ild

C
m

ds

m
on

it
or

-

H
ou

se
ke

ep
in

g
D

E
A

-

m
on

it
or

-

Sc
ie

nc
e

an
al

yz
e-

D
at

a

m
on

it
or

-

E
ng

in
ee

ri
ng

-

D
at

a

da
ta

 fi
le

s
sc

ie
nc

e
pa

ck
et

s

D
E

A
 H

/K
 p

ac
ke

ts

pr
oc

es
s-

E
ng

in
ee

ri
ng

-

D
at

a

fil
te

rC
lie

nt
ge

tI
m

ag
es

pu
tI

m
ag

es

ge
nP

ix
el

Im
ag

es

ge
ne

ra
te

-

FE
P

DEA pixel output

FI
T

S16
 b

it
im

ag
e

pi
xe

ls

T
C

P
ne

tw
or

k
la

ye
r

data request

packets

te
le

m
et

ry
‘

fr
am

es

F
IG

U
R

E
 2

.

A
C

IS
 T

es
t T

oo
ls

L
R

C
T

U

in
pu

t

fo
rm

at
im

ag
e

fil
es

im
ag

e
de

fin
iti

on
s

IR
IG

-B

ho
us

ek
ee

pi
ng

 p
ac

ke
ts

sc
ie

nc
e

fr
am

e
ps

eu
do

-p
ac

ke
ts

ho
us

ek
ee

pi
ng

 p
ac

ke
ts

sc
ie

nc
e

fr
am

e
ps

eu
do

-p
ac

ke
ts

en
gi

ne
er

in
g

ps
eu

do
-p

ac
ke

ts

en
gi

ne
er

in
g

ps
eu

do
-p

ac
ke

ts

fil
te

rC
lie

nt

se
ri

al
in

te
rf

ac
e

C
T

U
E

et
he

rn
et

E
xp

ec
te

dD
at

a

T
ra

ns
po

rt
 T

oo
ls

T
es

t T
oo

ls
Im

ag
e

T
oo

ls

L
eg

en
d

ps
ci

cs
er

ve
r

cc
lie

nt

co
m

m
an

d
sc

ri
pt

s

tim
e

of
da

y

co
m

m
an

ds
ne

tw
or

k
la

ye
r

A C SI

GSE Transport Tools

2.0 GSE Transport Tools

These components occupy the top third of Figure 2, except that

buildCmds

 is a “GSE Test Tool”.
The ACIS instrument is represented by the box at the top left. It may communicate through as
many as 3 simultaneous interfaces, the

RCTU/CTUE

, representing the interface that will be used
at XRCF and closely parallels the AXAF spacecraft interface itself; the

LRCTU

 which is a
simplified replacement for the

RCTU/CTUE

 developed at MIT; the “High Speed Tap” which
samples the digital image pixels being output from one of the ACIS analog boards; and the
“Image Loader”, an MIT-developed hardware interface that mimics the analog boards and permits
test images to be sent directly to one or more FEP boards.

The software consists of the server-client pairs, their input and output interface, and their
protocols. There are five GSE Transport programs:

shim

,

sendCmds

,

getPackets

,

filterServer

 and

filterClient

. All are being developed by ACIS EGSE personnel, with assistance from the ACIS
Flight Software Team. The major external interfaces are between

buildCmds

 and

sendCmds

, and
between

getPackets

 and its various clients (via the

filterServer

/

filterClient

 combination). Both
interfaces may be described as a single stream of binary bytes, with no timing constraints.

2.1 sendCmds

sendCmds

 receives a binary command stream from

buildCmds

, containing

type

,

channel, data
triplets. It constructs 23-bit, formatted command strings, packages them into 24-bit strings to
simplify the output interface, and sends them to shim. This command is described in detail in
Section 10.29.

2.2 cclient

cclient makes a TCP connection to a socket previously created by the cserver program. Once the
connection has been established, cclient copies its standard input to the socket. When it
encounters an end-of-file condition on stdin, it closes the socket and exits. Its function is therefore
to isolate the commands generated by sendCmds and buildCmds from shim and ACIS itself—a
series of commands can be issued from separate UNIX processes, even from different host
computers, and cserver will merge them into a single unbroken command stream. This command
is described in detail in Section 10.7.

2.3 cserver

cserver creates a socket and listens for connections from cclient processes. When one is made, it
copies the contents of the socket to its standard output, stdout. On an end-of-socket or error
condition, cserver closes the connection and waits for another one. This command is described in
detail in Section 10.8.

2.4 shim

shim provides a consistent interface between ACIS and all user applications that generate
commands or receive telemetry. It can communicate with ACIS either through the LRCTU
ACIS Test Tools Rev. 3.1 • 3 of 148June 20, 1997 12:43 pm

GSE Transport Tools
(RCTU/CTUE emulator) or through the RCTU/CTUE itself. This command is described in detail
in Section 10.30

When sending commands to an LRCTU, shim drops all High Level Pulse commands because the
LRCTU does not support them. It passes all other Serial Digital Hardware and Software
commands to the LRCTU via a serial interface in the 24 bit format generated by sendCmds. When
receiving telemetry from an LRCTU via the same serial interface, shim formats the packets into
AXAF-I telemetry major frames, adding science frame headers and ACIS and IRIG-B timestamps
as appropriate.

When shim sends commands to an RCTU/CTUE, it includes High Level Pulse commands as well
as Serial Digital Hardware and Software commands. It extracts the 23-bit input command words
from the 24 bit sendCmds format and packs them into 48-bit Ground Command Format strings. It
then assembles these strings into command blocks, which it sends to the RCTU/CTUE via a TCP/
IP interface. It receives telemetry via the same interface and passes them to its client (getPackets)
unmodified.

2.5 getPackets

getPackets receives AXAF-I telemetry frames from shim. It extracts ACIS-related information
and passes it to its filterServer client. It must first identify the current telemetry format—either 1
or 2. In the former, ACIS science data is being generated at 512 bits/sec; in the latter at 24 Kbits/
sec. In both cases, getPackets assembles the serial telemetry from ACIS, locates the individual
packets by their synch words and lengths, and writes them to filterServer as separate logical
records.

getPackets also sends filterServer two types of “pseudo-packet”, i.e. records whose format
mimics genuine ACIS telemetry packets but whose “type” codes are distinguished from those
used by the instrument itself. One type of pseudo-packet contains data from science frame headers
and from ACIS timestamps. The other contains ACIS and other AXAF engineering data that was
found in the non-science areas of the telemetry frames. This command is described in detail in
Section 10.17.

2.6 filterServer

filterServer receives the stream of telemetry packets from stdin and listens on an INET socket for
network clients to request TCP connections. When this occurs, filterServer determines the data
types requested by the client, and then forks a copy of itself to write those packets to the client.
Clients connecting to filterServer send it a short message that indicates which of the 4 types of
telemetry they wish to receive. filterServer writes all telemetry packets of the requested types to
the output socket.

If filterServer doesn’t understand the data request, it closes the INET socket and writes an error
message to stderr. Once a connection is made, the packet type cannot be changed. When a client
no longer wants packets, it closes the socket—the spawned server process should exit after log-
ging the event to stderr. This command is described in detail in Section 10.14.
4 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

GSE Transport Tools
2.7 filterClient
filterClient inspects its argument list to determine the location (host and port number) of a fil-
terServer process, and which types of packet it is to request. It establishes a TCP connection to the
server, sends a request for data, and copies the resulting stream to stdout. This command is
described in detail in Section 10.13.

2.8 Transport Tool Interfaces

2.8.1 Stdin to sendCmds

sendCmds expects its standard input to consist of pairs of 16-bit words (command type and
channel) followed by one or more 16-bit words—the command packet, as described in Table 1 All
16-bit words are assumed to start with their least significant bytes, i.e. little-endian order.

The format and content of command packets are contained in the AXAF IP&CL documents. All
packets contain length fields which are extracted by sendCmds to determine how to read the
remainder of the command packet.

High Level Pulse Commands are completely specified by the Command Type and Command
Channel pair. Therefore, no command data will follow.

Serial Digital Hardware Commands will consist of a single 16-bit word that will immediately
follow the Command Type and Command Channel pair.

Serial Digital Software Commands will consist of from 3 to 256 16-bit words contained in an
ACIS software command packet that will immediately follow the Command Type and Command
Channel pair. All software command packets contain length fields which are extracted by
sendCmds to determine how to read the remainder of the command packet. The output, which is
produced in 3-byte groups, is described in Table 2. Commands will be passed to shim as soon as

TABLE 1. Command Type and Channel Definition

Command Type Command Channel Description

Name Value Name Value

Serial Digital 2
Software 2 Command used to control the ACIS software

Hardware 3 Command used to control the ACIS hardware

High Level Pulse 0 Pulse Cmd Channel Number 0-98
PS and MC commands, whose action is deter-
mined by the Command Channel value

No-Op 3 TBD TBD Potential RCTU/CTUE operation commands

TABLE 2. sendCmds Command Formats

Serial Digital Commands High Level Pulse Commands

Bit1 Contents Bit Contents

0 Unspecified 0 Unspecified
ACIS Test Tools Rev. 3.1 • 5 of 148June 20, 1997 12:43 pm

GSE Transport Tools
each 16-bit Command Data word is read from stdin. Since this is buffered via the stdio.h library, it
is the responsibility of a program piping commands to sendCmds to flush the pipe, e.g. with a call
to fflush(), before any planned inter-command delay. Otherwise, the time delay will be
unpredictable.

When sendCmds reads an illegal packet from stdin, it writes an error message to stderr.
Depending on arguments supplied on its command line, sendCmds may then decide to continue
processing the next command from stdin, or abort the run entirely.

2.8.2 Stdout from filterClient

getPackets writes a stream of telemetry packets and pseudo-packets to stdout, These are passed
through filterServer to each filterClient, which writes a user-selected sub-set to its stdout. The
four packet types that may be selected are: “ACIS Science Packets”, “ACIS DEA and Software
Housekeeping Packets”, “Science-Frame Pseudo-Packets”, and “Engineering Pseudo-Packets”.
Each packet consists of a telemetry header followed by application data, as defined in IP&CL.
The header formats and contents are defined in Table 3.

All fields are written in “little-endian” format, e.g. the packet synch word, 0x736f4166, is
written as 4 bytes, 0x66, 0x41, 0x6f, and finally 0x73. The contents of all packets originating
within ACIS are defined in IP&CL. The data portion of the Science Frame pseudo-packet is
described in Table 4 and that of the Engineering pseudo-packet in Table 5.

Each packet will be written to the getPackets standard output stream as soon as the last data byte
that contributes to it is read from shim. A Science Frame Pseudo-Packet will be written after

1-2 Command Type 1-2 Command Type

3-18 Command Data 3-14 Unspecified

19-23 Command Channel 15-23 Command Channel

1. bit 0 is the most significant bit and is transmitted/received first

TABLE 3. Header Format and Content

Packet Header
Fields

Field Length
(bits)

Science or
Housekeeping Packet

Science Frame
Pseudo-Packet

Engineering
Pseudo-Packet

Synch 32 0x736f4166 0x736f4166 0x736f4166

Length 10 Varying1

1. The packet length (number of 32 bit words) varies with the contents.

7 Varying1

Format Tag 6 Varying 62 61

Sequence Number 16
incremented by 1 for each
packet in the telemetry stream

02

2. The sequence number of a pseudo-packet is always zero.

02

TABLE 2. sendCmds Command Formats

Serial Digital Commands High Level Pulse Commands
6 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

GSE Transport Tools
reading the last byte of each complete minor frame containing a science frame header. An
Engineering Pseudo-Packet will be written after the last byte of each complete major frame is
read.

The 6-byte IRIG-B timestamp in the AXAF-I minor frame is the result of packing 4 separate bit
fields into a 48-bit string. However, getPackets treats the 6 bytes of the IRIG-B timestamp as 3
unsigned 16-bit integers. It copies them into the Engineering Pseudo-Packet and converts them to
little-endian format, which is the ACIS standard. Table 4 describes how to decipher the
Engineering Pseudo-Packet’s irigb field.

TABLE 4. Science Frame Pseudo-Packet Format and Content

Field
Name

Source filterClient
Output
Format

Description
Location Start Length

format Virtual Channel ID bit 10 3 bits unsigned int
Frame format identifier, either 1
(signifying 512 bps) or 2 (24 kbps),
i.e. the AXAF tlm code + 1.

majorFrameId CCSDS Header bit 16 17 bits unsigned int
Virtual Channel Data Unit Major
Frame Count (0 to 131071)

minorFrameId CCSDS Header bit 33 7 bits unsigned short
Virtual Channel Data Unit Major
Frame Count (0 to 127)

irigb Science Header byte 32 6 bytes unsigned short [3]
Time (msec) from the IRIG-B inter-
face

bepSciTime
Science Data byte 56

4 bytes unsigned int
Latched version of the BEP science
pulse 1 MHz timestampNext-in-line Data TBD

TABLE 5. Engineering Pseudo-Packet Format and Content

Field
Name

Source filterClient
Output
Format

Description
Location Start Length

format Virtual Channel ID bit 10 3 bits unsigned int
Frame format identifier, either 1 (sig-
nifying 512 bps) or 2 (24 kbps), i.e.
the AXAF tlm code + 1.

majorFrameId CCSDS Header bit 16 17 bits unsigned int Major Frame Counter (0 to 131071)

followed by an array of one or more elements, each consisting of the following fields

data
Variable location
within major frame

var 8 bits unsigned char Engineering data

minorFrameId CCSDS Header bit 33 7 bits unsigned char
Virtual Channel Data Unit Frame
Counter (0 to 127)

minorFrameByte unsigned short
Byte number in the minor frame (0 to
1024)
ACIS Test Tools Rev. 3.1 • 7 of 148June 20, 1997 12:43 pm

GSE Transport Tools
2.8.3 filterClient arguments

The content of filterClient’s stdout stream and the location and port number of the filterServer are
selected by UNIX runtime arguments, as described in Section 10.14 and Section 10.13. The
telemetry packet selections will be determined by the presence of one or more of the mnemonics
listed in Table 7.

TABLE 6. IRIG-B Field Format and Contents

 Field Name Bit Length Byte Word

Julian Day 11 0,1 0

Seconds 17 1,2,3 0,1

Milliseconds 10 3,4 1,2

Microseconds (always zero) 10 4,5 2

TABLE 7. filterClient packet classes

 Class Packets
Selected Description

SCI ACIS Science ACIS science packets corresponding to the format numbers 1 through 9 and 12 through 37

HKP
DEA & Software
Housekeeping

ACIS packets corresponding to the two formats numbered 10 (TTAG_SW_HOUSE) and 11
(TTAG_DEA_HOUSE)

HDR
Science Frame
Pseudo-Packet

Pseudo-Packets generated within getPackets containing science frame and BEP science
timestamp information

ENG
Engineering
Pseudo-Packet

Pseudo-Packets generated within getPackets containing ACIS and other spacecraft engineer-
ing channel readouts
8 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

GSE Test Tools
3.0 GSE Test Tools

These consist of two groups of UNIX commands—primitive programs that translate between
binary ACIS representations (commands and telemetry packets) and their human-readable ASCII
equivalents; and analysis programs that perform various higher-level functions. All programs are
being developed by the ACIS flight software team, except were noted.

3.1 buildCmds

This program, described in detail in Section 10.6, reads an ASCII command script from stdin and
writes a binary command stream to stdout. The binary output format is described in “Stdin to
sendCmds” on page 5.

Each ACIS command must appear on a separate input line in the standard input to buildCmds.
The only exception is that in-line parameter blocks may contain newline characters within
enclosing braces. The full list of buildCmds commands are shown in the following tables.

TABLE 8. Serial Commands to BEP Software

Command1 Arguments Description

add

id cc badColumn file
id cc badColumn paramBlock

Add entries to the continuous clocking bad column block
from binary file or in-line paramblock

id te badColumn file
id te badColumn paramBlock

Add entries to the timed exposure bad column block from
binary file or in-line paramblock

id badPixel file
id badPixel paramBlock

Add entries to the timed exposure bad pixel map block from
binary file or in-line paramblock

id patch patchId file Uplink a software patch from a binary file

change
id systemConfig file
id systemConfig paramBlock

Change entries in the system configuration parameter block
from binary file or in-line paramblock

continue id upLink file Continue uplink boot from a binary file

dump

id badPixel Dump the bad pixel map block

id cc Dump all continuous clocking parameter blocks

id cc badColumn
Dump the bad column map block used by continuous clock-
ing science modes

id dea Dump the DEA housekeeping monitor parameter block

id huffman Dump all Huffman data compression tables

id patchList Dump the patch list

id systemConfig Dump the system configuration table

id te Dump all timed exposure parameter blocks

id te badColumn
Dump the bad column map used by timed exposure science
modes

id window1D Dump all 1-dimensional window blocks

id window2D Dump all 2-dimensional window blocks
ACIS Test Tools Rev. 3.1 • 9 of 148June 20, 1997 12:43 pm

GSE Test Tools
exec

id address [args]
Execute the function located in the BEP memory at the speci-
fied address (a multiple of 4), with optional 32-bit arguments

id fep fepId address [args]
Execute the function located at the specified address (a multi-
ple of 4) of FEP number fepId, with optional 32-bit argu-
ments

load

id cc slotId file
id cc slotId paramBlock

Load a continuous clocking parameter block at the specified
slotId from binary file or in-line paramblock

id dea slotId file
id dea slotId paramBlock

Load a DEA housekeeping parameter block at the specified
slotId from binary file or in-line paramblock

id te slotId file
id te slotId paramBlock

Load a timed exposure parameter block at the specified slotId
from binary file or in-line paramblock

id window1D slotId file
id window1D slotId paramBlock

Load a one-dimensional window parameter block at the spec-
ified slotId from binary file or in-line paramblock

id window2D slotId file
id window2D slotId paramBlock

Load a two-dimensional window parameter block at the spec-
ified slotId from binary file or in-line paramblock

read

id address length
Read length 32–bit words of BEP memory starting at the
specified address

id fep fepId address length
Read length 32–bit words of memory from FEP number
fepId, starting at the specified address

id pram ccdId address length
Read length 16–bit words of PRAM memory from DEA
number ccdId, starting at the specified 16-bit word address

id sram ccdId address length
Read length 16–bit words of SRAM memory from DEA
number ccdId, starting at the specified 16-bit word address

remove id patch patchId Remove patchId from the software patch list

reset

id badPixel Remove all entries from the bad pixel map

id cc badColumn
Remove all entries from the continuous clocking bad column
map

id te badColumn Remove all entries from the timed exposure bad column map

start

id cc slotId
Start a continuous clocking science run with parameters from
slotId

id cc bias slotId
Start a continuous clocking bias calculation with parameters
from slotId

id dea slotId
Start the DEA housekeeping monitor with parameters from
slotId

id te slotId
Start a timed exposure science run with parameters from
slotId

id te bias slotId
Start a timed exposure bias calculation with parameters from
slotId

id upLink file Start an uplink boot from binary data in file

stop
id dea Stop the currently executing DEA housekeeping monitor

id science Stop the currently executing science run

wait id seconds Suspend command output an integral number of seconds

TABLE 8. Serial Commands to BEP Software (Continued)

Command1 Arguments Description
10 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

GSE Test Tools
write

id address file
Write the binary contents of file to BEP memory, starting at
address (divisible by 4)

id fep fepId address file
Write the binary contents of file to FEP number fepId, mem-
ory starting at address (divisible by 4)

id pram ccdId address file
Write the binary contents of file to the PRAM memory of
DEA number ccdId, starting at 16-bit word address

id sram ccdId address file
Write the binary contents of file to the SRAM memory of
DEA number ccdId, starting at 16-bit word address

1. all ACIS Software Serial Commands are assigned the mnemonic 1SWSDICL in the AXAF IP&CL tables.

TABLE 9. Serial commands to BEP Hardware

Command Arguments Mnemonic1 Description

halt bep 1RSETIRT Reset (i.e. halt) the BEP processor

run bep 1RSETIRT
Run the BEP processor. This is the default on BEP
power up

select

bep bepId 1BSELICL
Select which BEP to use (0 for BEP A, 1 for BEP B).
The default on power up is 0 (BEP A)

eeprom mode2 TBD

Select the EEPROM mode: either PROGRAMMING for
programmer data readout or TELEMETRY for software
bi-level telemetry. The default on power up is TELEM-
ETRY

set

bootmodifier mode 1BMODIBM
Set the boot modifier mode: either ON to boot from
uplink, or OFF to boot from ROM. The default on
BEP power up is OFF

radiationmonitor mode 1RMONIRM
Set the radiation mode to HIGH or LOW. The default on
DEA power up is LOW

warmboot mode 1SBYISB Set the warm boot flag either ON or OFF

1. command mnemonics are defined in the AXAF IP&CL tables.

2. EEPROM commands cannot be executed on flight hardware after SI integration.

TABLE 10. Pulse Commands to PSMC Hardware

Command Arguments1 Mnemonic2 Description1

close

door id 1MCDR*ON close door id

vent id 1VVCC*ON close vent valve id

relief id 1LVCC*ON close little vent valve id

closeabort
door id 1MCDR*OF stop closing door drive id

vent id 1VVCC*OF stop closing vent valve id

TABLE 8. Serial Commands to BEP Software (Continued)

Command1 Arguments Description
ACIS Test Tools Rev. 3.1 • 11 of 148June 20, 1997 12:43 pm

GSE Test Tools
disable

daBake id 1HBO*DS disable commands to bakeout heater id

daHeater id 1HHTR*DS disable commands to housing heater id

dea id 1DEPS*DS disable commands to DEA power supply id

door id 1MCMD*DS disable commands to door mechanism drive id

dpa id 1DPPS*DS disable commands to DPA power supply id

pressure id 1PRES*DS disable pressure sensor id

relief id 1LVC*DS disable commands to little vent valve id

vent id 1VVC*DS disable commands to side vent valve id

enable

daBake id 1HBO*EN enable commands to bakeout heater id

daHeater id 1HHTR*EN enable commands to housing heater id

dea id 1DEPS*EN enable commands to DEA power supply id

door id 1MCMD*EN enable commands to door mechanism drive id

dpa id 1DPPS*EN enable commands to DPA power supply id

pressure id 1PRES*EN enable pressure sensor id

relief id 1LVC*EN enable commands to little vent valve id

vent id 1VVC*EN enable commands to side vent valve id

open

door id 1MODR*ON open door id

vent id 1VVCO*ON open vent valve id

relief id 1LVCO*ON open little vent valve id

openabort
door id 1MODR*OF stop opening door drive id

vent id 1VVCO*OF stop opening vent valve id

poweroff

daBake id 1HBO*OF power off bakeout heater id

daHeater id 1HHTR*OF power off housing heater id

dea id 1DEPS*OF power off DEA power supply id

dpa id 1DPPS*OF power off DPA power supply id

poweron

daBake id 1HBO*ON power on bakeout heater id

daHeater id 1HHTR*ON power on housing heater id

dea id 1DEPS*ON power on DEA power supply id

dpa id 1DPPS*ON power on DPA power supply id

TABLE 10. Pulse Commands to PSMC Hardware (Continued)

Command Arguments1 Mnemonic2 Description1
12 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

GSE Test Tools
3.1.1 buildCmds Examples

• The following UNIX pipe commands the ACIS instrument to start executing stored
timed exposure parameter block 1:

echo ‘start 22 te 1’ | buildCmds | sendCmds

• Dump 600 words from FEP number 2, starting at word offset 45678:

echo ‘read 4 fep 2 45678 600’ | buildCmds | sendCmds

turnoff

daBake

1HBOAOF
1HBOBOF
1HBOADS
1HBOBDS

power off and disable both bakeout heaters

daBake id
1HBO*OF
1HBO*DS

power off and disable bakeout heater id

daHeater

1HHTRAOF
1HHTRBOF
1HHTRADS
1HHTRBDS

power off and disable both housing heaters

daHeater id
1HHTR*OF
1HHTR*DS

power off and disable housing heater id

dea

1DEPSAOF
1DEPSBOF
1DEPSADS
1DEPSBDS

power off and disable both DEAs

dea id
1DEPS*OF
1DEPS*DS

power off and disable DEA id

dpa

1DPPSAOF
1DPPSBOF
1DPPSADS
1DPPSBDS

 power off and disable both DPAs

dpa id
1DPPS*OF
1DPPS*DS

 power off and disable DPA id

turnon

daBake id
1HBO*EN
1HBO*ON

enable and power on bakeout header id

daHeater id
1HHTR*EN
1HHTR*ON

enable and power on housing heater id

dea id
1DEPS*EN
1DEPS*ON

enable and power on DEA id

dpa id
1DPPS*EN
1DPPS*ON

enable and power on DPA id

1. the id field represents the hardware redundancy, either 0 for the A-side or 1 for the B-side.

2. command mnemonics are defined by AXAF IP&CL tables. ‘*’ represents the hardware redundancy, either ‘A’ or ‘B’.

TABLE 10. Pulse Commands to PSMC Hardware (Continued)

Command Arguments1 Mnemonic2 Description1
ACIS Test Tools Rev. 3.1 • 13 of 148June 20, 1997 12:43 pm

GSE Test Tools
• Start a timed exposure using the parameter block in slot #2. Give this command the
identifier ‘11’.

echo start 11 te 2 | buildCmds | sendCmds

• Stop a science run—give this command the identifier ‘5’.

stop 5 science | buildCmds | sendCmds

• Load a 1-dimensional window block. The order of keywords within each window
structure is significant—if a keyword is omitted, the most recent value will be used
(zero if it has not yet been used within the block).

load 33 window1D 4 {
 parameterBlockName = window1D
 windowBlockId = 45
 arrayDim = 3 ⇐ number of structures to follow
 ccdId = 1 ⇐ first window structure
 ccdColumn = 2
 width = 4
 sampleCycle = 6
 lowerEventAmplitude = 7
 eventAmplitudeRange = 8
 ccdId = 2 ⇐ second window structure
 ccdColumn = 3
 width = 6
 sampleCycle = 8
 lowerEventAmplitude = 10
 eventAmplitudeRange = 20
 ccdId = 3 ⇐ third window structure
 ccdColumn = 20
 width = 40
 sampleCycle = 2
 lowerEventAmplitude = 70
 eventAmplitudeRange = 80
}

• Load a Continuous Clocking parameter block. The parameter block is to be stored
in slot #3 and the command is given the identifier ‘22’. The keywords must appear
in the order shown. If omitted, a zero value will be assumed.

load 22 cc 3 {
 paramBlockName = ccBlock
 parameterBlockId = 2030
 fepCcdSelect = 0 1 2 3 4 5
 fepMode = 1
 bepPackingMode = 1
 ignoreBadColumnMap = 0
 recomputeBias = 1
 trickleBias = 1
 rowSum = 4
 columnSum = 5
 overclockPairsPerNode = 8
 outputRegisterMode = 2
 CcdVideoResponse = 1 1 1 1 1 1
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
14 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

GSE Test Tools
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 80 80 80 80
 fep1SplitThreshold = 80 80 80 80
 fep2SplitThreshold = 80 80 80 80
 fep3SplitThreshold = 80 80 80 80
 fep4SplitThreshold = 80 80 80 80
 fep5SplitThreshold = 80 80 80 80
 lowerEventAmplitude = 800
 eventAmplitudeRange = 3000
 gradeSelections = 0xf1

 windowSlotIndex = 2
 rawCompressionSlotIndex = 1
 ignoreInitialFrames = 2
 biasAlgorithmId = 1 1 1 1 1 1
 biasRejection = 2 2 2 2 2 2
 fep0VideoOffset = 1000 1000 1000 1000
 fep1VideoOffset = 1000 1000 1000 1000
 fep2VideoOffset = 1000 1000 1000 1000
 fep3VideoOffset = 1000 1000 1000 1000
 fep4VideoOffset = 1000 1000 1000 1000
 fep5VideoOffset = 1000 1000 1000 1000
 deaLoadOverride = 0
 fepLoadOverride = 0
}

3.2 lcmd

This program, described in detail in Section 10.18, reads a binary command file, e.g. one that was
generated by buildCmds, and writes its contents to stdout in ASCII, e.g.

echo ‘read 4 fep 2 45678 600’ | buildCmds | lcmd

generates the following output:

readFep[0] = {
 commandLength = 8
 commandIdentifier = 4
 commandOpcode = CMDOP_READ_FEP (4)
 fepId = 2
 readAddress = 0x0000b26e
 wordCount = 600
}

3.3 ltlm

This program, described in detail in Section 10.23, reads a stream of ACIS telemetry packets, e.g.
one that was generated by getPackets or filterClient, and writes its contents to stdout in ASCII,
e.g.

filterclient -m ps | ltlm

might generate the following output:

scienceFramePseudo[0] = {
 synch = 0x736f4166

1. The continuous clocking gradeSelection value consists of an optional ‘0x’ followed by a hexadecimal digit (0–9, a–f).
ACIS Test Tools Rev. 3.1 • 15 of 148June 20, 1997 12:43 pm

GSE Test Tools
 telemetryLength = 7
 formatTag = TTAG_PSEUDO_SCIENCE (62)
 sequenceNumber = 0
 format = 2
 majorFrameId = 0
 minorFrameId = 0
 irigBdays = 935
 irigBsecs = 72260
 irigBmsecs = 0
 irigBusecs = 0
 bepSciTime = 0xa5997aff
}
bepStartupMessage[0] = {
 synch = 0x736f4166
 telemetryLength = 7
 formatTag = TTAG_STARTUP (8)
 sequenceNumber = 0
 bepTickCounter = 0x00000237
 version = 2147483647
 lastFatalCode = 0
 lastFatalValue = 0
 watchdogFlag = 0
 patchValidFlag = 1
 configFlag = 1
 parametersFlag = 1
}

3.4 psci

This program, described in detail in Section 5.0, reads telemetry packets from stdin (e.g. the
output of filterClient), outputs a continuous packet summary to stdout, and writes selected science
data to disk files or UNIX pipes. The summaries always include the following information from
all packets to verify the ACIS execution sequence:

• packet name

• sequence number

They also include detailed information that depends on the telemetry packet type for the purpose
of verifying some detail of ACIS command execution. The information is written to stdout in
ASCII characters, one item per line.

In addition to its monitoring function, psci may also be commanded to extract specific data fields
from telemetry packets and write them to disk files or pipes. psci generates several sets of log
files, each one corresponds to a group of telemetry packets. The file content is identified by its
name, examples of which are shown in Table 11.
16 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

GSE Test Tools
3.5 analyzeData

This is a suite of programs to perform various data analysis functions, including those described
in “Analysis Procedure” on page 62.

3.6 runacis

This is a UNIX Bourne shell script that executes the BEP software simulator, acisBepUnix,
described in Section 10.2, and a single copy of the FEP software simulator, acisFepUnix,
described in Section 10.3, on a remote host. Its standard input stream, stdin, should consist of a
binary ACIS command stream, e.g. as output by buildCmds. Its standard output stream, stdout,
will consist of a stream of ACIS packets such as those generated by getPackets and filterClient.
The user may specify as command line option the name of a shell script that generates a pixel
stream to be read by acisFepUnix. runacis is described in detail in Section 10.27.

3.7 monitorDeaHousekeeping

This program reads ASCII-format DEA housekeeping summaries from stdin and displays their
contents on a graphical interface. This program is being developed by ACIS EGSE personnel

3.8 monitorEngineeringData

This program reads ASCII-format engineering summaries from stdin and displays their contents
on a TBD graphical interface. This program is being developed by ACIS EGSE personnel

3.9 monitorScience

This program reads ASCII-format packet summaries from stdin and displays their contents in a
Tcl/Tk interface. It is described in detail in Section 10.24.

3.10 processEngineeringData

This program reads packets from stdin, inspects all engineering telemetry packets (ignoring the
remainder), and writes to stdout a summary of these packets in a TBD format. This program is
being developed by ACIS EGSE personnel.
ACIS Test Tools Rev. 3.1 • 17 of 148June 20, 1997 12:43 pm

Image Tools
4.0 Image Tools

Image operations fall into two categories: (a) simulating DEA output and feeding it into one or
more Front End Processors (FEPs), and (b) intercepting real DEA output for off-line examination.
The first task is accomplished by means of a “Frame Buffer”, a dedicated hardware interface that
down-loads pixels to the FEPs at a measured rate, and the latter by a “High-Speed Tap”,
essentially the same process in reverse.

4.1 getImages

The getImages command instructs an attached ARIEL signal processor to capture the output of a
DEA controller via its high speed tap and to write it to a series of disk files. The format is
described in Section 9.2 on page 57.

4.2 putImages

putImages reads a stream of 16-bit pixels from stdin and writes them to an attached Frame Buffer
for transmittal to one or more FEPs. The process is described in detail in Section 8.0.

4.3 genPixelImages

genPixelImages reads input commands from stdin and writes images to stdout in a format
suitable for loading into the “Frame Buffer” described in Section 8.0. This format consists of 16
bit-words containing frame-buffer directives, FEP synchronization codes, and pixel and overclock
values. Each image begins with four VSYNC codes and may contain from 1 to 1024 “rows”, each
beginning with four HSYNC codes. Each row may contain between 4 and 1024 “columns”,
divided into “nodes” (four in “ABCD” mode, two in either “AC” or “BD” mode), and followed by
0 to 15 pairs of overclocks per node. Note that the fourth, diagnostic, clocking mode generates no
pixel values. It is therefore simulated by “ABCD” mode and no separate genPixelImages option
is required. This command is described in detail in Section 10.16

4.4 loadFitsImage

This is an alternative to genPixelImages for creating binary pixel streams for the Frame Buffer
(Section 8.0 on page 53) from an existing 2-D FITS image such those created by putImages. This
command is fully described in Section 10.21.

4.5 genObjectImage

This is an alternative to genPixelImages and loadFitsImage. Instead of defining the pixels row-
by-row, its command language (read from stdin) defines the characteristics of the output image, of
each of its output nodes, and of various objects (“events” and “blobs”), which are then located at
various row and column addresses in the image. This command is fully described in
Section 10.15.
18 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

Image Tools
4.6 generateExpectedData

This is a library of UNIX programs that duplicate the steps used by ACIS flight software in
processing DEA pixel streams into raw pixel images, histograms, and photon event lists. Each
step is implemented as a filter, permitting multiple to be applied in sequence to the same input
data. The purpose of these programs is to repeat in a UNIX environment the operations executed
by ACIS flight software in order to verify their correctness.

4.7 Image Tool Interfaces

The major external interfaces are between genPixelImages and putImages, and between
getImages and various image display programs. Both interfaces may be described as a single
stream of binary bytes, with no timing constraints.

4.7.1 stdin to putImages

The data stream sent from genPixelImages to putImages consists of 16-bit words, containing
numeric data in their 12 least significant bits and codes in their 4 most significant bits. Some
words are interpreted as local “directive functions” within the Frame Buffer (see Section 8.0 on
page 53). All other words are passed along to the FEPs, where their codes determine whether their
12-bit values are to be interpreted as CCD pixel data or overclocks, or whether the word is a no-op
or FEP control code (HSYNC or VSYNC).

4.7.2 Output from getImages

The output from getImages consists of one or more files on magnetic disk. The files are written in
FITS image format. Each set of VSYNC codes starts a new file. Within each image, each set of
HSYNC codes begins a new row. The 4 most significant bits in each 16-bit data or overclock pixel
are filled with zeroes. All other pixel types are ignored, i.e. they are not included in the output.
The FITS headers are described in Section 9.2 on page 57. The files are created with a user-
specified base name, followed by a sequentially increasing frame number, followed by a file
extension of “.fits”.
ACIS Test Tools Rev. 3.1 • 19 of 148June 20, 1997 12:43 pm

Image Tools
20 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
5.0 The psci Command

This program reads a stream of ACIS packets, verifies their format and internal consistency, and
optionally, sorts, reformats, and writes them to a series of data streams and disk files, as detailed
in Table 11. The UNIX command syntax is as follows:

psci [-BDTVacmpqsuv] [-h name] [-l name] [file]

Packets are read from the input file named on the psci command line, or, if omitted, from the
standard input stream, stdin. They are subjected to a variety of tests, as detailed below. If the –l
option is specified, their headers are translated into ASCII and written to log files. If –m is
specified, a one-line description is written to stdout, suitable for display by monitorScience (q.v.)
Most packets are then discarded, and psci reads the next one, but some are retained, as follows:

• the most recent exposure header packet from each FEP,

• all event data packets, until a corresponding exposure header packet is encountered,

• multi-packet memory read-out packets originating from a single BEP command

• the most recent dumped*Block and dumpedHuffman packets.

5.1 Packet Field Verification

psci has been compiled with tables derived directly from the IP&CL Structures database. Packets
with unrecognized TTAG codes (as defined in the “acis_h/interface.h” file) cause warning
messages to be written to stderr, and are ignored. All fields in recognized packets and
pseudopackets1 are then checked against their IP&CL limits—bit fields are expanded to
“unsigned long int” values unless their minimum permissible values (column 15 in the
IP&CL structure tables) are negative, in which case, psci treats them as twos-complement signed
integers and expands them to “long int”. If a field is discovered to be out of range, psci writes a
message to stderr, e.g.

file: packet[ntotal,ncount].field[index] above maximum (val > maxval)
file: packet[ntotal,ncount].field[index] below minimum (val < minval)

This example illustrates several features of psci. All stderr messages begin with a file:
argument; for errors and warnings, this is the name of the input file (or “stdin”); for informatory
messages, it is usually the name of an output file. Packets are designated by their IP&CL names2,
e.g., exposureTeRaw, followed by ntotal, the sequence number of the packet within the
input stream, and ncount, the sequence number among packets of this particular type. Both
counts start at zero, so the first packet is [0,0]. Multi-dimensional fields within packets are
followed by an array index, which also starts at 0. The value of the field is displayed as a
decimal integer.

1. Since the format of pseudopackets is not governed by IP&CL, their fields are described to psci at compile time in a file
named pseudo.map, in an identical format to the intermediate cmd.map and tlm.map”files used to construct C structures from
IP&CL tables, as described in §5.12, below.

2. Many field names in the IP&CL tables contain spaces. psci treats them consistently as single words by (a) capitalizing all
words but the first, and (b) removing the spaces. Thus, “Command Opcode” becomes commandOpcode, not CommandOpcode
or commandOpCode.
ACIS Test Tools Rev. 3.1 • 21 of 148June 20, 1997 12:43 pm

The psci Command
TABLE 11. Output files and streams generated by psci

File or Stream Contents Remarks

stdout

One line per input packet, contain-
ing the packet name followed by
one or more keyword=value
fields.

For use by monitorScience. Only generated when
the –m option is specified on the psci command
line. For an example, see Table 13.

stderr
Error, warning, and informatory
messages.

Warning messages will be suppressed by includ-
ing –q on the psci command line; informatory
messages are only generated if –v is specified.

Files containing formatted listings of packet headers

name.s.bias.log Bias packets from science run s.

name.command.log CommandEcho packets.
Details all commands received and echoed by the
ACIS BEP.

name.deahk.log DeaHousekeeping packets.

name.s.science.log Science packets from run s.
Includes the contents of all load*Block com-
mands within dumped*Block packets.

name.packet.log Miscellaneous packets.
Describes all packets not logged in one of the
other files.

name.pseudo.log Pseudopackets.
Only generated if the –p flag is specified on the
psci command line.

name.swhk.log SwHousekeeping packets.
Details all messages received from the BEP soft-
ware housekeeper.

Files containing data in various other formats

name.s.n.erv.txt
Events in “extended RV” format
from FEP number n from science
run s. *.txt if ASCII; *.dat if
binary.

If the –a flag is specified on the psci command
line, the file will be written in ASCII (see
Table 15); else it will contain 36-byte binary
records (Table 14).name.s.n.erv.dat

name.s.n.i-j.hist.txt
Histograms from exposures i
through j of FEP number n from
science run s. *.txt if ASCII;
*.fits if binary.

If the –a flag is specified, contains columns of
ASCII values (see Table 17), one per CCD output
node; otherwise writes FITS files containing 4096
samples of 32-bit binary integers per output node.name.s.n.i-j.hist.fits

name.s.packet.n.txt
The contents of the n’th instance of
a memory read-back packet—
multiple packets generated by the
same ACIS command will be con-
catenated.

If –a is specified on the psci command line, the
data are written in groups of hexadecimal ASCII
words to *.txt (except Huffman blocks which
are formatted as shown in Table 19.) Without –a,
they are written in binary to *.dat.

name.s.packet.n.dat

name.s.n.bias.fits
A bias map from FEP number n
from science run s, in FITS format.

Continuously clocked bias maps are replicated to
512 rows by 1024 columns. Timed exposure maps
contain 1024 rows of 1024 columns (see
Table 18).

name.s.n.m.raw.fits
Raw pixels from exposure m of FEP
number n from science run s, in
FITS format.

Overclock values are appended to each image
line. Frame-average overclocks are written to the
FITS header (see Table 18).

name.s.time.txt Exposure time tag files. See §5.5.

name.s.n.TMP.fits
A temporary file name used for raw
data.

psci will rename the file as soon as it determines
the exposure number.
22 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
Since out-of-limits field-values are not considered to be sufficient reason for halting the program,
psci writes these messages and continues processing. The messages themselves can be suppressed
by invoking psci with the “–q” option.

5.2 Packet Logging

When the -l option is used, psci writes packet-header information to the log files listed in
Table 11. The format of these files is derived from that of data structures in the C language, e.g.
Table 12, which identifies itself as the first dataTeFaintBias packet, the 16th packet in the
stream. Note that fields whose values are enumerated in acis_h/interface.h will be followed by
“#” and the enumeration. Unsigned values larger than 32767 are shown in hexadecimal base,
preceded by “0x”. The values of arrays of fields with dimension > 9 are not shown—merely their
dimension. When a packet contains one or more command blocks, e.g. dumpedTeBlock, which
contains a science parameter block (either loadTeBlock or loadCcBlock) and an optional
window block (either load1dBlock or load2dBlock), the individual sub-fields are logged,
shifted to the right by 2 columns.

As shown in Table 11, the “name” supplied with the -l option of psci is used as a common
prefix to the names of all output files. When a dumpedCcBlock or dumpedTeBlock packet is
received, a comment is written into all open log files, and the science run number is incremented.
Any opened science and bias data files are automatically closed, and a warning message is written
to stderr since they should have been closed: science files by the receipt of a previous
scienceReport packet, and bias files when complete.

TABLE 12. Example of formatted packet logs

A timed-exposure faint-mode event packet

dataTeBiasMap[12,4] = {
 telemetryLength = 779
 formatTag = 14 # TTAG_SCI_TE_BIAS
 sequenceNumber = 9
 biasStartTime = 0x9e73a7e5
 biasParameterId = 4011
 ccdId = 6 # CCD_S2
 fepId = 2 # FEP_2
 dataPacketNumber = 4
 initialOverclocks = 180 184 181 184
 pixelsPerRow = 1023
 rowsPerBias = 1023
 ccdRow = 1015
 ccdRowCount = 1
 compressionTableSlotIndex = 255
 compressionTableIdentifier = 0xffffffff
 pixelCount = 2048
 data = [768]
}

ACIS Test Tools Rev. 3.1 • 23 of 148June 20, 1997 12:43 pm

The psci Command
5.3 Monitor Output

When psci is invoked with the -m flag, monitor records are written to stdout. The example in
Table 13 shows the start of a science run, from the BEP’s restart message
(bepStartupMessage) through the commands (commandEcho) used to configure the DEA
and BEP, the dump of the parameter blocks (dumpedTeBlock), and the beginning of interleaved
event (dataTeFaintBias) and bias (dataTeBiasMap) records. These records should be
piped into monitorScience. They are not intended to be read in this form by humans!

To save bandwidth, and lighten the load on monitorScience, psci does not write all packet fields
to the monitor stream—the excluded items include all arrays and fields identified by the
nomonitor directive in the tlm.aux file used to build the psci executable (see §5.12).

A different level of monitoring is achieved when psci is invoked with the -s flag. In this case, all
telemetry packets will be converted to ASCII and written to the standard output stream, stdout, in
a format identical to that used for the various log files when the -l flag is used.

Finally, the -u flag causes psci to print all user-type pseudo-packets containing ASCII messages
(i.e. those of type = 0) to the standard error stream, stderr.

5.4 Science Event Modes

 psci saves the science parameter block and (optional) window block that ACIS reports at the start
of a science run. It also saves event data blocks until an exposure packet is received for the
corresponding FEP, at which time it writes 36-byte3 binary event records to the appropriate
“name.s.n.m.erv.dat” file as shown in Table 14. During this process, psci checks
numerous fields in each FEP’s event data, exposure, and parameter block packets, as detailed in
§5.13. This process should be sufficient to detect any missing, mislabeled, or out-of-order packet,
but the events themselves—their row and column indices and pixel values—are not examined.
Discrepancies are reported to stderr, in one of two formats:

A timed-exposure bias data packet

dataTeFaint[15,0] = {
 telemetryLength = 1021
 formatTag = 21 # TTAG_SCI_TE_DAT_FAINT
 sequenceNumber = 11
 ccdId = 6 # CCD_S2
 fepId = 2 # FEP_2
 dataPacketNumber = 0
 ccdRow = 1
 events = [138]
}

3. For efficiency, two null bytes are appended to each 34 bytes of event data. Each record contains 9 32-byte words.

TABLE 12. Example of formatted packet logs (Continued)
24 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
file: packet1[tot1,cnt1].field1=val1 != val2
file: packet1[tot1,cnt1].field1=val1 != packet2[tot2,cnt2].field2=val2

where val1 is a (possibly signed) decimal integer, and val2 is an integer or an enumeration
from acis_h/interface.h. As with the out-of-range messages described in §5.1, these are merely
warnings, and may be suppressed by the -q flag. psci also examines the irigB and

TABLE 13. Packet monitor stream written to stdout

bepStartupMessage sequenceNumber=0 bepTickCounter=567 version=0xffffffff
lastFatalCode=0 lastFatalValue=0 watchdogFlag=0 patchValidFlag=1
configFlag=1 parametersFlag=1

commandEcho sequenceNumber=1 arrival=0xa5997d1e result=1
commandIdentifier=0 commandOpcode=9

commandEcho sequenceNumber=2 arrival=0xa5997de8 result=1
commandIdentifier=0 commandOpcode=11

commandEcho sequenceNumber=3 arrival=0xa5997e2c result=1
commandIdentifier=0 commandOpcode=14

dumpedTeBlock sequenceNumber=4

dataTeBiasMap sequenceNumber=5 ccdId=6 fepId=2 dataPacketNumber=0
pixelsPerRow=1023 rowsPerBias=1023 ccdRow=1023 ccdRowCount=1
pixelCount=2048

dataTeBiasMap sequenceNumber=6 ccdId=6 fepId=2 dataPacketNumber=1
pixelsPerRow=1023 rowsPerBias=1023 ccdRow=1021 ccdRowCount=1
pixelCount=2048

dataTeBiasMap sequenceNumber=7 ccdId=6 fepId=2 dataPacketNumber=2
pixelsPerRow=1023 rowsPerBias=1023 ccdRow=1019 ccdRowCount=1
pixelCount=2048

dataTeBiasMap sequenceNumber=8 ccdId=6 fepId=2 dataPacketNumber=3
pixelsPerRow=1023 rowsPerBias=1023 ccdRow=1017 ccdRowCount=1
pixelCount=2048

dataTeBiasMap sequenceNumber=9 ccdId=6 fepId=2 dataPacketNumber=4
pixelsPerRow=1023 rowsPerBias=1023 ccdRow=1015 ccdRowCount=1
pixelCount=2048

dataTeBiasMap sequenceNumber=10 ccdId=6 fepId=2 dataPacketNumber=5
pixelsPerRow=1023 rowsPerBias=1023 ccdRow=1013 ccdRowCount=1
pixelCount=2048

dataTeFaintBias sequenceNumber=11 ccdId=6 fepId=2 dataPacketNumber=0
ccdRow=1

dataTeBiasMap sequenceNumber=12 ccdId=6 fepId=2 dataPacketNumber=6
pixelsPerRow=1023 rowsPerBias=1023 ccdRow=1011 ccdRowCount=1
pixelCount=2048
ACIS Test Tools Rev. 3.1 • 25 of 148June 20, 1997 12:43 pm

The psci Command
bepSciTime fields of all scienceFramePseudo packets. If these are accurate, it will
calculate approximate irigtime fields for the ERV records, but the algorithm makes three
assumptions—(a) that the BEP timer runs at precisely 100 kHz, (b) that all exposures in timed
exposure mode have the same duration, and (c) that until psci has received a pair of
fepTimestamp fields, it will approximate the exposure repetition interval by the
primaryExposure field of loadTeBlock

All event-finding modes generate ERV files in the same format, but the use of the 9 fields in the
data array differs according to mode. In CC and TE graded modes, the event amplitude is
recorded in data[0] and the grade code in data[1]; in graded TE mode, data[2] contains
the mean of the 4 corner pixel amplitudes; the remaining graded-mode data fields contain
zeroes. In faint modes, the central pixel value is reported in data[4], with the neighboring
pixels from the same CCD row in data[3] and data[5]. In 1x3 faint mode, the remaining 6
fields contain zeroes; in 3x3 faint modes, data[0] through data[2] contain the pixel values
from the previous row, and data[6] through data[8] those from the following row. CCD
column and row numbers are defined from the lower left corner of the CCD.

TABLE 14. Extended Vanderspek (ERV) record format

typedef struct {
 unsigned short expnum; /* exposure number */
 unsigned short exposure; /* exposure time (msec) */
 unsigned long irigtime; /* IRIG timestamp */
 unsigned short nodenum; /* output node index */
 unsigned short col; /* column index */
 unsigned short row; /* row index */
 unsigned short data[9]; /* event data values */
 short doclk; /* delta overclock */
} RvRec;

TABLE 15. A sample ERV event file in ASCII format

n msec irig nq col row ———————————— pixels ———————————— ∆oclk

0 2800 80856262 2 566 1 191 1057 178 217 1406 168 174 180 176 0
0 2800 80856262 0 192 2 197 181 201 175 1300 661 188 760 385 0
0 2800 80856262 1 352 2 187 213 217 161 1453 1143 178 170 177 0
0 2800 80856262 2 549 2 182 387 164 173 2094 177 169 155 165 0
0 2800 80856262 2 650 2 175 176 174 177 1599 891 181 177 181 0
0 2800 80856262 2 743 2 172 177 185 177 1292 185 160 1179 217 0
0 2800 80856262 3 1017 2 227 602 619 211 1014 936 213 211 209 0
0 2800 80856262 0 102 3 183 196 185 179 2549 184 180 180 184 0
0 2800 80856262 0 224 3 185 175 175 167 2517 192 181 173 187 0
0 2800 80856262 3 949 3 215 223 205 204 2431 205 205 217 214 0
...
26 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
In most event modes, psci will report the raw pixel values, but in Faint-with-Bias mode, the
corresponding bias values are available. Even then, the subtraction will be made only if the -B
flag is specified on the psci command line, in which case the appropriate “biasValues+
deltaOverclocks” is subtracted from each valid pixel value. Invalid pixels, i.e. those with
bias values exceeding 4093, will be assigned a value of -32768.

If the -a flag is specified, psci writes ERV files in ASCII format to “name.s.n.m.erv.txt”,
as shown in Table 15. A tally is kept of all exposures, events, and bias parity errors for checking
against the contents of the scienceReport packet that should terminate the science run.
Additional informatory messages will be written to stderr if psci is invoked with the -v flag, e.g.

psci -a -l test1 -v dat.1
dat.1: start TE EV3x3 FAINTBIAS bep 0x52ccbf71 irig 935:72262 exptime 3.207
test1.2.fits: bias file written, 2100032 bytes
test1.2.erv: written 13 exposures 25127 events
dat.1: scienceReport[909,0] irig 935:72301 exp 13 fep ok ccd ok dea 0 bep 0
test1.packet.log: 456 bytes written
test1.command.log: 1570 bytes written
test1.science.log: 80351 bytes written
test1.bias.log: 371820 bytes written
psci: 930 packets read from dat.1

5.5 Event Frame Timestamp Files

When the -T flag is specified on the psci command line, the times of each event-mode exposure
frame present in the input stream are written to the ASCII file “name.s.time.txt”. This con-
sists of the quantities shown in Table 17. The timestamp file is only generated during event-mode
science runs, i.e. not during raw or histogram mode. The BepTime value should be constant
within a given file. Frames will only be listed if at least one FEP processed that exposureNum-
ber. Since the external (IRIG) time will drift relative to the ~100 kHz pixel clock reported in
BepTime and FepTime, the drift can be estimated by comparing BEP and IRIG timestamps
within science header pseudopackets. This drift is reported in the dIrig0 field.

TABLE 16. Contents of an event frame timestamp file

Field Name Description

Exp ACIS event-mode exposure frame number

BepTime BEP start-of-run timestamp

FepTime FEP timestamp for this frame

dFEP FEP timestamp increment since the last frame

dFrame Length of a frame in pixel clock units

irigTime IRIG time (UTC) of this exposure

dIrig Frame-to-frame time in seconds

dIrig0 Drift between IRIG and ACIS clock in seconds
ACIS Test Tools Rev. 3.1 • 27 of 148June 20, 1997 12:43 pm

The psci Command
5.6 Histogram Files

Although ACIS writes histograms for each CCD output node at a time, psci saves the data packets
until all expected nodes have been received, and writes a binary file in FITS format (see the left
hand column of Table 18) named “name.s.n.i-j.hist.fits” for each contributing FEP. If
the -a flag is specified, this will be an ASCII file named “name.s.n.i-j.hist.txt”,
consisting of 6 header lines followed by 4096 lines of 5 columns each containing, respectively, the
pixel value and one pixel count for each output node A through D (see Table 17). If the CCDs are
run with restricted output nodes (i.e. QUAD_AC or QUAD_BD), the unused columns are filled with
zeroes.

5.7 Raw Mode

The contents of raw data packets are written to disk files in FITS format as soon as they are
received. Since the data packets always precede the exposure packet that describes them, the
output file is first named “name.s.n.TMP.fits”, and renamed “name.s.n.m.raw.fits”
as soon as the exposure number “m” is known. For greater efficiency, psci uses memory mapping
(the mmap(2) system call) to write raw-mode and bias files. As a consequence, the “ls -l”
command will indicate that these files contain at least 2 Mbytes (1 Mbyte in continuous clocking
mode), but the actual disk allocation, e.g. from the “du -a” command, will gradually increase as
the data packets are received. Care must be taken to allow for this extra disk space when psci is
receiving raw data and bias maps.

The headers of raw-mode FITS files will contain the fields shown in the center column of
Table 18. Overclocks are appended to each line of the image array. The data area is always
1024×1024 pixels in timed-exposure mode and 1024×512 pixels in continuous clocking mode.
psci will examine the dumpedTeBlock or dumpedCcBlock packet to see whether the CCD
was run in a pixel-summing mode, or in sub-array readout mode, and will replicate and shift
pixels accordingly to recreate a FITS file that reconstructs the original CCD geometry.

TABLE 17. Contents of an ASCII histogram file

! histogram of fep n for n exposures n to n
!
! minimumOverclock valA valB valC valD
! maximumOverclock valA valB valC valD
! meanOverclock valA valB valC valD
! varianceOverclockLow valA valB valC valD
! varianceOverclockHigh valA valB valC valD
!
000000 histA histB histC HistD
000001 histA histB histC HistD
...
28 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
5.8 Bias Files

These are created in the same manner as raw pixel images, i.e. they are memory-mapped into pre-
allocated files of fixed length. The FITS file header format is shown in the right-hand column of
Table 18. Timed exposure bias files always contain 2100032 bytes (2880 header bytes followed by
1024×1024 2-byte image pixels). As in raw mode, psci replicates and shifts the pixels to fill the
entire 1024×1024 pixel array. Continuously clocked bias maps contain 1051456 bytes—the single
row reported by the BEP is replicated 512 times.

5.9 Memory Readout

When the -l flag is specified, psci copies the contents of all memory readout packets to disk files
named “name.pkt.n.dat”, where “name” is the prefix specified on the command line, “pkt”
is the type of memory readout, and “n” is an index that increments whenever a packet, or group4

of packets of this type is encountered. They are written in the native byte order of the host

TABLE 18. Examples of FITS file headers

Binary Histograms Raw Mode with Overclocks Bias Images

SIMPLE = T
BITPIX = 32
NAXIS = 2
NAXIS1 = 4096
NAXIS2 = 4
NFEP = 3
NCCD = 5
CCDROW1 = 1
CCDNROWS= 1024
CCDNODES= 4
QUADMODE= 'QUAD_FULL'
DEAGAIN = 125
SUM2X2 = 'NO'
EXPOTIM1= 30
EXPOTIM2= 0
DUTYCYCL= 0
FIRSTEXP= 71
LASTEXP = 75
NEXP = 5
FILENAME= '...'
DATETIME= ‘...’
OCLKMINA= 181
OCLKMAXA= 186
OCLKMEAA= 184
OCLKVARA= 8
OCLKVAHA= 0
...
END

SIMPLE = T
BITPIX = 16
NAXIS = 2
NAXIS1 = 1088
NAXIS2 = 1024
NFEP = 2
NCCD = 5
CCDROW1 = 1
CCDNROWS= 1024
CCDNCOLS= 1024
CCDOCLKS= 64
CCDNODES= 4
QUADMODE= 'QUAD_FULL'
DEAGAIN = 123
SUM2X2 = 'NO'
EXPOTIM1= 28
EXPOTIM2= 0
DUTYCYCL= 0
EXPOSURE= 21
FILENAME= '...'
DATETIME= ‘...’
END

SIMPLE = T
BITPIX = 1
NAXIS = 2
NAXIS1 = 1024
NAXIS2 = 1024
NFEP = 2
NCCD = 5
CCDROW1 = 1
CCDNROWS= 1
CCDNODES= 4
QUADMODE= 'QUAD_FULL'
ACISMODE= ‘TE’
SUM2X2 = 'NO'
DEAGAIN = 75
BIASALGO= 1
BIASARG0= 0
BIASARG1= 10
BIASARG2= 0
BIASARG3= 100
BIASARG4= 70
FILENAME= ‘...’
DATETIME= ‘...’
INITOCLA= 180
INITOCLB= 184
INITOCLC= 181
INITOCLD= 184
END
ACIS Test Tools Rev. 3.1 • 29 of 148June 20, 1997 12:43 pm

The psci Command
machine. When the –a flag is also present, the files are written in hexadecimal notation similar to
the output of the “od -X” command (or “od -x” for the 16-bit SRAM and PRAM dumps), and
thy will be named “name.pkt.n.dat”.

5.10 Huffman Tables

The compression tables used by the BEP to compress the contents of raw science and bias data
packets are treated by psci as special cases of memory readout. Since the Huffman table block is
too long to dump in a single packet, psci assembles it from several dumpedHuffman packets
and, when it is complete, saves it to decompress any subsequent raw or bias packets. If the “–l”
option is used, the Huffman block will also be written to a disk file. Since Huffman blocks will not
always be part of the packet stream, psci can be told, via the “–h” option, to pre-load a previously

4. A series of packets generated from a single memory readout command when the requested length exceeded the maximum
permitted telemetry packet size. Such packet groups share the same commandId field value.

TABLE 19. ASCII dump of a Huffman block containing multiple tables

huffmanTable[0] = {
 tabid = 0xffffffff
 lowlim = 3837
 tabsize = 512
 trunc = 07 3e0000 1111100
 badbias = 21 184df8 111111011001000011000
 badpix = 21 004df8 111111011001000000000
 -256 = 16 43bf00 1111110111000010
 -255 = 17 87ef80 11111011111100001
 -254 = 18 8897c0 111110100100010001
 -253 = 19 d737e0 1111110110011101011
...
 252 = 19 0937e0 1111110110010010000
 253 = 18 f6efc0 111111011101101111
 254 = 20 a89bf0 11111101100100010101
 255 = 19 e937e0 1111110110010010111
}
huffmanTable[1] = {
 tabid = 0xfffffffe
 lowlim = 3837
 tabsize = 512
 trunc = 06 280000 010100
 badbias = 21 497af8 111110101111010010010
 badpix = 18 c557c0 111110101010100011
 -256 = 20 eaf5f0 11111010111101010111
 -255 = 19 bc77a0 1011110111000111101
 -254 = 19 9c77a0 1011110111000111001
 -253 = 21 c17af8 111110101111010000011
...
}

30 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
saved binary Huffman block, but this will always be supplanted by a complete Huffman block in
the packet stream.

When the “–a” flag is used, Huffman blocks will be written to disk in ASCII format. These
cannot be loaded by the “–h” option, but they are more readable, e.g. the example in Table 19.

5.11 Pseudopackets

If the “–p” flag is specified, these are written to “name.pseudo.log”. BEP & IRIG time
fields are saved from scienceFramePseudo packets, as outlined in §5.4. above. Also, when
psci is invoked with the “-u” flag, userPseudo packets with “type” field values of zero are
interpreted as diagnostic messages from the flight software and the remainder of the packets,
assumed to contain null-terminated character strings, are written to stderr. Otherwise,
pseudopackets are ignored.

5.12 Architecture

With the exception of the external Huffman tables discussed in §5.10, psci is self-contained—all
packet and field names and formats are compiled into the executable module. The code is
generated in three stages In the first, a Perl script named genmap reads the IP&CL structures file
and creates intermediate cmd.map and tlm.map files which define the field formats and minimum
and maximum values. genmap also extracts the enumeration values from acis_h/interface.h and
writes them to enum.c as character string arrays.Then gentab, a second Perl script, converts
cmd.map and tlm.map into C structures in cmdtab.c and cmdtab.h. Finally, gcc compiles the
structures with the remaining source code. While the process is automatic, it can be guided by

Inputs To gcc

cmdtab.h

tlmtab.c

tlmtab.h

enum.c, enum.h

cmd.map

tlm.map

pseudo.map

cmd.aux, tlm.aux

IP&CL structures

acis_h/interface.h

enum.aux

ge
nm

ap

ge
nt

ab

cmdtab.c

Intermediates

FIGURE 3. psci build architecture
ACIS Test Tools Rev. 3.1 • 31 of 148June 20, 1997 12:43 pm

The psci Command
directives in the three files enum.aux, cmd.aux, and tlm.aux. An example of enum.aux is shown in
Table 20.—lines of the form “command id name” assign “name” to command packets with
that “id”, and “packet id name” performs the same function for telemetry packets. This
causes psci to use the new names within messages and in log and monitor files, as well as giving
symbolic names to pseudopackets, since these were never described by the IP&CL.

Examples of the cmd.aux and tlm.aux files are shown in Table 21 and Table 22. They share a
common syntax. The “enumerate” command assigns a character string array in enum.c to a
particular command or telemetry packet field. psci will display the enumerated value in its log
files and error messages. The “nolog” directive prevents psci from logging a particular type of
command, or packet, or field. The “nomonitor” command, which is only used in tlm.aux,
performs the same function—of eliminating fields from monitor packets. The more restrictive
“nomonitornull” command prevents fields from being written to the monitor stream if they
have zero value.

TABLE 20. Sample enum.aux file

#
resolve duplicated command packet names
#
command CMDOP_START_TE startTe
command CMDOP_BIAS_TE startTeBias
command CMDOP_START_CC startCc
command CMDOP_BIAS_CC startCcBias
command CMDOP_ADD_BAD_TE_COL addBadTeColumn
command CMDOP_RESET_BAD_TE_COL resetBadTeColumnMap
command CMDOP_ADD_BAD_CC_COL addBadCcColumn
command CMDOP_RESET_BAD_CC_COL resetBadCcColumnMap
command CMDOP_DUMP_TE_SLOTS dumpTeSlots
command CMDOP_DUMP_CC_SLOTS dumpCcSlots
command CMDOP_DUMP_2D_SLOTS dump2dSlots
command CMDOP_DUMP_1D_SLOTS dump1dSlots
command CMDOP_DUMP_DEA_SLOTS dumpDeaSlots
#

32 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
resolve duplicated telemetry packet names
#
packet TTAG_DUMP_SYS_CONFIG dumpedSysConfig
packet TTAG_DUMP_BAD_PIXEL dumpedBadPix
packet TTAG_DUMP_BAD_TE_COL dumpedBadTeCol
packet TTAG_DUMP_BAD_CC_COL dumpedBadCcCol
packet TTAG_DUMP_PATCHES dumpedPatches
packet TTAG_DUMP_HUFFMAN dumpedHuffman
packet TTAG_DUMP_TE_SLOTS dumpedTeSlots
packet TTAG_DUMP_CC_SLOTS dumpedCcSlots
packet TTAG_DUMP_2D_SLOTS dumped2dSlots
packet TTAG_DUMP_1D_SLOTS dumped1dSlots
packet TTAG_DUMP_DEA_SLOTS dumpedDeaSlots
packet TTAG_SCI_CC_REC_FAINT exposureCcFaint
packet TTAG_SCI_CC_REC_GRADED exposureCcGraded
packet TTAG_SCI_TE_REC_FAINT exposureTeFaint
packet TTAG_SCI_TE_REC_GRADED exposureTeGraded
#
name the pseudopackets
#
packet 61 engineeringPseudo
packet 62 scienceFramePseudo
packet 63 userPseudo

TABLE 21. An example of tlm.aux

#
Use the following enumerations in log files
#
enumerate formatTag TlmFormatTagStr
enumerate ccdId CcdIdStr
enumerate fepId FepIdStr
enumerate lastFatalCode FatalCodeStr
enumerate commandOpcode CmdOpcodeStr
enumerate result CmdResultStr
enumerate fepErrorCodes FepIoErrorsStr
enumerate query DeaQueryCntlIdStr
enumerate queryId DeaQueryCcdIdStr
enumerate fatalCode FatalCodeStr
#
Omit the following fields from log records
#
nolog commandEcho.commandBody
nolog scienceReport.ccdError
nolog dumpedTeBlock.parameterBlockData

TABLE 20. Sample enum.aux file (Continued)
ACIS Test Tools Rev. 3.1 • 33 of 148June 20, 1997 12:43 pm

The psci Command
#
Omit the following fields from monitor records
#
nomonitor userPseudo
nomonitor engineeringPseudo
nomonitor scienceFramePseudo
nomonitor telemetryLength
nomonitor formatTag
nomonitor dataTeBiasMap.compressionTableSlotIndex
nomonitor dataTeBiasMap.compressionTableIdentifier
nomonitor dataTeBiasMap.biasStartTime
nomonitor dataTeBiasMap.biasParameterId
nomonitor commandEcho.commandLength
#
Omit the following when null
#
nomonitornull biasParityErrors

TABLE 22. An example of cmd.aux

#
Use the following enumerations in log files
#
enumerate commandOpcode CmdOpcodeStr
enumerate ccdId CcdIdStr
enumerate itemId SystemSettingsStr
enumerate fepId FepIdStr
enumerate fepCcdSelect CcdIdStr
enumerate queryId DeaQueryCcdIdStr
enumerate outputRegisterMode QuadModeStr
#
Enumerations specific to particular command blocks
#
enumerate loadCcBlock.fepMode CcFepModeStr
enumerate loadTeBlock.fepMode TeFepModeStr
enumerate loadCcBlock.bepPackingMode CcBepModeStr
enumerate loadTeBlock.bepPackingMode TeBepModeStr
#
Remove redundant fields from log output
#
nolog loadTeBlock.gradeSelectValue
nolog loadTeBlock.videoResponse
nolog loadCcBlock.gradeSelectValue
nolog loadCcBlock.videoResponse

TABLE 21. An example of tlm.aux (Continued)
34 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
5.13 Tests applied to packet fields

 Table 23 details the tests applied within the particular packet-handling modules. These are in
addition to the range tests described in §5.1, which themselves verify the following fields:

• In all command blocks: commandLength, commandOpcode

• In all telemetry packets: synch, telemetryLength, formatTag

A number of other consistency checks are made in the process of creating the output data files,
and may cause warning messages to appear on stderr. For instance, the ccdRow and
ccdRowCount fields in dataTeBiasMap packets are verified against the sub-array fields in
loadTeBlock. The warnings are usually self-explanatory; the user should consult the source
code for further details.

Considerate la vostra semenza:
fatti non foste a viver come bruti,

ma per seguir virtute e canoscenza.
ACIS Test Tools Rev. 3.1 • 35 of 148June 20, 1997 12:43 pm

The psci Command
TABLE 23. Tests applied to individual ACIS packet fields

Packet Field Checked against Module

bepReadReply
dumped*Slots

commandId

last packet of same type within multi-
packet group

memory.c
readAddress

requestedAddress

requestedWordCount

dataCcBiasMap

biasParameterId loadCcBlock.parameterBlockId

bias.cccdId
loadCcBlock.fepCcdSelect

fepId

dataCcFaint
dataCcGraded

ccdId
exposureCcFaint.ccdId

event.c
loadCcBlock.fepCcdSelect

dataPacketNumber running packet count

fepId exposureCcFaint.fepId

dataCcRaw

ccdId
last packet of same type from this FEP

raw.c

loadCcBlock.fepCcdSelect

compressionTableIdentifier last packet of same type from this FEP

compressionTableSlotIndex

loadCcBlockk.rawCompression-
SlotIndex

last packet of same type from this FEP

dataPacketNumber running packet count

fepId last packet of same type from this FEP

pixelCount loadCcBlock fields and pixel count

dataTeBiasMap

biasParameterId
last packet of same type from this FEP

bias.c

loadTeBlock.parameterBlockId

biasStartTime last packet of same type from this FEP

ccdId
loadTeBlock.fepCcdSelect

last packet of same type from this FEP

ccdRow compatibility with loadTeBlock
fieldsccdRowCount

compressionTableIdentifier last packet of same type from this FEP

compressionTableSlotIndex

loadTeBlock.rawCompression-
SlotIndex

last packet of same type from this FEP

dataPacketNumber running packet count

fepId
last packet of same type from this FEP

loadTeBlock.fepCcdSelect

pixelsPerRow
pixel count

loadTeBlock.onChip2x2Summing

dataTeBiasMap (contd.) rowsPerBias loadTeBlock.subarrayRowCount bias.c
36 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
dataTeFaint
dataTeGraded

ccdId exposureTeFaint.ccdId

event.cdataPacketNumber packet count

fepId exposureTeFaint.fepId

dataTeFaintBias

ccdId
exposureTeFaintBias.ccdId

event.c
loadTeBlock.fepCcdSelect

dataPacketNumber packet count

fepId exposureTeFaintBias.fepId

dataTeHist

ccdId
exposureTeHistogram.ccdId

hist.c

loadTeBlock.fepCcdSelect

dataPacketNumber packet count

fepId exposureTeHistogram.fepId

outputNodeId
exposureTeHistogram.output-
NodeId

startingBin packet count

dataTeRaw

ccdId
last packet of same type from this FEP

raw.c

loadTeBlock.fepCcdSelect

compressionTableIdentifier last packet of same type from this FEP

compressionTableSlotIndex

loadTeBlock.rawCompression-
SlotIndex

last packet of same type from this FEP

dataPacketNumber packet count

fepId last packet of same type from this FEP

exposureCcFaint

-

loadCcBlock.bepPackingMode

event.c

loadCcBlock.commandOpcode

loadCcBlock.fepMode

biasParameterId last packet of same type from this FEP

biasStartTime
last packet of same type from this FEP

scienceReport.runStartTime

ccdId

last packet of same type from this FEP

dataCcFaint.ccdId

dataCcGraded.ccdId

loadCcBlock.fepCcdSelect

eventsSent event count

exposureNumber
> last packet of same type from this
FEP

fepId
last packet of same type from this FEP

dataCcFaint.fepId

TABLE 23. Tests applied to individual ACIS packet fields (Continued)

Packet Field Checked against Module
ACIS Test Tools Rev. 3.1 • 37 of 148June 20, 1997 12:43 pm

The psci Command
exposureCcFaint
(contd.)

parameterBlockId
last packet of same type from this FEP

event.c

loadCcBlock.parameterBlockId

runStartTime
last packet of same type from this FEP

scienceReport.runStartTime

windowBlockId
last packet of same type from this FEP

load1dBlock.windowBlockId

exposureCcRaw

-
loadCcBlock.commandOpcode

raw.c

loadCcBlock.fepMode

ccdId
last packet of same type from this FEP

loadCcBlock.fepCcdSelect

exposureNumber
> last packet of same type from this
FEP

fepId last packet of same type from this FEP

parameterBlockId

last packet of same type from this FEP

scienceReport.parameter-
BlockId

runStartTime
last packet of same type from this FEP

scienceReport.runStartTime

windowBlockId
last packet of same type from this FEP

scienceReport.windowBlockId

exposureTeFaint
exposureTeFaintBias

-

loadTeBlock.bepPackingMode

event.c

loadTeBlock.commandOpcode

loadTeBlock.fepMode

scienceReport.exposuresSent

biasParameterId last packet of same type from this FEP

biasStartTime
last packet of same type from this FEP

scienceReport.biasStartTime

ccdId

last packet of same type from this FEP

dataTeFaint.ccdId

dataTeGraded.ccdId

loadTeBlock.fepCcdSelect

eventsSent event count

exposureNumber
> last packet of same type from this
FEP

TABLE 23. Tests applied to individual ACIS packet fields (Continued)

Packet Field Checked against Module
38 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
exposureTeFaint
exposureTeFaintBias
(contd.)

fepId

last packet of same type from this FEP

event.c

dataTeFaint.fepId

dataTeGraded.fepId

parameterBlockId

last packet of same type from this FEP

loadTeBlock.parameterBlockId

scienceReport.parameter-
BlockId

runStartTime
last packet of same type from this FEP

scienceReport.runStartTime

windowBlockId

last packet of same type from this FEP

load2dBlock.windowBlockId

scienceReport.windowBlockId

exposureTeHistogram

-
loadTeBlock.commandOpcode

hist.c

loadTeBlock.fepMode

ccdId

last packet of same type from this FEP

dataTeHist.ccdId

loadTeBlock.fepCcdSelect

endExposureNumber last packet of same type from this FEP

exposureCount scienceReport.exposuresSent

fepId
last packet of same type from this FEP

dataTeHist.fepId

outputNodeId dataTeHist.outputNodeId

parameterBlockId

last packet of same type from this FEP

loadTeBlock.parameterBlockId

scienceReport.parameter-
BlockId

runStartTime
last packet of same type from this FEP

scienceReport.runStartTime

startExposureNumber

last packet of same type from this FEP

> last packet of same type from this
FEP

TABLE 23. Tests applied to individual ACIS packet fields (Continued)

Packet Field Checked against Module
ACIS Test Tools Rev. 3.1 • 39 of 148June 20, 1997 12:43 pm

The psci Command
exposureTeRaw

-

loadTeBlock.commandOpcode

raw.c

loadTeBlock.fepMode

scienceReport.exposuresSent

ccdId
last packet of same type from this FEP

loadTeBlock.fepCcdSelect

exposureNumber
> last packet of same type from this
FEP

fepId last packet of same type from this FEP

parameterBlockId

last packet of same type from this FEP

scienceReport.parameter-
BlockId

runStartTime
last packet of same type from this FEP

scienceReport.runStartTime

windowBlockId
last packet of same type from this FEP

scienceReport.windowBlockId

fepReadReply

commandId

last packet of same type within multi-
packet group from this FEP

memory.c
fepId

requestedAddress

requestedWordCount

load1dBlock

commandOpcode CMDOP_LOAD_1D

bias.c
event.c
raw.c
window.c

windowBlockId

exposureCcFaint.window-
BlockId

event.c

exposureCcRaw.windowBlockId raw.c

load2dBlock

commandOpcode CMDOP_LOAD_2D

bias.c
event.c
raw.c
window.c

windowBlockId

exposureTeFaint.window-
BlockId

event.c
exposureTeFaintBias.window-
BlockId

exposureTeRaw.windowBlockId raw.c

loadCcBlock bepPackingMode
BEP_CC_MODE_FAINT

event.c
BEP_CC_MODE_GRADED

TABLE 23. Tests applied to individual ACIS packet fields (Continued)

Packet Field Checked against Module
40 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

The psci Command
loadCcBlock (contd.)

commandOpcode CMDOP_LOAD_CC
bias.c
event.c
raw.c

fepMode
FEP_CC_MODE_EV1x3 event.c

FEP_CC_MODE_RAW raw.c

parameterBlockId

dataCcBiasMap.biasParame-
terId

bias.c

exposureCcFaint.parameter-
BlockId

event.c

loadTeBlock

bepPackingMode

BEP_TE_MODE_FAINT

event.cBEP_TE_MODE_FAINTBIAS

BEP_TE_MODE_GRADED

commandOpcode CMDOP_LOAD_TE

bias.c
event.c
hist.c
raw.c

fepMode

FEP_TE_MODE_EV3x3 event.c

FEP_TE_MODE_HIST hist.c

FEP_TE_MODE_RAW raw.c

parameterBlockId

dataTeBiasMap.biasParame-
terId

bias.c

exposureTeFaint.parameter-
BlockId

event.c
exposureTeFaintBias.parame-
terBlockId

exposureTeHistogram.parame-
terBlockId

hist.c

subarrayRowCount dataTeBiasMap.rowsPerBias bias.c

pramReadReply
sramReadReply

ccdId

last packet of same type within multi-
packet group from this DEA

memory.c
commandId

requestedIndex

requestedWordCount

scienceReport

biasErrorCount bias error count

science.c

biasParameterId
value in previous exposure record(s)

biasStartTime

exposuresProduced
exposure counters

exposuresSent

parameterBlockId

value in previous exposure record(s)runStartTime

windowBlockId

TABLE 23. Tests applied to individual ACIS packet fields (Continued)

Packet Field Checked against Module
ACIS Test Tools Rev. 3.1 • 41 of 148June 20, 1997 12:43 pm

Simulated ACIS Telemetry
6.0 Simulated ACIS Telemetry

This chapter describes how to generate a simulated ACIS timed-exposure telemetry stream.
It proceeds in two steps. First, the FEP simulator reads commands and input data in the form
of 16-bit FITS images, creating one or more “ring-buffer” files and bias maps. In the second
step, these files are used to produce the telemetry stream.

6.1 fepCtlTest—simulate the ACIS front-end processor

The simulator can read a command script from its standard input stream, stdin, or behave
like a command shell, as in the following example of a timed-exposure science run. The first
group of “set” commands specifies the location of the input FITS image files, and the
location of pixels and overclocks within those images. The second group uses “param”
commands to define FEP-to-BEP run-time parameters, followed by an “exec” command
to store them in the FEP, another to compute the bias map, and a “dumpbias” command to
copy the bias map to a disk file. The third group uses the “output” command to direct
subsequent output to a disk file, and then executes the simulated timed-exposure run.

#! /acis/h3/tools/bin/fepCtlTest

Test images use CCD image frames with fe55 and co60

set input = /cdrom/ccid17-38-3/fe55co60/fe55+Co60_nowin_120.%04d.fits
set rows = 2,1025
set pixels = 4,259,344,599,684,939,1024,1279
set overclocks = 260,336,600,676,940,1016,1280,1356

fepTimedBias() full-frame bias, 4 nodes

param type = FEP_TIMED_PARM_3x3
param nrows = 1024
param ncols = 256
param quadcode = FEP_QUAD_ABCD
param noclk = 16
param nhist = 0
param btype = FEP_BIAS_1
param thresh[0] = 100
param thresh[1] = 100
param thresh[2] = 100
param thresh[3] = 100
param bparm[0] = 5
param bparm[1] = 10
param bparm[2] = 0
param bparm[3] = 100
param bparm[4] = 70
param nskip = 0
param initskip = 2

exec BEP_FEP_CMD_PARAM
exec BEP_FEP_CMD_BIAS
42 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

Simulated ACIS Telemetry
dumpbias feco.bias.te.fframe

fepSciTimed() in 3x3 event mode
set output = feco.ring.te.3x3
exec BEP_FEP_CMD_TIMED

This script causes two files to be written—“feco.bias.te.fframe” to contain the bias
map and “feco.ring.te.3x3” to contain the events. The former can be viewed by any
FITS image reader, the latter by the dumpring command (see Section 6.2).

TABLE 24. fepCtlTest Command Syntax

Command Description

dumpbias file write an already-computed bias map to file in FITS format

exec cmd

execute a BEP-to-FEP command—one of the following
FEP_BEP_CMD_BIAS start bias calibration
BEP_BEP_FEP_CMD_TIMED start timed exposure
BEP_FEP_CMD_CCLK start continuous clocking
BEP_FEP_CMD_STOP stop the run
BEP_FEP_CMD_PARAM read parameters
BEP_FEP_CMD_SUSPEND temporarily halt
BEP_FEP_CMD_RESUME resume after suspension
BEP_FEP_CMD_STATUS return FEP status
BEP_FEP_CMD_FIDPIX define fiducial pixels1

fidpix = row col... define one or more fiducial pixels1

param name = val

set a BEP-to-FEP parameter—one of the following2

type type of parameter block:
FEP_NO_PARM
FEP_TIMED_PARM_RAW
FEP_TIMED_PARM_HIST
FEP_TIMED_PARM_3x3
FEP_TIMED_PARM_5x5
FEP_CCLK_PARM_RAW
FEP_CCLK_PARM_1x3

nrows number of rows in a CCD frame
ncols number of pixels per row per node
quadcode node clocking code:

FEP_QUAD_ABCD
FEP_QUAD_AC
FEP_QUAD_BD

noclk number of overclocks per row per node
nhist number of frames per histogram
btype type of bias calibration to perform

FEP_NO_BIAS
FEP_BIAS_1
FEP_BIAS_2

thresh[4] event detection thresholds for each node
bparm[5] bias calibration parameters
nskip timed exposure skip factor
ACIS Test Tools Rev. 3.1 • 43 of 148June 20, 1997 12:43 pm

Simulated ACIS Telemetry
fepCtlTest assumes that the input FITS files contain 16-bit pixels in big-endian format
(most-significant byte first). Only the least significant 12 bits of each pixel will be used. The
bias maps will also be written in 16-bit FITS format, but in little-endian format (least-
significant byte first), irrespective of whether fepCtlTest is compiled for little- or big-endian
machines. This is not the case with the ring-buffer output files—their byte ordering will
depend on the architecture of the machine running fepCtlTest.

6.2 dumpring—display ring-buffer records

This is a perl script that converts the contents of a binary ring-buffer file to ASCII text. It
recognizes only a single command-line argument, the name of the input file. If omitted, it

reset ctr
reset an internal simulator counter. Currently, the only counter
recognized is “wakeup”.

set buf[row,col] = val
set an element of the 2-dimensional buf array. buf is either
“bias” or “biasparity”

set input = file

subsequent bias calibrations or science runs will read pixel data
from file, a set of FITS images whose name should contain a
numeric “printf” format string, e.g. “%04d” which will be
replaced by the integers 1,2,3,... when the FEP simulator
opens successive input FITS files.

set output = file
subsequent “ring buffer” output will be written to file. See
Section 6.2 for details of ring-buffer formats

set overclocks = p1,p2,p3,p4...
specify the ranges of overclock pixels in each raster of the input
file. Node A’s overclocks will span columns p1 through p2
(indexing from 0), Node B’s will span p3 through p4, etc.

set pixels = p1,p2,p3,p4,...
specify the ranges of data pixels in each raster of the input file.
Node A’s pixels will span columns p1 through p2 (indexing
from 0), Node B’s will span p3 through p4, etc.

set rows = r1,r2

specify the range of input image rows, indexed from 0. If omit-
ted, the range will begin with the first row and will continue for
the number of rows specified by the “param nrows” com-
mand.

stuff param name = val
used in unit and coverage testing to force a BEP parameter to a
particular value, bypassing the normal range checking applied to
a BEP_FEP_CMD_PARAM command.

xor buf[row,col] = val
perform an exclusive OR of val with an element of the 2-
dimensional buf array, storing the result back into the array.
buf is either “bias” or “biasparity”

1. this feature is not currently supported in the ACIS BEP detailed design, but has been included in the FEP software.

2. see Table 47 and Table 48 of the ACIS Flight Software Detailed Design Specification (36-53200 Rev. 01++) for more
details of bias parameters

TABLE 24. fepCtlTest Command Syntax (Continued)

Command Description
44 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

Simulated ACIS Telemetry
reads from stdin. The formats of the various ring-buffer records are defined in Section 4.10
of the ACIS Flight Software Detailed Design Specification (36-53200 Rev. 01++).
dumpring inspects the first few records to determine the byte-order, little- or big-endian. It
writes a formatted ASCII listing on stdout, as in the following example:

FEPexpRec[1] = {
expnum = 1
timestamp = 0x05234672
bias0 = 180 184 181 184
dOclk = 0 0 0 0

}
FEPeventRec3x3[1,1] = {
row = 2
col = 1017
p,b = { 227 602 619 } { 210 210 210 }

= { 211 1014 936 } { 210 210 204 }
= { 213 211 209 } { 209 209 203 }

}
FEPeventRec3x3[1,2] = {
row = 4
col = 448
p,b = { 180 166 174 } { 166 164 164 }

= { 190 1981 166 } { 166 722 160 }
= { 171 658 168 } { 165 168 168 }

}
.
.
FEPexpEndRec[1] = {
expnum = 1
thresholds = 3765
parityerrs = 0

}
FEPexpRec[2] = {
expnum = 2
timestamp = 0x0540f48b
bias0 = 180 184 181 184
dOclk = 0 0 0 0

}
.
.

dumpring numbers the records consecutively, beginning with 11. Thus, in the above
example, the start-of-exposure record FEPexpRec[1] is matched by the end-of-exposure
record FEPexpEndRec[1]. In between, the event records are FEPeventRec3x3[1,n], where
the event index n also starts at 1.

1. note that the BEP numbers its exposures beginning with 0, i.e. it subtracts 1 from the exposure numbers reported by the
FEPs, which use exposure number 0 to indicate their state before the first exposure has been received.
ACIS Test Tools Rev. 3.1 • 45 of 148June 20, 1997 12:43 pm

Simulated ACIS Telemetry
6.3 tlmsim—create simulated telemetry packets

This command combines a pair of files created by fepCtlTest, a ring-buffer and a bias map,
into a stream of ACIS test packets. In addition to these files, tlmsim must be provided with
suitable parameter and window blocks to include in its output. It is described in detail in
Section 10.31.

The output stream contains two sorts of packets—ACIS science packets and science frame
pseudo-packets (SFPP). They share a common format, as described in Table 3 on page 6, but
serve different functions. Remember that all ACIS telemetry fields, including those in
pseudo-packets, are recorded in little-endian order, with less significant bytes preceding
more significant.

The science packets simulate the ACIS serial telemetry stream that would be written to the
“science data” portion of each Format-2 AXAF telemetry frame, or into the next-in-line field
in Format 1. Their format is given by Table 3 on page 6, and their contents are described in
the ACIS IP&CL documents and in “http://acis.mit.edu/acis/ipcl”. Inter-
packet padding has been removed. However, the real ACIS instrument also inserts 4-byte
time tags into its serial telemetry whenever it receives a science frame pulse. Since these
tags could appear at any offset within a packet, it is inappropriate to include them in
tlmsim’s science packets. If users wishes to simulate them, they must specify the –p option,
causing tlmsim to write them as pseudo-packets.

6.3.1 Bias Map

The size of the bias map is taken from the FITS header variables NAXIS1 and NAXIS2. It is
usually 1024 rows and 1024 columns. tlmsim formats it into dataTeBiasMap packets,
two rows per packet. This version of tlmsim is unable to compress the 12-bit data, so it
reports the compressionTableSlotIndex as 255 (no compression).

The initialOverClocks fields in the dataTeBiasMap packets are copied from the
ring-buffer file, so it is important that the ring-buffer and bias map files should have been
generated from the same fepCtlTest input data

6.3.2 Timing

The order of the science packets is as follows:

1 bepStartupMessage simulating an ACIS commanded reset

1 commandEcho executing a loadTeBlock command

1 commandEcho executing a startScience command

1 dumpedTeBlock reporting the current teBlock and window2d block

many dataTeFaintBias

bias map packets interleaved with event and exposure packetsmany exposureTeFaintBias

many dataTeBiasMap

1 commandEcho executing a stopScience command
46 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

Simulated ACIS Telemetry
If the –p option is specified, a SFPP will be written inserted once per science frame, i.e.
every 2.05 seconds of “real” instrument time, determined by counting the length of the
science packets and assuming that they are filling the available telemetry bandwidth (512
bps in Format-1 and 24 kbps in Format-2). tlmsim normally simulates Format-2. Use the –f
flag to create (48 times as many!) Format-1 pseudo-packets.

An AXAF/ACIS telemetry stream contains 5 types of timing information, each of which is
simulated independently

1. fepTimestamp—the 25-bit value of the FEP’s megahertz counter which would be
latched whenever the start of a new frame were received (VSYNC from PRAM). The
simulated value is taken from the ring-buffer records created by fepCtlTest, which
currently uses the value of the UNIX microsecond timer for this field.

2. bepTimestamp—the 32-bit value of the BEP’s megahertz counter which would be
latched (a) whenever a S/C science pulse is received or (b) whenever the BEP sends
a “start processors” command to the DEA(s). The former would be inserted synchro-
nously into the telemetry, and is simulated by tlmsim as the bepSciTime field in
the SFPP; the latter would be reported as biasStartTime and runStartTime
in science packets. They are simulated as the instantaneous value of the UNIX
microsecond timer, except that the biasStartTime is then arbitrarily decreased
by 120 seconds.

3. bepTickCounter—the BEP also contains a 10 Hz counter whose value would be
reported as the bepTickCounter field in the bepStartupMessage packet and
the arrival field of commandEcho packets. tlmsim assigns an initial value of 500
to this counter, and increments it within subsequent packets according to the time
elapsed as read from the UNIX microsecond timer.

4. majorFrameId and minorFrameId—these SFPP fields contain the VCDU
fields that would occur at the start of each AXAF telemetry minor frame. They are
simulated by keeping count of the telemetry mode (the –f flag) and of the data vol-
ume being written. minorFrameId is incremented for every 750 bytes of ACIS
data (8 bytes in Format-1), and majorFrameId is incremented every 128 minor
frames. Both are initialized to zero at the start of the simulation.

5. IRIG-B—the day and second count in the SFPPs are initialized from the UNIX sys-
tem clock, and the milli- and micro-second timers are initialized to zero. They are
incremented by 0.25625 seconds for each minor frame (750 bytes of ACIS data in
Format-2, 8 bytes in Format-1).

6.3.3 Miscellaneous

The tlmsim output always assigns correct lengths to telemetry packets and to encapsulated
commands and parameter blocks. It numbers the science packets sequentially from zero (in
the sequenceNumber fields), and computes correct checksums. All commands are

1 scienceReport reporting the statistics of the run

- dataTeBiasMap remaining bias packets until the entire map is reported
ACIS Test Tools Rev. 3.1 • 47 of 148June 20, 1997 12:43 pm

Simulated ACIS Telemetry
executed successfully (CMDRESULT_OK in the result field of commandEcho packets), and
all events in the ring-buffer file are copied to telemetry packets—none is removed by
(simulated) BEP filters. The only errors that are simulated are instances of bias map
corruption within the FEP. They are created by including “xor parity” or “xor
parityplane” commands within the fepCtlTest script, and they result in errors being
written to the ring-buffer file and thence to dataBiasErr packets in the tlmsim output
stream.

6.4 Examples

In the simplest case, the output from tlmsim may be piped directly into ltlm, e.g.

tlmsim -c te.1 -p -w win.1 ring.1 bias.1 | ltlm | more

If you only want to inspect packets of a particular type, e.g. exposureTeFaintBias
whose formatTag value is 22, invoke ltlm with the -p 22 option. If you also want to see
dataTeFaintBias packets (formatTag 23), use -p22 -p23 together. If you forget a
formatTag value, invoke ltlm -lt with no other arguments to list them all.

ltlm -v -p22 -p2 tlm.out11 | more
dataTeFaintBias[0] = {
 synch = 0x736f4166
 telemetryLength = 1021
 formatTag = TTAG_SCI_TE_DAT_FAINTB (23)
 sequenceNumber = 11
 ccdId = 6
 fepId = 2
 dataPacketNumber = 0
 events = [138]
}
.
.
.
dataTeFaintBias[36] = {
 synch = 0x736f4166
 telemetryLength = 675
 formatTag = TTAG_SCI_TE_DAT_FAINTB (23)
 sequenceNumber = 237
 ccdId = 6
 fepId = 2
 dataPacketNumber = 10
 events = [91]
}
exposureTeFaintBias[2] = {
 synch = 0x736f4166
 telemetryLength = 20
 formatTag = TTAG_SCI_TE_REC_FAINTB (22)
 sequenceNumber = 238
 runStartTime = 0x619a9cf4
 parameterBlockId = 0x00000fab
 windowBlockId = 0x00000baf
48 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

Simulated ACIS Telemetry
 biasStartTime = 0x5a75d31b
 biasParameterId = 0x00000fab
 ccdId = 6
 fepId = 2
 fepTimestamp = 0x015e661d
 exposureNumber = 2
 eventsSent = 1471
 thresholdPixels = 3672
 discardEventAmplitude = 0
 discardWindow = 0
 discardGrade = 0
 deltaOverclocks = 1 0 0 0
 biasParityErrors = 0
 initialOverclocks = 180 184 181 184
}

Note that, rather than listing the contents of a large array such as events, ltlm merely lists the
number of elements within square brackets. If you wish to see the array values themselves,
invoke ltlm with the -v flag, viz.

ltlm -v -p22 -p23 tlm.out11 | more
dataTeFaintBias[0] = {
 synch = 0x736f4166
 telemetryLength = 1021
 formatTag = TTAG_SCI_TE_DAT_FAINTB (23)
 sequenceNumber = 11
 ccdId = 6
 fepId = 2
 dataPacketNumber = 0
 events[0] = {
 ccdRow = 2
 ccdColumn = 1017
 pulseHeights = 227 602 619 211 1014 936 213 211 209
 biasValues = 210 210 210 210 210 204 209 209 203
 }
 events[1] = {
 ccdRow = 4
 ccdColumn = 448
 pulseHeights = 180 166 174 190 1981 166 171 658 168
 biasValues = 166 164 164 166 722 160 165 168 168
 }
 events[2] = {
 ccdRow = 6
 ccdColumn = 646
 pulseHeights = 177 169 178 175 2525 172 176 177 171
 biasValues = 170 167 167 169 165 165 173 168 168
ACIS Test Tools Rev. 3.1 • 49 of 148June 20, 1997 12:43 pm

ACIS Timing Algorithms
7.0 ACIS Timing Algorithms

This section provides a guide for producing algorithms which map science run times to
observatory time and hence to UTC and TDB. The BEP and FEP counters are driven by the BEP’s
internal clock which will drift relative to Spacecraft Event Time (SCET), i.e., any counter that is
driven by the spacecraft’s ultra-stable 1024000 Hz oscillator, and this drift must be modeled in
order to assign accurate SCETs to events within ACIS. In this section, ACIS telemetry packet
fields will appear in monotype.

When ACIS receives a Science Frame Pulse from the spacecraft, it preserves the 32-bit value of its
internal 100 kHz timer and immediately writes it to the serial telemetry stream, inserting it into
any telemetry packet that it might be writing at the time. The first 4 bytes of ACIS science
telemetry following a Science Frame Pulse will always contain this timestamp, called refTime in
this section. Since Science Frame Pulses occur every 2.05 seconds, and can be related to UTC via
the VCDU counters in the telemetry minor frame headers, it is possible to relate refTime itself,
and hence any arbitrary value of the BEP 100 kHz clock, to UTC.

Section 7.1 describes how to determine the UTC timeline when ACIS is operating either in
Continuous Clocking mode (i.e. via a CMDOP_START_CC command) or in Timed Exposure Mode
(CMDOP_START_TE) with a single exposure time (dutyCycle=0 in the current teBlock). When
dutyCycle is non-zero, a single exposure of length primaryExposureTime will be followed by
dutyCycle exposures lasting secondaryExposureTime. This situation is covered in Section 7.2.

7.1 The Timeline of Single Exposure Time Modes

Since it takes a finite time to move the image out of each CCD, the X-Ray integration time of a
timed exposure is less than the time from one exposure to the next. The following describes the
overall steps in determining the start time of a timed exposure (or of a particular image frame in
continuous-clocking mode.) The method first computes the time in units of the BEP clock, and
then relates that to observatory time through the synchronous science header timestamps.

1. Determine runStartTime, the starting time of the science run in BEP timer units. It
is reported in the scienceReport packet that terminates the run, as well as in each
individual exposure packet.

2. Add the DEA startup time, startupTicks.

This is the initial delay, in BEP clock units, between the commanded start-of-run time
and the start of the first CCD exposure period. It is a function based on the clocking
parameters and method. This function will be provided as part of the AS-BUILT ACIS
Software Detailed Design Specification, MIT 36-53200.

3. Inspect any pair of consecutive fepTimestamp values in exposure packets.

If fepTimestampi-1 is less than fepTimestampi, exposure n starts at

exposureStartTimen = runStartTime + startupTicks +

n * (fepTimestampi - fepTimestampi-1)
50 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

ACIS Timing Algorithms
expressed in BEP timer units. Otherwise, if the FEP time-stamp of exposure i is less
than that of exposure i–1, the counter has wrapped, and the start time of exposure n is

exposureStartTimen = runStartTime + startupTicks +

n * (225 + fepTimestampi - fepTimestampi-1)

4. Now examine a pair of AXAF telemetry science frames generated during the run.

The first 4 bytes of ACIS science data in frame number i contain the science header
timestamp (refTimei). If refTimei+1 is greater than refTimei, the number of BEP
clock ticks per 2.05 second science frame is

ticksPerFrame = refTimei+1 - refTimei

Otherwise, if refTimei+1 is less than refTimei,

ticksPerFrame = 232 + refTimei+1 - refTimei

5. Locate the science frame time-stamp nearest to exposureStartTimen.

This should occur at the science frame numbered nf, where

nf = i + integer((exposureStartTimen – refTimei)/ticksPerFrame)

The frame i should be chosen close to the start of the run. If refTimei is less than
runStartTime, use instead

nf = i + integer((exposureStartTimen – refTimei - 2
32)/ticksPerFrame)

Drift between the BEP clock and the observatory clock may be enough to cause an
error in calculating nf, so a search should be made through nearby science frames for
the one with the refTime value closest to exposureStartTimen.

6. Extract or compute the Universal Time (frameUTnf) corresponding to the start of the
frame.

This operation is determined by the contents of the spacecraft science frame. It was
originally planned to store the estimated UTC values directly into the header fields of
each science telemetry frame. It is now proposed to store only the telemetry frame
sequence number, and derive UTC during ground processing. The actual method
chosen to relate the start of the telemetry frame to UTC is beyond the scope of this
document.

7. Determine the precise observatory time of the start of exposure n:
exposureUTn = frameUTnf + 2.05 *

(exposureStartTimen - refTimenf)/ticksPerFrame

where 2.05 represents the time in seconds between successive science frame pulses
(corresponding to 8 minor frames of 1025 bytes each at a rate of 32,000 bits per
second; actual telemetry rates may differ.)
ACIS Test Tools Rev. 3.1 • 51 of 148June 20, 1997 12:43 pm

ACIS Timing Algorithms
7.2 The Timeline of Alternating Exposure Time Modes

The following describes the overall steps in determining the start time of a particular exposure in
Timed-Exposure Mode when two exposure times are used:

1. Compute runStartTime + startupTicks, as above.

2. Inspect several consecutive exposure records and compute three repetition intervals.
int1 = fepTimestampi - fepTimestampi-1

int2 = fepTimestampi+1 - fepTimestampi

int3 = fepTimestampi+2 - fepTimestampi+1

where exposure number i is evenly divisible by (dutyCycle+1). If any of these rates is
negative, increment it by 225.

3. Compute the total number of primary exposures and exposure cycles.
primaryCount = integer((dutyCycle + n) / (dutyCycle + 1))

cycleCount = integer(n / (dutyCycle + 1))

4. Compute the exposure starting time in BEP timer units.
exposureStartTimen = runStartTime + startupTicks +

(n - primaryCount - cycleCount) * int1 +

primaryCount * int2 + cycleCount * int3 +

(cycleCount - primaryCount) * (E2 - E1)

where E1 and E2 are, respectively, the commanded primaryExposureTime and
secondaryExposureTime from the timed exposure parameter block, converted to
BEP clock units.

5. Follow steps Section 4.–Section 7. of the preceding section to translate exposure-
StartTimen to UTC.
52 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

ACIS Data Analysis and Database
8.0 Frame Buffer Specification

M. Doucette

27 October 1995

Revised 7 December 1995

8.1 Significant Changes in this Version
• The terms frame and image no longer refer to the same thing. The term file has been

added.

• The “Repeat Pixel” function will not be implemented unless it is deemed necessary and if
time permits. Repeat telemetering a single pixel can be done by repeat telemetering a seg-
ment of length one.

• The “parameter file frame changing” function will not be implemented.

• 6 DEA-to-FEP outputs will be implemented.

• The repeat frame directive must appear as the first word in the downloaded frame.

• Multiple images within a frame is valid as long as there is only one “Last Pixel Flag”.

8.2 Terms
• Buffer

The term Buffer will refer to the Frame Buffer, an in-house designed and fabricated box used
to supply test images to a Front End Processor (FEP).

• Image

The term image will mean a set of pixels as defined in a DPA/DEA Interface Control
Document”.

• Directive

A special pixel having a Pixel Code (unused by the FEP) used exclusively by the Frame
Buffer for function control.

• File

The term file will refer to that set of data words downloaded from the DECstation to the
Buffer box.

• Frame

The term frame will refer to the set of data stored in the Buffer's memory. Frames include
both image and directive pixels.

8.3 Initial Requirements/Specifications

The following requirements/specifications for a “Frame Buffer” box were proposed:

• Autonomously generate and output a repeating ramp image.
ACIS Test Tools Rev. 3.1 • 53 of 148June 20, 1997 12:43 pm

ACIS Data Analysis and Database
• Receive a single downloaded file from a DECstation via a Direct Memory Access (DMA)
interface.

• Accept full or partial frames.

• Output the downloaded frame once, a specified number of times, or repeat the frame con-
tinuously.

• Inject a deterministic delay between telemetered frames.

• Telemeter a segment of pixel(s) “n” times.

• Generate a base frame which repeats and in which pixel data increments according to
downloaded parameters. (Refer to the Status section.)

• Provide 6 DEA-to-FEP output circuits having indentical data and signal timing.

8.4 Basic Design Concept

The Buffer is designed around a Motorola 56001 Digital Signal Processor (DSP). All code will
be in ROM. A DMA interface is incorporated for receiving downloaded files from the
DECstation (and possibly DMA equipped SPARCstations). An internal memory stores a full 16
Mbit frame plus up to 128K miscellaneous pixels (e.g., Over Clocks, Ignores, directives, etc.).
The memory is organized in 9 131,072 x 16-bit pages. Electrical and data format of signals
interfacing to flight hardware will be reproduced as defined in the “DPA/DEA Interface Control
Document”. Integrated circuits interfacing to flight hardware will be commercial versions of
flight components. Signal timing will be done with hardware circuitry versus software control.
The Pixel Clock frequency is derived from an “RC Coupled CMOS Gate Mulitvibrator” circuit
running at approximately 6.4 MHz. Since the frequency is determined by a resistor and
capacitor, its stability will not be very good.

The Frame Buffer will not supply FEP power. Buffer internal power will be over-voltage
protected.

Buffer requirements such as telemetering a segment of pixels “n” times, or a frame “n” times,
are accomplished by using special “directive” pixels inserted in the appropriate locations in the
downloaded file. These directives use five (TBR) Pixel Codes not used by the FEP. In some
cases the 12 data bits in the directive or the 12 data bits in a second pixel are an argument to the
directive. Directive pixels must be inserted by the user in the file to be downloaded.

8.5 Operating Modes

There are two modes of operation selected by a front panel switch: Ramp and Normal Mode.

8.5.1 Ramp Mode

In Ramp Mode the Buffer continuously telemeters pixels which are generated in real
time—this is not a stored file. The ramp image begins with 4 Ignore pixels followed by 4
Vertical Syncs followed by 1024 rows of 1024 columns of Valid pixels. Column 0 of each
row contains the row number (0 thru 3FF hex). Columns 1 thru 1023 contain the column
54 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

ACIS Data Analysis and Database
number (1 thru 3FF hex). Each row ends with 32 Over Clocks having an incrementing data
field (0 thru 1F hex) followed by 4 Horizontal Syncs.

8.5.2 Normal Mode

When the Buffer is in Normal Mode and is powered on, a file must be downloaded to the
Buffer memory. Once downloaded, the Buffer will telemeter the image to the FEP in
accordance with directives within the frame data. A reset will cause the Buffer to monitor
the DMA interface in preparation for receiving data from the DECstation. A reset will not
cause the loss of a currently stored frame, and telemetering may be initiated by the
DECstation issuing a “Go” command. All pixels in the downloaded file are stored in
memory. The Pixel Code of each pixel is decoded as it is received, and transfers will be
terminated only upon receiving a “Last Pixel Flag” directive (see below). After the
download is complete, the Buffer will then telemeter the image to the FEP. Directives are
not telemetered to the FEP.

8.6 Directive Functions

In the following paragraphs, unused bits in hexadecimal fields are marked with the letter ‘X’.

8.6.1 “EXXX” Last Pixel Flag (LPF)

The LPF marks the last pixel in the downloaded file. The data bits in this pixel are ignored.
Attempting to download pixels after a LPF will have an indeterminate effect on the Buffer
operation. A frame may contain multiple images but only one LPF directive.

8.6.2 “Annn” Repeat Segment “nnn” times (RS)
“Xnnn” Segment Length argument (SL)

This function requires two arguments. The first argument is the 12 data bits in the directive
which defines the number of times (up to FFF hex) the segment is to be written to the FEP.
The second argument is in the following pixel and defines the number of pixels (up to FFF
hex) in the segment. The pixel following the second argument is the first pixel of the
segment.

8.6.3 “7nnn” Repeat Frame “nnn” times (RF)

Repeat this frame “nnn” times. If the downloaded file does not begin with this directive, or
if its argument “nnn” is “000 hex”, the frame will repeat continuously. This directive must
appear as the first word in the downloaded file—it is only tested once, and will be ignored
if it occurs later in the file.

8.6.4 “6000” Go (TBR)

This single directive (or, more appropriately, command) downloaded from the DECstation
causes the Buffer to begin telemetering a currently stored frame. This directive is ignored
unless a frame has been stored in the buffer.
ACIS Test Tools Rev. 3.1 • 55 of 148June 20, 1997 12:43 pm

ACIS Data Analysis and Database
8.7 Current Status

Two circuit boards have been wired and a third is in progress. (Hardware revision levels below
are for initial use only.)

• S/N 01 hardware is at Rev. 01. The DSP code installed in this unit is configured to gener-
ate ramp images only—image data files cannot be downloaded to this unit at this time.

• S/N 02 hardware is at Rev. 04. This unit has been used to develop DSP code to receive
downloaded files, decode directives, and output image data in accordance with those
directives. Code to generate a ramp image is not installed in this unit as yet.

The current version of the DSP code processes directives correctly. Timing has been a concern
because, within the 2.5 µsec pixel period, each pixel is read, decoded and processed before it is
telemetered to the FEP. “Repeat Segments” within the frame are processed in about 1.5 µsec.
Continuous frames are also not a problem, taking about 0.75 µsec to process. The additional
code required to process a “Repeat Frame” proved to be a problem. Periodically it has taken
more than 2.5 µsec to set up for the next frame. As a result, the last pixel of the previous frame
would be re-telemetered before the first pixel of the coming frame could be latched into the
output circuits. To avoid this problem, I have the DSP running with minimum wait states. To
gain some margin, the current 24 MHz DSPs will be replaced with 33 MHz devices. The
download time for short (1k word) files has been measured at approximately 3.2 µsec/word. The
requirement in which the Buffer would generate a “base” frame which would continuously
telemeter pixels which change data from one image to the next according to downloaded
parameters will not be implemented.

8.8 Proposed Additional Features

8.8.1 Front Panel Status LEDs

• Power On LED — Self explanatory.

• DMA Request LED — Indicates that the DECstation is waiting to download a file.
It remains lit during the download and is cleared by the Buffer receiving a
LPF or a RESET.

• Telemetry In Progress — Lit while the Buffer is telemetering Pixels to the FEP.

8.8.2 Error LED(s)

• Pixel Re-write LED — Lit when a timing error occurs and the Buffer re-teleme-
ters a Pixel. This LED would be cleared by a RESET.
56 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

ACIS Data Analysis and Database
9.0 ACIS Data Analysis and Database

To: ACIS Team

From: Jonathan W. Woo

Subject: ACIS Data Analysis and Database

Date: 4 May 1995

This memo describes the following subjects related to the MIT ACIS lab calibrations: data
formats, standard preliminary analysis procedures, utility software, and the database structure of
events collected from flight devices.

9.1 Data Format

At present, there are four different data formats used in the initial data reduction processes. (1)
Raw data read from ACIS CCDs are first recorded in the FITS files of full frame images. (2,3)
From the raw image FITS files, events are then collected and stored in one of two event list
formats—Ftool science file (FSF) format and ACIS RV (ARV) format, or in both. (4) Some
event lists are also stored in IDL table files.

9.2 Raw Image Format

The raw data read out from ACIS CCDs by current test electronics are initially recorded in 2D
FITS image files. Each value of readout pixels is registered as a 16 bits short integer record. In
the beginning of each raw FITS file, extended FITS Header keywords can be found.

The following first group of keywords are there to conform to the FITS standard:

SIMPLE = T / file does conform to FITS standard
BITPIX = 16 / number of bits per data pixel
NAXIS = 2 / number of data axes
NAXIS1 = 1120 / length of data axis 1
NAXIS2 = 256 / length of data axis 2
EXTEND = T / FITS dataset may contain extensions

These keywords specify that this FITS file contains a 2D short integer (16 bits) image array
(1120x256).

The next six keywords are used to map a subframe array captured/saved from the full frame
array (when the entire CCD is read out). The full frame array includes all active image pixels
and “expected” overclock pixels (OCs) that should be consistent with OCs in the subframe
array.

RASTER1 = 1120 / Original column dimension of entire CCD
RASTER2 = 1030 / Original row dimension of entire CCD
CRPIX1 = 1 / starting column number of sub image array
CRPIX2 = 1 / starting row number of sub image array
CRVAL1 = 1 / starting column number of remapping array
ACIS Test Tools Rev. 3.1 • 57 of 148June 20, 1997 12:43 pm

ACIS Data Analysis and Database
CRVAL2 = 200 / starting row number of remapping array

Thus RASTER1 and RASTER2 define the “expected” dimension of the full frame array. These
keywords are useful when a subframe array of a given device is compared with a different (in
locationwise) subframe array of the same device. The values of CRPIX1 and CRPX2 is usually
1. CRVAL1 and CRVAL2 should be the coordinate values of the first pixel from the subframe
array relative to the full frame array (see Figure 4).

The following keywords are there for record keeping purposes:

MISSION = 'AXAF ' / Mission name
TELESCOP= 'MIT_CCD ' / Telescope (facility) name
INSTRUME= 'ACIS ' / Instrument name
OBS_MODE= 'GROUND ' / Observation mode
OBS_ID = 'PTB Whitelight' / Observation purpose
DATAMODE= 'SPECIAL ' / data mode
CREATOR = '/usr/acis/s56dsp/hostvid' / creator of data

/ acquisition and control software
DETNAM = 'w34c3 ' / CCD ID
AEID = 'acis3 ' / Electronics ID
ORIGIN = 'MIT ' / SAO/MIT
SRC_ID = 'BESSY ' / Name of X-ray source device
OBJECT = 'PTB ' / Name of X-ray source anode
OBSERVER= 'sek' / User ID of calibration operator
HOSTID = '0xeffff284' / host machine CPU ID
HOSTNAME= 'otto' / Host machine name
DATE = '27/04/95' / FITS file creation date (dd/mm/yy)

These keywords are self-explanatory.

The next set of keywords specify the locations of the active readout image pixels in the readout
array:

IAMINCOL= 5 / Minimum column number of Output Node A

FIGURE 4. Relative coordinate system of a subframe array
with respect to the full frame array.

Captured

RASTER1

R
A

ST
E

R
2

N
A

X
IS

2

NAXIS1
(CRVAL1, CRVAL2) :in RASTER Coord.

Entire CCD
(Active Pixels + Exp. OC)
58 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

ACIS Data Analysis and Database
IAMAXCOL= 260 / Maximum column number of Output Node A
IAMINROW= 1 / Minimum row number of Output Node A
IAMAXROW= 256 / Maximum row number of Output Node A
IBMINCOL= 285 / Minimum column number of Output Node B
IBMAXCOL= 540 / Maximum column number of Output Node B
IBMINROW= 1 / Minimum row number of Output Node B
IBMAXROW= 256 / Maximum row number of Output Node B
ICMINCOL= 565 / Minimum column number of Output Node C
ICMAXCOL= 820 / Maximum column number of Output Node C
ICMINROW= 1 / Minimum row number of Output Node C
ICMAXROW= 256 / Maximum row number of Output Node C
IDMINCOL= 845 / Minimum column number of Output Node D
IDMAXCOL= 1100 / Maximum column number of Output Node D
IDMINROW= 1 / Minimum row number of Output Node D
IDMAXROW= 256 / Maximum row number of Output Node D

These are the row and column boundaries of the four read out nodes which contains active
image pixels which exclude overclock pixels, underclock pixels, and undefined parallel transfer
clock pixels from the readout array.

The frame acquisition time (actually for the previous frame) and a rough exposure time
(difference between two UNIX time calls at the two consecutive data synchronization marks)
are recorded in the following keywords:

DATE-OBS= '27/04/95' / Date(dd/mm/yy) of exposure start (EDT)
TIME-OBS= '05:08:39' / Time(hh:mm:ss) of exposure start (EDT)
ONTIME = 1.528E+00 / Exposure time (sec between two sync)

The following keywords are initially set by data acquisition programs:

FILENAME= 'i24ey001.1170.fits'
FILEPATH= '/otto/d3/w34c3/27Apr0357/'
OVERFILL= 24704 / over fill
VERBOSE = 1 / verbose (0=off;1=on)
TRIGGER = F0F0 /
TRCOUNT = 16 /

Voltage, current, and temperature readings of various clocks and corresponding ADU values are
recorded in the following keywords:

V_IA_H = +4.490 / Voltage of CCD Image Clock High (V)
A_IA_H = 44262 / ADU of CCD Image Clock High (ADU)
V_IA_L = -5.033 / Voltage of CCD Image Clock Low (V)
A_IA_L = 19884 / ADU of CCD Image Clock Low (ADU)
V_FS_H = +6.956 / Voltage of CCD Frame Storage Clock High (V)
A_FS_H = 50576 / ADU of CCD Frame Storage Clock High (ADU)
V_FS_L = -1.888 / Voltage of CCD Frame Storage Clock Low (V)
A_FS_L = 27935 / ADU of CCD Frame Storage Clock Low (ADU)
V_OR_H = 0.0 / Voltage of CCD Output Register Clock High (V)
A_OR_H = 0 / ADU of CCD Output Register Clock High (ADU)
ACIS Test Tools Rev. 3.1 • 59 of 148June 20, 1997 12:43 pm

ACIS Data Analysis and Database
V_OR_L = 0.0 / Voltage of CCD Output Register Clock Low (V)
A_OR_L = 0 / ADU of CCD Output Register Clock Low (ADU)
V_RG_H = +7.522 / Voltage of CCD Reset Clock High (V)
A_RG_H = 52025 / ADU of CCD Reset Clock High (ADU)
V_RG_LP = +4.018 / Voltage of CCD Reset Clock Low+ (V)
A_RG_LP = 43054 / ADU of CCD Reset Clock Low+ (ADU)
V_SCP = +7.027 / Voltage of CCD Scupper (V)
A_SCP = 50758 / ADU of CCD Scupper (ADU)
V_OG_P = +1.020 / Voltage of CCD Output Gate+ (V)
A_OG_P = 35378 / ADU of CCD Output Gate+ (ADU)
V_RDA = +7.021 / Voltage of CCD Reset Drain (V)
A_RDA = 50742 / ADU of CCD Reset Drain (ADU)
V_HTR_C = +0.014 / Amp of Heater Current
A_HTR_C = 32803 / ADU of Heater Current
V_HTR_V = +0.014 / Heater Voltage (V)
A_HTR_V = 32804 / ADU of Heater Voltage
V_RG_LM = 0.0 / Voltage of CCD Reset Clock Low - (V)
A_RG_LM = 0 / ADU of CCD Reset Clock Low - (ADU)
V_VDD_A = +19.170 / Voltage of CCD Vdd_A (V)
A_VDD_A = 49126 / ADU of CCD Vdd_A (ADU)
V_VDD_B = +19.173 / Voltage of CCD Vdd_B (V)
A_VDD_B = 49129 / ADU of CCD Vdd_B (ADU)
V_VDD_C = +19.105 / Voltage of CCD Vdd_C (V)
A_VDD_C = 49071 / ADU of CCD Vdd_C (ADU)
V_VDD_D = +19.218 / Voltage of CCD Vdd_D (V)
A_VDD_D = 49167 / ADU of CCD Vdd_D (ADU)
V_BJ = 0.0 / Voltage of CCD Back Junction (V)
A_BJ = 0 / ADU of CCD Back Junction (ADU)
V_EB_A = +5800.000 / Voltage of node A Electronics Bias (V)
A_EB_A = 5800 / ADU of node A Electronics Bias (ADU)
V_EB_B = +5500.000 / Voltage of node B Electronics Bias (V)
A_EB_B = 5500 / ADU of node B Electronics Bias (ADU)
V_EB_C = +5700.000 / Voltage of node C Electronics Bias (V)
A_EB_C = 5700 / ADU of node C Electronics Bias (ADU)
V_EB_D = +5900.000 / Voltage of node D Electronics Bias (V)
A_EB_D = 5900 / ADU of node D Electronics Bias (ADU)
CAM_TEMP= +0.013 / Camera Temperature (C)
CCD_TEMP= -242.00 / CCD Temperature (C)

The DE binary bit settings for the “gse” data acquisition program are recorded in the following
keywords:

DE_MODE0= 0 / CHKCR: MODE0 bit (0=off;1=on)
DE_MODE1= 0 / CHKCR: MODE1 bit (0=off;1=on)
DE_HSEQ = 1 / CHKCR: HSEQ bit(0=off;1=on) the hard sequencer
DE_TSAP = 0 / CHKCR/TESTAP asyn loopback test (global hk pipe)
DE_BOARD= 1 / CHKCR: BOARD bit (0=off;1=on)
DE_RASTR= 1 / CHKCR: RASTER bit (0=off;1=on)
60 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

ACIS Data Analysis and Database
DE_RIGHT= 0 / VHKCR: RIGHT bit (0=off;1=on)
DE_SHFT0= 0 / VHKCR: SHIFT0 bit (0=off;1=on)
DE_SHFT1= 0 / VHKCR: SHIFT1 bit (0=off;1=on)
DE_SHFT2= 0 / VHKCR: SHIFT2 bit (0=off;1=on)
DE_EN12 = 0 / VCRX: EN12 bit (0=off;1=on)
DE_TSDVP= 0 / VCRX: TESTDVP bit (0=off;1=on)
DE_HEATR= 0 / DHKCR: Turns the heater (0=off;1=on)
DE_SWAP = 0 / DHKCR: Swaps output shift reg phs 2 with 3

9.2.1 FSF Format

In the standard ACIS analysis procedure, an event (3x3 pixel island whose center pixel value is
the local maximum above event threshold) detected by the event finding algorithm (adopted
from rv_findevents) is stored in the FSF event files. The FSF event files are in a binary FITS
table extension format similar to the ASCA science event file format. Each FSF file has at least
the following three components: a dummy primary image extension with zero dimension, a
binary table extension containing events, and a binary table extension of good time intervals
(GTIs). Since most of the FITS Header keywords in FSF are adopted from ASCA convention, a
detailed description of the keywords is not presented in this memo.

In the binary table extension, each event is defined by 10 fields:

TIME, READX, READY, CHIPX, CHIPY, LABX, LABY, FRAME, PHAS, CCDNODE.

The TIME field is the absolute time (seconds after 1994.0 in UNIX time) of the frame exposure
when the event was detected. The center pixel position of a detected event (above a specified
event threshold) is recorded in readout, physical CCD, and lab reference coordinate systems,
respectively as READX & READY, CHIPX & CHIPY, and LABX & LABY columns. The
FRAME field contains the integer numbers of the frames where the detected events extracted.
The frame numbers are counted from the TSTART time when the first data frame is exposed.

Therefore, the frame number has only a relative meaning for a single FSF data set. In a
mathematical expression, nframe = (t-TSTART)/exposure. The PHAS field contains 9 short
integer pulse height values of a 3x3 pixel island (see Figure 5). Finally, the CCDNODE field
specifies the read-out node.

FIGURE 5. Sequence of pixel values from 3x3 pixel island
stored in the event record of an FSF.

1

2 3 4

5 6

7 8 9

READX

R
E

A
D

Y

ACIS Test Tools Rev. 3.1 • 61 of 148June 20, 1997 12:43 pm

ACIS Data Analysis and Database
9.2.2 ARV Format

In order to use the available software developed for the previous laboratory X-ray CCD
calibration efforts, all events recorded in FSFs are converted to a binary record format called
“ARV” (ACIS RV) which is a modified version of “RV” format. The ARV format is a binary
format of individual events identified as a 3x3 pixel island distribution. Each data structure is a
32 Byte binary record consisting of frame number, exposure time (in msec), acistime (sec from
1994.0), nodenum, x & y position of the center pixel, and the 9 pixel values of the 3x3 island in
the order shown in Figure 6. While acistime is 4 Byte long integer, the rest of the variables are
all in 2 Byte short integers.

struct ds_data_str
 {
 short nframe;
 short exposure;
 long acistime;
 short nodenum,x,y,data[9];
 };

9.2.3 IDL Format

Some events are recorded in IDL binary (32 Byte record) table files similar to ARV format (ask
sjones about details).

9.3 Analysis Procedure

For a typical run of data acquisition, a couple hundred consecutive raw image frames and
several (~10) bias frames are taken. ACISANAL1 (a tcsh script) is first run to collect events
after correcting for the bias level for each pixel. An improved data acquisition time of each event
is recalculated using the refined exposure time which is a constant value throughout a given data
set. Once an event list is extracted by ACISANAL1, ACISANAL2 (a tcsh script) is run to
generate a number density image of events, pulse-height-distributions (PHDs) of two grade
combinations (g0 and g0234), light curves, pulse-height histograms of each grade, and pulse-
height histograms of neighboring pixels of the center pixels in the 3x3 event islands.

FIGURE 6. Sequence of pixel values from 3x3 pixel island
stored in ARV format.

6

7 8 9

READX

R
E

A
D

Y

54

321
62 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

ACIS Data Analysis and Database
9.3.1 ACISANAL1

This script first produces a mean clip bias frame from all the available bias frames in a data set,
by executing the meanbiasclip program:

ls ${bias_heading}.????.fits | meanbiasclip ${bias}

The mean bias frame prepared in this step will be used in the acis_mit_findevents routine to
estimate the bias level for each pixel.

After a FITS file containing the mean bias frame is created, the script then prepares to run the
main routine, acis_mit_findevents to extract events. As a first step for the preparation, the script
executes the following line to collect all data file names into a temporary file:

ls ${data_heading}.????.fits > tmp_data.list

And then, the script calculates the exposure time of the data set (which is a constant value for a
single data set). It uses the first 20 files to estimate a rough exposure time by executing the
get_exp program which makes a simple average of values stored in the FITS header keyword
ONTIME from the first 20 raw image frames. The script calls get_exp again to make a fine
adjustment of the exposure time by averaging all ONTIME values which are close to the initial
rough exposure time within 50% level. With these two iterations, the calculated exposure time
should be good to 1/1000 s.

The following two lines in the ACISANAL1 script are executed to calculate the exposure time:

set init_exp = `get_exp -1.0 20 < tmp_data.list | lines 1-1`
set exp = `get_exp ${init_exp} 0 < tmp_data.list | lines 1-1`

Once an accurate exposure time and an average bias frame are obtained, the ACISANAL1
script runs the acis_mit_findevents program to extract events. acis_mit_findevents first reads
in the mean bias frame and subtracts it off from each data image frame before extracting events.
For each quadrant, it adds back the mean value of the bias frame subtracted image over-clock
region to each image pixel for a fine temporal bias level adjustment. Then, the program goes
through each pixel of the bias subtracted image array to find events where each event's central
pixel value is above the low event threshold and is also the local maximum in the 3x3 island.
Events are then recorded in a FSF event binary table FITS file. Each event record is identified
with the UNIX time (absolute time is good to within a sec and relative time among events in a
single data set is good to within ~1 ms), the position (readout and device coordinates) of the
center pixel, quadrant id, and the 9 pixel values of the 3x3 island. This step is executed by:

acis_mit_findevents -el ${low_ev_th} -i stdin -bs ${bias} -o
${acis_evts_fits} -h ${acis_hk_fits} -exp ${exp} < tmp_data.list

To do further analysis using available RV tools, the FSF event list is converted into ARV format
by running the acis_fits_to_rv program.

acis_fits_to_rv ${acis_evts_fits} stdout > ${acis_evts}
ACIS Test Tools Rev. 3.1 • 63 of 148June 20, 1997 12:43 pm

ACIS Data Analysis and Database
Since it is convenient to calculate readout noise at this stage, the acis_readoutnoise tcsh script
is called to calculate readout noise values for 4 image and overclock regions using the first two
bias files.

acis_readoutnoise ${bias_heading}.0001.fits ${bias_heading}.0002.fits

9.3.2 ACISANAL2

ACISANAL2 is a tcsh script which creates secondary products from an ARV event file: pulse-
height distributions (histograms and XSPEC input file—PHA), event number density map, light
curves, and event corner pixel pulse-height distributions. A number density map is created as a
2D FITS image file, PHA files are in the XSPEC binary format, and the rest of the products are
in QDP file formats.

The ACISANAL2 script first creates a number density map of detected events whose pixel
grade distributions are either singles or splits (i.e., grades 0, 2, 3, or 4).

rv_gflt ${ev_th} ${sp_th} -p 0 4095 -g 0 2 3 4 < ${acis_evts} | rv_ef
${x_img} ${y_img} > ${heading}_sp${sp_th}_g0234_img.fits

For each of the four read-out nodes, two pulse-height histograms (g0 & g0234) are created. In
the script, the following two lines in the foreach loop are executed:

rv_streamfilt -c ${ro_node} < ${acis_evts} | rv_gflt ${ev_th}
${sp_th} -p 0 4095 -g 0 | grad_ph ${sp_th} | awk '{print $4}' | histo
1 0.5 4095.5 4096 > ${heading}_c${ro_node}_sp${sp_th}_g0.qdp
rv_streamfilt -c ${ro_node} < ${acis_evts} | rv_gflt ${ev_th}
${sp_th} -p 0 4095 -g 0 2 3 4 | grad_ph ${sp_th} | awk '{print $4}' |
histo 1 0.5 4095.5 4096 > ${heading}_c${ro_node}_sp${sp_th}_g0234.qdp

Next, the script calculates the variation in count rate (counts/frame) for each read-out node as a
function of frame number counted from the first raw image frame of a given set (~200 frames).

rv_streamfilt -c ${ro_node} < ${acis_evts} | rv_gflt ${ev_th}
${sp_th} -p 0 4095 -g 0 2 3 4 | grad_ph ${sp_th} | awk '{print $7}' |
lightcv > ${heading}_c${ro_node}_sp${sp_th}_g0234_lightcv.qdp

And, pulse-height histograms of each grade (0 to 7) are produced in QDP by the following tcsh
command:

rv_streamfilt -c ${ro_node} < ${acis_evts} | rv_gflt ${ev_th}
${sp_th} -p 0 4095 | rv_ev2pcf ${ev_th} ${sp_th} /dev/null >
${heading}_c${ro_node}_pcf.qdp

Neighbor histograms (corner pixel distributions and top, bottom, left, and right pixel
distributions of detected events) are produced by the following command:

rv_streamfilt -c ${ro_node} < ${acis_evts} | neighborhist >
${heading}_neighborhist_c${ro_node}.qdp
64 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

ACIS Data Analysis and Database
In QDP files, as a product of this step, “readout fraction” (total pixel values divided by the total
number of pixels for each bin) is plotted against ADU.

To use XSPEC for the spectral analysis (with convolution of response matrix), two PHA files
are produced (g0 & g0234):

rv_streamfilt -c ${ro_node} < ${acis_evts} | rv_gflt ${ev_th}
${sp_th} -p 0 4095 -g 0 2 3 4 | rv_ev2pha ${ev_th} ${sp_th} 1 >
${heading}_c${ro_node}g0234.pha
rv_streamfilt -c ${ro_node} < ${acis_evts} | rv_gflt ${ev_th}
${sp_th} -p 0 4095 -g 0 | rv_ev2pha ${ev_th} ${sp_th} 1 >
${heading}_c${ro_node}g0.pha

9.3.3 Data Products

A summary table and sample plots of products generated by ACISANAL2 are presented in this
section. A sample plot of light curve is shown in Figure 7, a sample plot of PH-histogram is in
Figure 8, a sample plot of primary calibration file is in Figure 9, and a sample plot of read-out
noise distribution is in Figure 10.

TABLE 25. Summary of products from ACISANAL2

Type Sample_filename Format Purpose

Evts Num Density test_sp20_g0234_img.fits FITS Event Flux

PH histogram test_c0_sp20_g0.qdp QDP Spectral Resolution

PH histogram test_c0_sp20_g0234.qdp QDP Spectral Resolution

PH spectrum test_c0_sp20_g0.pha XSPEC Spectral response/QE meas.

PH spectrum test_c0_sp20_g0234.pha XSPEC Spectral response/QE meas.

Primary Cal File test_c0_pcf.qdp QDP Grade branching ratio meas.

Light Curve test_c0_sp20_g0234_lightcv.qdp QDP Check source/detector stability

Noise Summary File readoutnoise.out ASCII Read-out Noise σ (ADU)

Noise Model readoutnoise00im.model ASCII 1 Gaussian fit

Noise spectrum readoutnoise00im.qdp QDP Read-out Noise meas.
ACIS Test Tools Rev. 3.1 • 65 of 148June 20, 1997 12:43 pm

ACIS Data Analysis and Database
FIGURE 7. A sample light curve

FIGURE 8. A sample PH histogram/spectrum.
66 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

ACIS Data Analysis and Database
FIGURE 9. A sample primary calibration file

FIGURE 10. A sample readout noise file
ACIS Test Tools Rev. 3.1 • 67 of 148June 20, 1997 12:43 pm

ACIS Data Analysis and Database
9.4 Utility Software

There are a few utility modules in the “/usr/acis/bin” directory. ana2gau calculates the FWHM
value of 2–Gaussian model determined by a fit to the PH histogram. The ARV event list can be
displayed in ascii format with acisrvtoascii.

9.5 Database

The ACIS flight device calibration database will be constructed as subdirectory trees. On the top
level, there will be one directory for each device and the directory name will be named after the
device id (e.g., c17–103–1). For a given device directory, there will be subdirectories to identify
lab experiment setups (e.g., IFM, HIREFS, HE–A, HE–B, SES, BESSY). As a next lower level
subtree, the date of a particular data acquisition will be used (e.g., 01may95). A FSF event FITS
file, a house keeping FITS file, an ARV file, two bias FITS files, and the averaged bias FITS file
will be stored in the next lower level which specifies the source energy range (e.g., carbon_k,
oxygen_k). Any ASCII note regarding to the particular data set will be placed at the same
directory.

As an example,

p4 jww@ohno> pard
/ohno/d1/c17-103-1/bessy/09mar95/t1957_i05ey495
p4 jww@ohno> ls
c17-103-1_bessy_09mar95_1957_i05ey495.evts
c17-103-1_bessy_09mar95_1957_i05ey495_bias.0001.fits
c17-103-1_bessy_09mar95_1957_i05ey495_bias.0002.fits
c17-103-1_bessy_09mar95_1957_i05ey495_bias_avg.fits
c17-103-1_bessy_09mar95_1957_i05ey495_evts.fits
c17-103-1_bessy_09mar95_1957_i05ey495_hk.fits
products/
temperature.dat

The secondary products from ACISANAL2 will be also stored in a subdirectory call
“products”:

p4 jww@ohno> pwd
/ohno/d1/c17-103-1/bessy/09mar95/t1957_i05ey495/products
p4 jww@ohno> ls
i05ey495_c0_pcf.qdp i05ey495_neighborhist_c0.qdp
i05ey495_c0_sp20_g0.qdp i05ey495_neighborhist_c1.qdp
i05ey495_c0_sp20_g0234.qdp i05ey495_neighborhist_c2.qdp
i05ey495_c0_sp20_g0234_lightcv.qdp i05ey495_neighborhist_c3.qdp
i05ey495_c0_sp20_g0.pha i05ey495_sp20_g0234_img.fits
i05ey495_c0_sp20_g0234.pha readoutnoise.mesg
i05ey495_c1_pcf.qdp readoutnoise.out
i05ey495_c1_sp20_g0.qdp readoutnoise00im.model
i05ey495_c1_sp20_g0234.qdp readoutnoise00im.qdp
i05ey495_c1_sp20_g0234_lightcv.qdp readoutnoise00oc.model
68 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

ACIS Data Analysis and Database
i05ey495_c1_sp20_g0.pha readoutnoise00oc.qdp
i05ey495_c1_sp20_g0234.pha readoutnoise01im.model
i05ey495_c2_pcf.qdp readoutnoise01im.qdp
i05ey495_c2_sp20_g0.qdp readoutnoise01oc.model
i05ey495_c2_sp20_g0234.qdp readoutnoise01oc.qdp
i05ey495_c2_sp20_g0234_lightcv.qdp readoutnoise02im.model
i05ey495_c2_sp20_g0.pha readoutnoise02im.qdp
i05ey495_c2_sp20_g0234.pha readoutnoise02oc.model
i05ey495_c3_pcf.qdp readoutnoise02oc.qdp
i05ey495_c3_sp20_g0.qdp readoutnoise03im.model
i05ey495_c3_sp20_g0234.qdp readoutnoise03im.qdp
i05ey495_c3_sp20_g0234_lightcv.qdp readoutnoise03oc.model
i05ey495_c3_sp20_g0.pha readoutnoise03oc.qdp
i05ey495_c3_sp20_g0234.pha

A log summary file of these directory trees, called “data.log” can be found in the “/usr/acis/
database/” directory. This file can be used as a guide to locate events and products. The content
of this file should be:

CDID EXP DATE(HH:MM) SRCID DIR USER MOD-DATE
c17-103-1 BESSY 09mar95(19:57) i05ey495 * jww 05/02/95

* = /ohno/d1/c17-103-1/bessy/09mar95/t1957_i05ey495
ACIS Test Tools Rev. 3.1 • 69 of 148June 20, 1997 12:43 pm

UNIX Commands - ACISshell
10.0 UNIX Commands

10.1 ACISshell

NAME

ACISshell – run a shell from which the CTUE can get ACIS commands

SYNOPSIS

ACISshell

DESCRIPTION

ACISshell creates a TCP/IP socket at the port that the CTUE will connect to when accepting commands from
the ACIS EGSE. Once the connection is established, the program executes a standard Bourne shell, which it
indicates by displaying the ACISshell% command prompt.

This shell and all of the programs that it launches inherit the open socket descriptor that connects to the
CTUE. (This socket descriptor is available in environment variable CTUE_CMD_SD.) To send commands
to the CTUE use:

 ACISshell% buildCmds < ACIS command script file | sendCmds | writeCCB

or:

 ACISshell% cat < CTUE command block file > &$CTUE_CMD_SD

 ACISshell tries to open port 541 for CTUE commands. This port number is in the range that only root can
open. If ACISshell is not running with root priviledges, it will try to open port 7541 for CTUE commands.
The appropriate port number must be entered in the CTUE’s c:\windows\ethernet.cfg file. The IP
address of the host where ACISshell will run must also be entered in this file. The CTUE will connect only
to the IP address and port indicated.

To connect to the CTUE, the user should first execute ACISshell and then use the CTUE’s GUI to select
ACIS commands from the Ethernet control section. ACISshell, like the CTUE, handles only a single
connection. When that connection terminates, so does the program and so does the connection to the CTUE.
However, commands can be sent repeatedly while the ACISshell% prompt is displayed.

AUTHOR

Demitrios Athens, MIT CSR

Ann M. Davis, MIT CSR for the network code.

SEE ALSO

writeCCB(1)

CTUE User’s Manual
70 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - acisBepUnix
10.2 acisBepUnix

NAME

acisBepUnix – Simulate the ACIS Back End Processor

SYNOPSIS

acisBepUnix

DESCRIPTION

This program simulates the Back End Processor software on an Ultrix workstation. The program launches a
command server program, cserver, to acquire command packets, and writes its binary telemetry to stdout.
The cserver program is launched to establish a command socket on the local host machine. The used socket
number is 7000.

Command packets may be built and sent to the running simulation using buildCmds and cclient. Telemetry
can be examined using psci or ltlm. (Note: Typically, a telemetry server, such as filterServer is setup to read
stdout of the program and then distribute the telemetry to one or more clients. The clients then decode the
received telemetry packets).

FEP hardware and software can be simulated using acisFepUnix. Each instance of a simulated FEP is a
distinct invocation of acisFepUnix. The BEP simulator communicates with the simulated FEPs through
shared memory segments.

OPTIONS

None

RESTRICTIONS

cserver must be in the user’s search path.

This program is currently only supported for the DECstations running Ultrix.

FILES

None

SEE ALSO

cserver(1), cclient(1), acisFepUnix(1), buildCmds(1), psci(1), ipcs(1), ipcrm(1)

DIAGNOSTICS

Fatal Messages:

None

Warning Messages:

None

Informatory Messages:

Discrete Software Telemetry codes (LED codes) appear on stderr as they are written to the "hardware"
by the flight software.

The message "WarmFuzzy" is written to stderr once about every 5 seconds.

Commands to the DEA are decoded and written to stderr.
ACIS Test Tools Rev. 3.1 • 71 of 148June 20, 1997 12:43 pm

UNIX Commands - acisFepUnix
10.3 acisFepUnix

NAME

acisFepUnix – Simulate the ACIS Front End Processor

SYNOPSIS

acisFepUnix fepId

DESCRIPTION

This program simulates a single Front End Processor software on an Ultrix workstation. The FEP is indicated
by fepId. The FEP simulation program communicates with the BEP simulation program, acisBepUnix, using
shared memory segments and signals. Images are loaded into the FEP simulation using fepImage2, which also
uses shared memory and signals to communicate with the FEP process. The BEP program simulates a reset
to the FEP simulation using the SIGUSR2 (31) signal. The FEP image loader program simulates FEP
interrupts using the SIGUSR1 (30) signal.

OPTIONS

None

RESTRICTIONS

Only one acisFepUnix program with a given fepId may be active on a single machine at a time.

This program is currently only supported for the DECstations running Ultrix.

FILES

None

SEE ALSO

acisBepUnix(1), fepImage2(1), ipcs(1), ipcrm(1)

DIAGNOSTICS

Fatal Messages:

If the program fails to obtain shared memory segments, it will issue an error message to stderr and exit
with a -1.

Warning Messages:

None

Informatory Messages:

During initialization, the program prints information about its shared memory segments to stderr.

When the FEP program is "reset" it prints a "Calling fepCtl()" message to stdout.
72 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - acispkts
10.4 acispkts

NAME

acispkts – extract ACIS packets and pseudopackets from LRCTU output

SYNTAX

acispkts [–ep] [–np] [–nt]

DESCRIPTION

acispkts reads the stdout stream from the LRCTU handler, rctu2b, identifies individual ACIS telemetry
packets, and writes them to the standard output stream, stdout.

Unless the –np option is specified, acispkts will generate one science frame pseudopacket and one
engineering pseudopacket for every simulated LRCTU science pulse, at 2.05 second intervals. The science
frame pseudopacket will contain the 32-bit BEP science pulse timestamp and a time-of-day clock value in
IRIG-B format derived from the gettimeofday() system call. The origin of the IRIG day number is 0h, January
0 of the current year. CCSD major and minor frame counts start at zero. Engineering pseudopackets contain
the 8 LED hardware status bits, recorded in two 16-bit data fields, one bit per nibble, e.g. status bits of
‘00110110’ will be reported as 0x0011, followed by 0x0110.

OPTIONS

–ep generate a user pseudoppacket (a formatId of TTAG_USER) whenever LRCTU or ACIS packet
synchronization is lost. If this option is omitted, the information will be written to stderr, (see
Diagnostics, below).

–np suppress the writing of Science Header and Engineering pseudo-packets to stdout. The default behavior
is to generate one of each for every equivalent science frame simulated by the LRCTU.

–nt suppresses the printing of ACIS timestamp and LED information to stderr.

AUTHOR

Ann Davis <amd@space.mit.edu> and Peter Ford, <pgf@space.mit.edu>, MIT CSR

SEE ALSO

rctu2b(1), filterServer(1)

DIAGNOSTICS

• Acis Time: xxxxxxxx Bilevels: bbbbbbbb
this message is generated at 2.05 second intervals unless the –nt option is specified. xxxxxxxx is the BEP
timestamp at the most recent science pulse time, and bbbbbbbb are the current LED values.

• Fill error: got ’string’
the character received from the LRCTU doesn’t match the ACIS synchronization string, "fAos". If the –
ep option is selected, this message will be written to stdout in a user pseudopacket (TTAG_USER).
Otherwise, it will be written to stderr.

• Invalid ACIS packet length
the length of the current packet is less than 2 32-bit words or greater than 1024. If the –ep option is
selected, this message will be written to stdout in a user pseudopacket (TTAG_USER). Otherwise, it will
be written to stderr.

• Lost LRCTU frame synch, n bytes to recover
the expected LRCTU synch code (0x55aa) was not received. n bytes were skipped until the next synch was
ACIS Test Tools Rev. 3.1 • 73 of 148June 20, 1997 12:43 pm

UNIX Commands - acispkts
found. If the –ep option is selected, this message will be written to stdout in a user pseudopacket
(TTAG_USER). Otherwise, it will be written to stderr.

• Questionable frame length n
the LRCTU frame length is neither 768 nor 744. If the –ep option is selected, this message will be written
to stdout in a user pseudopacket (TTAG_USER). Otherwise, it will be written to stderr.
74 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - bcmd
10.5 bcmd

NAME

bcmd – translate ACIS command script to binary

SYNOPSIS

bcmd [–V] [–r] [file]

DESCRIPTION

This Perl script reads a script of ACIS commands, checks syntax and field values, and writes the binary output
to stdout, prefixing each command with a 4-byte header specifying the command type and RCTU channel
code.

OPTIONS

–V (show Version) write to stderr the RCS revision number of this command and of the IP&CL used to
generate it.

–r (raw mode) omit the 4-byte prefix to each command, which are all assumed to be software serial
command. The presence of any hardware serial or pulse command will be considered illegal and bcmd
will terminate abnormally.

SYNTAX

The bcmd command scripts obey the following rules: a "#" sign begins a comment and causes the remainder
of the line to be ignored. Blank lines will also be ignored. Each command must appear on a single line, unless
it ends with a "{" sign, in which case it continues on as many lines as necessary to define the block, each
containing a single "keyword = value" statement, and terminating with a line containing a single "}". The
keyword names are identical to those in the IP&CL structures tables.

In the following command lists, the construction "< x | y >" means "necessarily, either x or y".

Software Serial Commands

add n cc badcolumn <{file>
add n te badcolumn <{file>
add n badpixel < {file>
add n patch d d <{file>
change n systemconfig <{file>
continue n uplink <{file>
dump n badpixel
dump n cc
dump n cc badcolumn
dump n dea
dump n huffman
dump n patchlist
dump n systemconfig
dump n te
dump n te badcolumn
dump n window1d
dump n window2d
exec n n
exec n d <{file>
exec n fep d n
exec n fep d d <{file>
ACIS Test Tools Rev. 3.1 • 75 of 148June 20, 1997 12:43 pm

UNIX Commands - bcmd
load n cc d <{file>
load n dea d <{file>
load n te d <{file>
load n window1d d <{file>
load n window2d d <{file>
read n d n
read n fep d d n
read n pram d d n
read n sram d d n
remove n patch <{file>
reset n badpixel
reset n cc badcolumn
reset n te badcolumn
start n cc n
start n cc bias n
start n dea n
start n te n
start n te bias n
start n uplink d d d <{file>
stop n dea
stop n science
wait n
write n d <{file>
write n fep d d <{file>
write n pram d d <{file>
write n sram d d <{file>

Hardware Serial Commands

halt bep
program eeprom n n
run bep
select bep <ab>
select eeprom <programmingtelemetry>
set <warmbootbootmodifier> <offon>
set radiationmonitor <highlow>
verify eeprom n

Hardware Pulse Commands

<openclose> <doorventrelief> <ab>
<openabortcloseabort> <doorvent> <ab>
<enabledisable> <dabakedaheaterdeadoordpapressurereliefvent>

<ab>
<poweronpoweroff> <dabakedaheaterdeadpa> <ab>

Italicized arguments represent user-supplied values; those in normal type must appear unaltered, except that
upper and lower case letters may be freely interchanged, except in file names. All numeric arguments may be
entered as signed decimal integers or, if preceded by "0x", as unsigned hexadecimal integers. If preceded by
"0" alone, they will be interpreted as unsigned octal integers.

Within parameter blocks, i.e. between the "{" and "}" characters, the following fields are determined from
the command line and from other keywords, so they do not need to be specified:

ccBlockSlotIndex
checksum
76 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - bcmd
commandLength
commandIdentifier
commandOpcode
deaBlockSlotIndex
teBlockSlotIndex
windowSlotIndex (in window1d and window2d blocks, only)

When a block contains fixed-length arrays, e.g. fepCcdSelect in teBlock, the values, 6 in this case, must appear
on the same line, i.e.

fepCcdSelect = 0 1 2 3 10 10

When a block contains varying-length arrays of structures, e.g. windows in window2d, the structures must be
defined in the following manner:

load 2 window2d 1 {
 windowBlockId = 0x00000abc
 windows = {
 ccdId = 0
 ccdRow = 50
 ccdColumn = 150
 width = 99
 height = 99
 sampleCycle = 1
 lowerEventAmplitude = 0
 eventAmplitudeRange = 65535
 }
 windows = {
 ccdId = 0
 ccdRow = 250
 ccdColumn = 350
 width = 99
 height = 99
 sampleCycle = 1
 lowerEventAmplitude = 0
 eventAmplitudeRange = 65535
 }
}

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

buildCmds(1), lcmd(1)

DIAGNOSTICS

• command: bad wait time
the waiting time (in seconds) must be a positive integer.

• command: command not implemented
some hardware serial commands, e.g. "set EEPROM", are unimplemented in this version of bcmd.

• command: command packet too long: n bytes
no commands can contain more than 256 words (512 bytes). Longer packets, e.g. large patches, bad pixel
or column table loads, must be split up into smaller data sets and resubmitted.
ACIS Test Tools Rev. 3.1 • 77 of 148June 20, 1997 12:43 pm

UNIX Commands - bcmd
• command: illegal in raw mode
hardware serial and pulse commands are illegal when the –r flag is used.

• command: unknown command
bcmd does not recognize the command, either because of its leading command word or because it is
followed by incorrect keywords.

• command: unrecognized keyword: word
the named word is not legal for this particular command.

• name: bad field offset: bits
the starting offset of a table or data array must be an exact multiple of 16 bits. This error should not occur
in a fully debugged version of bcmd.

• name: field missing from block definition
the input script contained no value for the name field.

• name: illegal field value: n
the value n supplied for field name was outside the limits defined for this field in the IP&CL structures
table.

• name: missing data array
no array or data file was specified for a command that expects one.

• name: wrong number of field values: n, not m
the number of fields supplied for name did not match that in the IP&CL structures table.
78 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - buildCmds
10.6 buildCmds

NAME

buildCmds – generate an ACIS binary command stream

SYNTAX

buildCmds [–a] [–i] [–l item] [–m] [–p] [–?]

DESCRIPTION

buildCmds creates a binary ACIS command stream from a script read from stdin.

OPTIONS

–a output command packets in hexadecimal to stdout. default: output binary to stdout.

–i print the release number of the IP&CL used to generate commands.

–l item
if item is "blockList", print a list of valid parameter block keywords. otherwise, print a list of valid
parameter keywords used to define the parameter block named item.

–m format a single parameter block. Default: buildCmds accepts a series of commands, some of which may
contain parameter blocks

–p omit the 4–byte command type and channel headers. Default: prefix each command block with type
and channel identifiers.

–? print a description of buildCmds options.

COMMAND SCRIPTS

The input script consists of one or more lines of ASCII text. Blank lines, and all text following the first
instance of a ‘#’ character within a line, will be treated as comments and ignored. All other lines must contain
one or more tokens, separated by whitespace (blanks or tabs). The first token must be a recognized command
as listed below. The second token must be a numeric cmdId. All tokens are case insensitive, file names must
be strings in small letters. The underlined tokens indicate values introduced by user, the not underline tokens
are keywords.

The full syntax is as follows:

command cmdId [arg_1 ... arg_n]

command
the action to be executed by the ACIS instrument or by its EGSE.

cmdId
a decimal integer in the range 0-65535, identifying the specific command. It is used to identify the
command reply in the telemetry packets.

The remaining arguments arg_1 ... arg_n depend on the particular command. They are of the following types:

address
a decimal or hexadecimal (‘0x’ prefix) number identifying a memory location.

length
a decimal or hexadecimal (‘0x’ prefix) number specifying the length of a memory segment.

memory
a mnemonic identifying the memory segment to which the action is applied, e.g: bep, fep, pram, or
sram.
ACIS Test Tools Rev. 3.1 • 79 of 148June 20, 1997 12:43 pm

UNIX Commands - buildCmds
memoryId
a mnemonic identifying a subsection of memory by name, e.g: slotid.

param_block
the contents of an ACIS parameter block. Parameter blocks are represented by brace-enclosed
command line lists of the form

{
 parameterBlockName = nameId
 keyword1 = value 1
 keyword2 = value 2
 .
 keywordN = value N
}

The value of the parameterBlockName keyword identifies the type of parameter block. Valid values
are:

• arguments
• badcolumn
• badpixel
• ccblock
• configsetting
• deablock
• patches
• teblock
• window1d
• window2d

The parameterBlockName keyword is required, and must be the first keyword in the block
definition. Keyword values are expressed as decimal or hexadecimal (‘0x’ prefix) integers. Any
number of newlines may appear within the enclosing braces. Some parameter blocks, namely
window1D, window2D, and, deaBlock, contain keywords followed by arrays of structures, each
containing several keywords. In these cases, the special keyword arrayDim must be added
immediately before the array to indicate its dimension.

Within the parameter block, and within each enclosed sub-structure, the order of keywords must follow
the order in the IP&CL tables, i.e. ascending bit offset from the start of the block. Omitted keywords
will be assigned default values—their most recently specified value, or zero if they have not yet been
used in the block.

Each ACIS command must therefore appear on a separate input line. The only exception is that in-line
param_blocks may contain newline characters within the enclosing braces.

SERIAL SOFTWARE COMMANDS

The following commands will be prefixed by a 4-byte header that sends them to the software serial command
port of the DPA.

ADD

This command reads data to add in BEP memory and outputs a binary stream to the standard output, stdout,
which contains the commands in the format requested by the ACIS software.

add cmdId badPixel paramBlock
add set of pixels to Timed Exposure Bad Pixel Map

add cmdId cc badColumn paramBlock
add set of columns to Continuous Clocking Bad Column Pixel Map.
80 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - buildCmds
add cmdId patch patchId address file
add a patch to the specified address corresponding to patchId slot.

add cmdId te badColumn paramBlock
add set of columns to Timed Exposure Bad Column Pixel Map.

When the entire block cannot be stick in one command, the buildCmds subdivides the parameter block into
sections and outputs several commands.

A list of the parameter keywords contained in the parameter block is given in the example section.

Examples:

add 12 cc badColumn {
 paramBlockName = badColumn
 ccdId = 2
 ccdColumn = 34
}

add 23 te badColumn {
 paramBlockName = badColumn
 ccdId = 2
 ccdColumn = 34
 ccdId = 4
 ccdColumn = 5
}

add 15 badPixel {
 paramBlockName = badPixel
 ccdId = 2
 ccdRow = 4
 ccdColumn = 50
 ccdId = 5
 ccdRow = 4
 ccdColumn = 60
}

The two sets: ccdId, ccdColumn, and ccdId, ccdRow, ccdColumn, can be repeated until a maximum
of TBD times. Note that the order of the keywords is significant—ccdId must precede ccdRow, which must
precede the ccdColumn to which it refers.

CHANGE

This command reads the list of parameters to change in the System Configuration parameter block and
outputs a binary stream, stdout, which contains the command in the format requested by the ACIS software.

change cmdId systemConfig paramBlock
request to overwrite the existing system configuration block as indicated by the entries in the
command packet

A list of the parameter keywords contained in the parameter block is given in the example section.

Example:

change 22 systemConfig {
 paramBlockName = configSetting
 itemId = 2
 itemValue = 8
}

The itemId and itemValue, can be repeated until a maximum of TBD times.
ACIS Test Tools Rev. 3.1 • 81 of 148June 20, 1997 12:43 pm

UNIX Commands - buildCmds
CONTINUE

This command reads a binary file containing the data to uplink and outputs a binary stream to the standard
output, stdout, which contains the command and the data to uplink in the format requested by the ACIS
software. The maximum size of the binary file is 249 16-bit words corresponding to one command packet.

continue cmdId uplink file
request to continue the uplink boot using the data contained in the packet

file is the name of a binary file containing the data to uplink.

Example:

continue 35 uplink file

DUMP

This command reads the identification of the memory section to dump and outputs a binary stream to the
standard output, stdout, which contains the command in the format requested by the ACIS software.

dump cmdId badPixel
request to dump the Bad Pixel Map

dump cmdId cc
request to dump every Continuous Clocking parameter block stored in memory

dump cmdId cc badColumn
request to dump the Continuous Clocking Bad Column Pixel Map

dump cmdId dea
request to dump every DEA parameter block stored in memory

dump cmdId huffman
request to dump huffman tables

dump cmdId patchList
request to dump the patchList

dump cmdId systemConfig
request to dump the System Configuration parameter block

dump cmdId te
request to dump every Timed Exposure parameter block stored in memory

dump cmdId te badColumn
request to dump the Timed Exposure Bad Column Pixel Map

dump cmdId window1D
request to dump every window 1D blocks stored in memory

dump cmdId window2D
request to dump every window 2D blocks stored in memory

Example:

dump 35 badPixel
dump 36 cc badColumn
dump 37 te

EXEC

This command reads memory bank, address, and optional arguments of the function to execute and outputs a
binary stream to the standard output, stdout, which contains the command in the format requested by the
ACIS software.

exec cmdId address
request to execute the function located in bep memory at the indicated address
82 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - buildCmds
exec cmdId address argumentBlock
request to execute the function located in bep memory at the indicated address with the
specified arguments

exec cmdId fep fepId address
request to execute the function located in fep memory at the indicated address

exec cmdId fep fepId address argumentBlock
request to execute the function located in fep memory at the indicated address with the
specified arguments

fepId specifies the FEP memory where the function is located. The value is a decimal integer in the range 0-
5. If the fep and fepId keywords are missing, the default memory is BEP.

argumentBlock contains the list of arguments used by the function.

Example:

exec 2 0x1111111
execute the function located in the BEP at address 0x11111111

exec 56 fep 5 0x12345678
execute the function located in the FEP 5 at address 0x12345678

exec 44 0x22222222 {
 paramBlockName = arguments
 functionArguments = 1111
 functionArguments = 3
}

execute the function located in the BEP at the address 0x22222222 with two arguments, 1111 and 3.

exec 24 fep 3 0x1234 {
 paramBlockName = arguments
 functionArguments = 2222
 functionArguments = 5
}

execute the function located in the FEP 3 at the address 0x1234 with two arguments, 2222 and 5.

LOAD

The command reads the parameter block information and outputs a binary stream to the standard output,
stdout, which contains the command in the format requested by the ACIS software.

load cmdId cc slotId paramBlock
request to load the Continuous Clocking parameter block in the specified slot

load cmdId dea slotId paramBlock
request to load the dea parameter block in the specified slot

load cmdId te slotId paramBlock
request to load the Timed Exposure parameter block in the specified slot

load cmdId window1D slotId paramBlock
request to load the window 1-D parameter block in the specified slot

load cmdId window2D slotId paramBlock
request to load the window 2-D parameter block in the specified slot

cc, te, dea, window1D, and window2D are keywords identifying the parameter block to which the action is
applied. In particular, cc specifies the Continuous Clocking parameter block, te the Timed Exposure
parameter block, dea the DEA housekeeping parameter block, window1D and window2D respectively the
Window 1-D and Window 2-D parameter block.
ACIS Test Tools Rev. 3.1 • 83 of 148June 20, 1997 12:43 pm

UNIX Commands - buildCmds
The parameterBlocks "window1D" and "window2D" contain an additional parameter name "arrayDim"
which indicate the number of windows contained in the paramBlock. A list of the parameter keywords
contained in the parameter block is given in the example section. As explained above, keyword order is
significant.

Examples:

load 2 cc 3 {
 paramBlockName = ccBlock
 parameterBlockId = 2030
 fepCcdSelect = 0 1 2 3 4 5
 fepMode = 1
 bepPackingMode = 2
 ignoreBadColumnMap = 1
 recomputeBias = 1
 trickleBias = 0
 rowSum = 8
 columnSum = 6
 overclockPairsPerNode = 8
 outputRegisterMode = 2
 ccdVideoResponse = 1 1 0 1 1 0
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 0 0 0 0
 fep1SplitThreshold = 0 0 0 0
 fep2SplitThreshold = 0 0 0 0
 fep3SplitThreshold = 0 0 0 0
 fep4SplitThreshold = 0 0 0 0
 fep5SplitThreshold = 0 0 0 0
 lowerEventAmplitude = 0
 eventAmplitudeRange = 40
 gradeSelections = 0
 windowSlotIndex = 1
 rawCompressionSlotIndex = 255
 ignoreInitialFrames = 2
 biasAlgorithmId = 2 2 2 2 2 2
 biasRejection = 1 2 4 6 5 6
 fep0VideoOffset = 1000 1000 1000 1000
 fep1VideoOffset = 1000 1000 1000 1000
 fep2VideoOffset = 1000 1000 1000 1000
 fep3VideoOffset = 1000 1000 1000 1000
 fep4VideoOffset = 1000 1000 1000 1000
 fep5VideoOffset = 1000 1000 1000 1000
 deaLoadOverride = 0
 fepLoadOverride = 0
}

load 3 te 2 {
 parameterBlockName = teBlock
 parameterBlockId = 0x2345
84 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - buildCmds
 fepCcdSelect = 0 1 2 3 4 5
 fepMode = 2
 bepPackingMode = 1
 onChip2x2Summing = 0
 ignoreBadPixelMap = 0
 ignoreBadColumnMap = 0
 recomputeBias = 1
 trickleBias = 1
 subarrayStartRow = 0
 subarrayRowCount = 1023
 overclockPairsPerNode = 16
 outputRegisterMode = 0
 ccdVideoResponse = 0 0 0 0 0 0
 primaryExposure = 1
 secondaryExposure = 10
 dutyCycle = 0
 fep0EventThreshold = 100 100 100 100
 fep1EventThreshold = 100 100 100 100
 fep2EventThreshold = 100 100 100 100
 fep3EventThreshold = 100 100 100 100
 fep4EventThreshold = 100 100 100 100
 fep5EventThreshold = 100 100 100 100
 fep0SplitThreshold = 0 0 0 0
 fep1SplitThreshold = 0 0 0 0
 fep2SplitThreshold = 0 0 0 0
 fep3SplitThreshold = 0 0 0 0
 fep4SplitThreshold = 0 0 0 0
 fep5SplitThreshold = 0 0 0 0
 lowerEventAmplitude = 0
 eventAmplitudeRange = 65535
 gradeSelections = 0
 windowSlotIndex = 0
 histogramCount = 0
 biasCompressionSlotIndex = 255 255 255 255 255 255
 rawCompressionSlotIndex = 0
 ignoreInitialFrames = 2
 biasAlgorithmId = 2 2 2 2 2 2
 biasArg0 = 10 10 10 10 10 10
 biasArg1 = 0 0 0 0 0 0
 biasArg2 = 1 1 1 1 1 1
 biasArg3 = 0 0 0 0 0 0
 biasArg4 = 0 0 0 0 0 0
 fep0VideoOffset = 1000 1000 1000 1000
 fep1VideoOffset = 1000 1000 1000 1000
 fep2VideoOffset = 1000 1000 1000 1000
 fep3VideoOffset = 1000 1000 1000 1000
 fep4VideoOffset = 1000 1000 1000 1000
 fep5VideoOffset = 1000 1000 1000 1000
 deaLoadOverride = 0
 fepLoadOverride = 0
}

ACIS Test Tools Rev. 3.1 • 85 of 148June 20, 1997 12:43 pm

UNIX Commands - buildCmds
load 4 dea 4 {
 paramBlockName = deaBlock
 deaBlockId = 123456
 sampleRate = 4
 arrayDim = 2
 ccdId = 5
 queryId = 2
 ccdId = 5
 queryId = 2
}

load 4 window1D 4 {
 parameterBlockName = window1D
 windowBlockId = 45
 arrayDim = 3

 ccdId = 1
 ccdColumn = 2
 width = 4
 sampleCycle = 6
 lowerEventAmplitude = 7
 eventAmplitudeRange = 8

 ccdId = 1
 ccdColumn = 2
 width = 4
 sampleCycle = 6
 lowerEventAmplitude = 7
 eventAmplitudeRange = 8

 ccdId = 1
 ccdColumn = 2
 width = 4
 sampleCycle = 6
 lowerEventAmplitude = 7
 eventAmplitudeRange = 8
}

load 2 window2D 3 {
 paramBlockName = window2D
 windowBlockId = 50
 arrayDim = 3

 ccdId = 0
 ccdRow = 490
 ccdColumn = 490
 width = 20
 height = 20
 sampleCycle = 0
 lowerEventAmplitude = 0
 eventAmplitudeRange = 64535

 ccdId = 0
 ccdRow = 500
 ccdColumn = 500
 width = 100
86 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - buildCmds
 height = 100
 sampleCycle = 1
 lowerEventAmplitude = 0
 eventAmplitudeRange = 64535

 ccdId = 0
 ccdRow = 0
 ccdColumn = 0
 width = 1023
 height = 1023
 sampleCycle = 0
 lowerEventAmplitude = 0
 eventAmplitudeRange = 0
}

READ

The command reads memory bank, address, and number of words to read and outputs a binary stream to the
standard output, stdout, which contains the command in the format requested by the ACIS software.

read cmdId address length
request to read a chunk of bep memory of the indicated length at the specified address

read cmdId fep fepId address length
request to read a chunk of fep memory of the indicated length at the specified address

read cmdId pram ccdId address length
request to read a chunk of pram memory of the indicated length at the specified address

read cmdId sram ccdId address length
request to read a chunk of sram memory of the indicated length at the specified address

The memory bank is identified by the keywords: fep fepId, sram ccdId, and pram ccdId. A missing memory
indicates the bep memory.

address is an hexadecimal or decimal integer indicating the memory address where to start the reading. This
value is in the range 0-0xffffffff for fep and bep memory reading, and in the range 0-0xffff for sram and pram
reading.

length is an hexadecimal or decimal integer indicating the number of words to read. This value is in the range
0-0xffffffff for fep and bep memory reading, in the range 0-0xffff for pram and sram reading.

Example:

read 4 0x103d87a0 40
request to read 40 32-bit words in the bep starting from address 0x103d87a0

read 1 fep 2 0x10003400 2
request to read 2 32-bit words in the fep 2 starting from address 0x10003400

read 2 pram 2 0x2340 5
request to read 5 16-bit words in the pram 2 starting from address 0x2340

read 2 sram 4 0x1fff 5
request to read 5 16-bit words in the sram 4 starting from address 0x1fff

REMOVE

This command reads the identifiers of the patches to remove and outputs a binary stream to the standard
output, stdout, which contains the command in the format requested by the ACIS software.

remove cmdId patch patchBlock
request to remove the patch list contained in the patchBlock

Example
ACIS Test Tools Rev. 3.1 • 87 of 148June 20, 1997 12:43 pm

UNIX Commands - buildCmds
remove 1 patch {
 paramName = patches
 patchId = 1
 patchId = 2
 patchId = 8
}

remove three patches: 1,2,and 8 from the patch list

RESET

This command reads the name of the memory block to reset and outputs a binary stream to the standard
output, stdout, which contains the command in the format requested by the ACIS software.

reset cmdId badPixel
request to reset the bad pixel map

reset cmdId cc badColumn
request to reset the Continuous Clocking bad column map

reset cmdId te badColumn
request to reset the Timed Exposure bad column map

cc, te, badPixel, and badColumn are keywords identifying the memory to reset. In particular, cc badColumn
specifies the Continuous Clocking badColumn map, te badColumn the Timed Exposure parameter
badColumn map.

Examples:

reset 4 badPixel
reset the badPixel Map

reset 6 te badColumn
reset the Timed Exposure badColumn map

reset 10 cc badColumn
reset the Continous Clocking badColumn map

START

This command reads the slotId containing the parameter of the science run to start and outputs a binary stream
to the standard output, stdout, which contains the command in the format requested by the ACIS software.
This command is also used to start DEA housekeeping monitor and uplink boot.

start cmdId cc slotId
request to start the Continuous Clocking science run whose parameters are stored in the
specified slotId

start cmdId cc bias slotId
request to start the Continuous Clocking bias calculation whose parameters are stored in the
specified slotId

start cmdId dea slotId
request to start the DEA Housekeeping monitor whose parameters are stored in the specified
slotId

start cmdId te slotId
request to start the Timed Exposure science run whose parameters are stored in the specified
slotId

start cmdId te bias slotId
request to start the Timed Exposure bias calculation whose parameters are stored in the
specified slotId

start cmdId uplink file
request to start the uplink boot using the data stored in the indicated file
88 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - buildCmds
cc, te, dea, and bias are keywords identifying the parameter block to which the action is applied. In particular,
cc specifies the Continuous Clocking parameter block, te the Timed Exposure parameter block, dea the DEA
housekeeping parameter block.

uplink is a keyword identifying the boot mode.

Examples:

start 22 te 4
start Timed Exposure science run with the parameters stored in slotId 4

start 33 cc 3
start Continous Clocking science run with the parameters stored in slotId 3

start 44 cc bias 0
start Timed Exposure bias calculation with the parameters stored in slotId 0

start 55 te bias 1
start Continous Clocking bias calculation with the parameters stored in slotId 1

start 66 dea 2
start Dea Housekeeping monitor with the parameters stored in slotId 2

start 77 uplink fileName
start the uplink boot with the data contained in the fle fileName

STOP

This command stops science run or DEA Housekeeping monitor. It outputs a binary stream to the standard
output, stdout, which contains the command in the format requested by the ACIS software.

stop cmdId dea
request to stop the currently running DEA Housekeeping monitor

stop cmdId science
request to stop the currently running science exposure

science, and dea are keywords identifying the task to stop.

Examples:

stop 22 science

stop 33 dea

WRITE

This command read a binary file, identifies the memory bank where to write the file content, and outputs a
binary stream to the standard output, stdout, stdout , which contains the command in the format requested by
the ACIS software.

write cmdId address file
request to write the binary file content in the bep memory at the specified address

write cmdId fep fepId address file
request to write the binary file content in the fep memory at the specified address

write cmdId pram ccdId address file
request to write the binary file content in the pram memory at the specified address

write cmdId sram ccdId address file
request to write the binary file content in the sram memory at the specified address

The memory bank to write is identified by the keywords fep fepId, pram ccdId, and sram ccdId. A missing
memory indicates the bep memory.
ACIS Test Tools Rev. 3.1 • 89 of 148June 20, 1997 12:43 pm

UNIX Commands - buildCmds
address is an hexadecimal or decimal integer indicating the memory address where to start the reading. This
value is in the range 0-0xffffffff for fep and bep memory reading, and in the range 0-0xffff for sram and pram
reading.

file is the name of the file containing the data to write in memory. The file size is limited by the memory bank
where the data should be stored. If the data contained in the file cannot be loaded in one command, their
content will be divided into sections and loaded by multiple commands.

Examples:

write 4 0x00002345 asm
write the content of the "asm" file in the bep at the address 0x00002345

write 5 fep 4 0x00000056 bsm
write the content of the "bsm" file in the fep 4 at the address 0x00000056

write 6 pram 4 0x0024 csm
write the content of the "csm" file in the pram 4 at the address 0x0024

write 7 sram 5 0x0034 dsm
write the content of the "dsm" file in the sram 5 at the address 0x0034

SERIAL HARDWARE COMMANDS

The following commands will be prefixed by a 4-byte header that sends them to the hardware serial command
port of the DPA.

HALT

This hardware serial command outputs a binary stream to the standard output stdout, containing the
command in the format requested by the ACIS hardware.

halt bep
request to reset the BEP processor.

RUN

This hardware serial command outputs a binary stream to the standard output stdout, containing the
command in the format requested by the ACIS hardware.

run bep
request to run the BEP processor.

SELECT

This hardware serial command outputs a binary stream to the standard output stdout, containing the
command in the format requested by the ACIS hardware.

select EEPROM programming
request to select EEPROM programmer readout

select EEPROM telemetry
request to select software bi-level telemetry.

select bep bepId
request to select one of the two BEP processor (0 select BEP A, 1 select BEP B).

SET

This hardware serial command outputs a binary stream to the standard output stdout, containing the
command in the format requested by the ACIS hardware.

set bootModifier off
request to clear the bootModifier flag

set bootModifier on
request to set the bootModifier flag
90 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - buildCmds
set radiationMonitor high
request to set the radiation flag

set radiationMonitor low
request to clear the radiation flag

set warmBoot off
request to clear the warm boot flag

set warmBoot on
request to set the warm boot flag

HARDWARE PULSE COMMANDS

The following commands will be sent to the command port of the Power Supply Mechanism Control (PSMC),
as specified in the "CTUE Command Format". Each pulse command has two versions, depending on whether
it is to be sent to the A-side or B-side of the redundant PSMC hardware. These are identified by the id
parameter in the following table, where id must be either "0" for the A-side, or "1" for the B-side.

CLOSE

close door id
close instrument door id

close vent id
close vent subsystem valve id

close relief id
close vent subsystem small valve id

CLOSEABORT

closeabort door id
abort the closing of instrument door id

closeabort vent id
abort the closing of vent subsystem valve id

DISABLE

disable daBake id
disable commands to bakeout heater id

disable daHeater id
disable commands to housing heater id

disable dea id
disable commands to DEA power supply id

disable door id
disable commands to door mechanism id

disable dpa id
disable commands to DPA power supply id

disable pressure id
disable commands to pressure sensor id

disable relief id
disable commands to vent subsystem small valve id

disable vent id
disable commands to vent subsystem valve id

ENABLE

enable daBake id
enable commands to bakeout heater id
ACIS Test Tools Rev. 3.1 • 91 of 148June 20, 1997 12:43 pm

UNIX Commands - buildCmds
enable daHeater id
enable commands to housing heater id

enable dea id
enable commands to DEA power supply id

enable door id
enable commands to door mechanism id

enable dpa id
enable commands to DPA power supply id

enable pressure id
enable commands to pressure sensor id

enable relief id
enable commands to vent subsystem small valve id

enable vent id
enable commands to vent subsystem valve id

OPEN

open door id
open instrument door id

open vent id
open vent subsystem valve id

open relief id
open vent subsystem small valve id

OPENABORT

openabort door id
abort the opening of instrument door id

openabort vent id
abort the opening of vent subsystem valve id

POWEROFF

poweroff dabake id
power off bakeout heater id

poweroff daheater id
power off housing heater id

poweroff dea id
power off DEA power supply id

poweroff dpa id
power off DPA power supply id

POWERON

poweron dabake id
power on bakeout heater id

poweron daheater id
power on housing heater id

poweron dea id
power on DEA power supply id

poweron dpa id
power on DPA power supply id

TURNOFF

turnoff dabake
power off and disable both bakeout heaters
92 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - buildCmds
turnoff dabake id
power off and disable bakeout heater id

turnoff daheater
power off and disable both housing heaters

turnoff daheater id
power off and disable housing heater id

turnoff dea
power off and disable both DEAs

turnoff dea id
power off and disable DEA id

turnoff dpa
power off and disable both DPAs

turnoff dpa id
power off and disable DPA id

TURNON

turnon dabake id
enable and power on bakeout heater id

turnon daheater id
enable and power on housing heater id

turnon dea id
enable and power on DEA id

turnon dpa id
enable and power on DPA id

AUTHOR

Rita Somigliana, MIT CSR <rita@space.mit.edu>
ACIS Test Tools Rev. 3.1 • 93 of 148June 20, 1997 12:43 pm

UNIX Commands - cclient
10.7 cclient

NAME

cclient – send commands to a command server process on a remote host

SYNOPSIS

cclient hostname socket_number

DESCRIPTION

cclient sends commands to a command server process, typically cserver, on a remote host.

EXAMPLES

The following UNIX pipe uses cclient as part of commanding ACIS:

 buildCmds < myCmdScript | sendCmds | writeCCB | cclient poplar 8000

AUTHOR

Ann M. Davis, MIT CSR

STATUS

The current version is working according to specification.
94 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - cserver
10.8 cserver

NAME

cserver – Read data from socket and write it to stdout

SYNOPSIS

cserver socketNumber

DESCRIPTION

This program waits for a connection to its socket, socketNumber, reads data from the connection and writes
the read data to stdout. It continues to read and write data until the connection is broken by the client, and then
waits for a new connect.

OPTIONS

None

RESTRICTIONS

This program can handle only one connection at a time.

FILES

None

SEE ALSO

cclient(1), socket(2), accept(2)

DIAGNOSTICS

Fatal Messages:

Various socket and connection error messages to stderr.

Warning Messages:

None

Informatory Messages:

When waiting for a connection, the program writes "Waiting for Connection" to stderr. Once a
connection is attempted, the program writes a message indicating from which machine the attempt is
being made, to stderr.
ACIS Test Tools Rev. 3.1 • 95 of 148June 20, 1997 12:43 pm

UNIX Commands - diff6
10.9 diff6

NAME

diff6 – compare multiple ACIS binary event files against each other

SYNOPSIS

diff6 [–v] file1 file2 [file3...file6]

DESCRIPTION

This program reads the binary ERV event files generated by psci, and compares them record-by-record. If it
finds a mis-match, it attempts to re-synchronize.

OPTIONS

–v run diff6 in verbose mode, writing informatory messages to stderr. If omitted, only one single error
message will be written at the conclusion of the program.

EXAMPLE

The following pipe uses filterClient to read ACIS telemetry packets from emily, runs them through psci to
decommutate them, generating both data files (the –l flag) and monitor records (the –m flag). The latter are
passed through sciglue to scramble them, and on into monitorScience to display (hopefully) useful statistics
on an X-window display.

filterClient -h emily | psci -v -l run123 -m | sciglue | monitorScience

While monitorScience is displaying fancy stuff on the screen, psci is doing the hard work of unpacking the
bias maps and event files. The latter will be written to a series of disk files with names
"run123.nrun.nfep.erv.dat", where run123 is a prefix inherited from the –l option of psci, nrun is a "science
run index" that is incremented at the start of each science run, and nfep is the index of the particular FEP that
generated the events. After psci has generated an end-of-run message, e.g.

stdin: scienceReport[54321,0] run 1 irig 12345:678 exp 2 fep ok ccd ok
dea 0 bep 1

indicating that the event files have been written successfully, they may be compared by

diff6 -v run123.1.*.erv.dat

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

psci(1)

DIAGNOSTICS

• count mis-matches reported
diff6 has found this number of mis-matches during the

• count records processed from each of count files. No problemo!
The message we hope for, but don’t always get.

• file[rec,exp,row,col] != file[rec,exp,row,col]
a mis-match has occurred: the message includes the file names, the record numbers (starting at 0), and the
exposure number, row, and column recorded in each.
96 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - diff6
• file: no data
the input file was empty.

• file: premature EOF
One (or more) of the input files ended before at least one of the others.

• too many input files
6 is the limit.
ACIS Test Tools Rev. 3.1 • 97 of 148June 20, 1997 12:43 pm

UNIX Commands - dumpring
10.10 dumpring

NAME

dumpring – translate ACIS FEP ring buffer records to ASCII

SYNOPSIS

dumpring [file]

DESCRIPTION

This Perl script reads a FEP ring buffer file and lists its contents in ASCII on the standard output stream,
stdout. If file is omitted, the input is taken from the standard input stream, stdin. Records are indexed by their
exposure number and by the count of records of the same type generated by that exposure. All indices,
including exposure numbers, start at 1. The record and field names are taken from fepBep.h.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

fepBep.h

DIAGNOSTICS

unknown code id for record nexp,nrec
the type code in record nrec of exposure number nexp is invalid.

BUGS

• the contents of raw image rows and histograms are not reported.
98 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - fepCtlTest
10.11 fepCtlTest

NAME

fepCtlTest – simulate ACIS front end processor

SYNOPSIS

fepCtlTest [file]

DESCRIPTION

This command subjects the high-level ACIS front end processor software to a series of tests, directed by a
script read from file, or, if omitted, from the standard input stream , stdin. All input lines are echoed to stderr,
with the following additional output, detailing the interaction between the FEP and the (simulated) BEP:

BEP COMMAND name [parm ...]
a command has been received from the simulated BEP mailbox

FEP REPLY TYPE=type CODE=retc
the FEP is replying to a BEP type command with a return code retc.

FEP REPLY TYPE=type MODE=mode BIAS=flag PARITY=addr OCLK=(n,n,n,n)
the FEP is replying to a BEP_FEP_CMD_STATUS command.

file: usec user ssec sys
an image frame has been processed, using usec seconds of user CPU time and ssec seconds of system
CPU time.

file: bias0 = { n, n, n, n }
A bias map has been calculated. The initial overclock averages are shown.

EOF on stdin
The input script has been processed.

COMMAND LANGUAGE

dumpbias file
write a bias map to file in FITS format.

exec cmd execute a BEP command. The names are as defined in the IP&CL nodes, e.g.
BEP_FEP_CMD_STATUS, BEP_FEP_CMD_PARAM, etc.

fidpix = row col ...
define one or more fiducial pixels.

fidpix = bad
issue a null-length fiducial-pixel command.

param name = val
set an internal parameter field. name is a member of the FEPparmBlock structure as defined in
fepBep.h, i.e. type, nrows, etc.

reset ctr
reset an internal counter. Currently, only wakeup is implemented.

set buf[row,col] = val
set the row and col element of buf (either "bias" or "biasparity") to val.

set input = file
read data from the FITS image. file should contain "%d" to be replaced with the exposure number.
ACIS Test Tools Rev. 3.1 • 99 of 148June 20, 1997 12:43 pm

UNIX Commands - fepCtlTest
set maxfile = n
set limit to input files

set output = file
write ring buffer to file

set overclocks = p1,p2, ...
specify ranges of overclock pixels

set pixels = p1,p2, ...
specify ranges of data pixels

set rows = r1,r2
specify range of input rows

stuff param name = val
set FEP parameter field

xor buf[row,col] = val
XOR value into a buffer Notes: The "param" command sets fields within the parameter block that will
be sent to the FEP by "exec BEP_FEP_CMD_PARAM", whereas the "stuff" command updates the
field directly in the FEP’s FEPparmBlock parameter block, which tests the ability of the software to
detect damaged parameters after they have been loaded.

The only "ctr" is "wakeup" which causes FIOgetNextCmd() to simulate BEP commands arriving while
a FEP mode is running.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

dumpring(1), tlmsim(1)

DIAGNOSTICS

Bad xor command: text
the command must specify a legitimate row and column address

Unknown call: name
the entry point name is unrecognized

Unknown command: text
the command is unrecognized

file: bad bias checksum: n
the bias map checksum is invalid

file: bad rows value: n < n-1
the row count requested is incompatible with the FITS image size

file: file count exceeded
no more image files will be read in the current science run

file: too few rows: n < n
the row count requested is incompatible with the FITS image size
100 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - fepImage2
10.12 fepImage2

NAME

fepImage2 – Load an image into a Unix FEP Simulation

SYNOPSIS

fepImage2 fepId sequencer

DESCRIPTION

This program reads a DEA to FEP pixel stream from stdin and feeds the image to a running Unix FEP
simulation process, which is simulating the FEP indicated by fepId. A Unix FEP simulation process (see
acisFepUnix(1)) must be running with the same fepId prior to using this program. The input for this program
can be produced using several programs, including genObjectImage and loadFitsImage.

OPTIONS

None

RESTRICTIONS

This program is currently only supported for the DECstations running Ultrix.

FILES

None

SEE ALSO

acisFepUnix(1), genObjectImage(1), loadFitsImage(1), ipcs(1), ipcrm(1)

DIAGNOSTICS

Fatal Messages:

If the system attempts to write a pixel beyond the end the image memory (due to some internal error, or
to a badly formed input image), the program write print the contents of some key FEP register values
(from shared memory) to stderr and exit with a -1 exit code.

Warning Messages:

None

Informatory Messages:

If the program would be blocked by the FEP when trying to write an image, rather than discard the image,
the program prints a "Dummy Image VSYNC - Sleep 3" message to stderr and then sleeps for 3 seconds.
It will then re-attempt to load the image. This will continue indefinitely until either the FEP accepts the
image, or until the program is aborted (usually via a Ctrl-C).

As the program loads the image into the FEP, it prints the current image start row, CCD start row and
Row Count values used for the load to stdout.
ACIS Test Tools Rev. 3.1 • 101 of 148June 20, 1997 12:43 pm

UNIX Commands - filterClient
10.13 filterClient

NAME

filterClient – receive ACIS telemetry from filterServer socket

SYNOPSIS

filterClient [–D] [–h host] [–m mode] [–p port]

DESCRIPTION

This Perl script makes a TCP connection to the specified filterServer port, and copies packets of type mode
to the standard output stream, stdout.

OPTIONS

–D run filterClient in debug mode.

–h host
specifies the name of the host running filterServer. If omitted, this is assumed to be the local machine

–m mode
selects the type of telemetry packets to be extracted from filterServer. mode is a string of between one
and four letters, as follows:

s science telemetry
e engineering pseudo-packets
p science frame pseudo-packets
h DEA housekeeping packets

If omitted, the default is seph, i.e. extract all types of packet.

–p port
specifies the port number on the filterServer host. If omitted, the default is 7002.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

processScience(1)
102 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - filterServer
10.14 filterServer

NAME

filterServer – Distribute ACIS telemetry to TCP clients

SYNOPSIS

filterServer [–D] [–S] [–b size] [–l file] [–n num] [–p port] [–v]

DESCRIPTION

This Perl script reads ACIS telemetry from its standard input and accepts connections from filterClient
processes. It writes the buffered telemetry to each connected client, until that client disconnects. If an end-of-
file occurs on its standard input, it disconnects all clients immediately.

OPTIONS

–D run filterServer in debug mode, writing all I/O activity to the log file (if –l was specified), or to stderr
if it wasn’t. –D implies –v.

–S sleep for 0.1 second after reading each input packet. This is intended to aid in debugging the filterClient
process.

–b size
specifies the maximum size of each client’s telemetry buffer. If a client’s buffer grows larger than this
amount, the socket to the client will be broken. The default is 1 MByte.

–l filewrite a list of socket activity (opens and closes) to the log file (if –l was specified), or to stderr if it
wasn’t. –l implies –v.

–n num
specify the maximum number of concurrent connections. The default is 8.

–p port
specify the number of the TCP port on which filterServer listens for connections. The default is 7002.

–v write a list of socket activity (opens and closes) to stderr.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

filterClient(1)
ACIS Test Tools Rev. 3.1 • 103 of 148June 20, 1997 12:43 pm

UNIX Commands - genObjectImage
10.15 genObjectImage

NAME

genObjectImage – generate an ACIS pixel image from an ASCII script

SYNOPSIS

genObjectImage [–D] [–c cols] [–e] [–m mode] [–n count] [–o oclks]
[–r rows] [–s iseed] [–u] [–v] [infile [outfile]]

DESCRIPTION

genObjectImage reads commands from infile (or, if omitted, from stdin), and generates a stream of pixels to
outfile (or, if omitted, to stdout), in a format suitable for passing to the ACIS Image Loader.

OPTIONS

–D for debugging purposes, writes the output in the form of a FITS image file, in the native byte ordering
of the CPU, with the rows running top to bottom and the nodes, columns and overclocks from left to
right, beginning with the columns and ending with the overclocks. For example, for 4 nodes (mode =
ABCD), the four columns will be followed by the 4 sets of overclocks. Each set will be separated by a
null pixel; two rows of null pixels will separate the columns from the overclocks. Pixel ordering within
each column follows the CCD mapping order, i.e. nodes B and D are not reversed. Pixel OP codes (bits
0–3) are set to zero and VSYNC, HSYNC, and NOOP pixels are suppressed.

–c cols
specifies the number of columns per output node, overriding any "columns =" statement in the input
script. If omitted entirely, the number depends on the "mode", 256 for ABCD, 512 otherwise.

–e instructs genObjectImage to write a Last Pixel Flag (LPF) code at the end of the output stream, telling
the frame buffer to start loading its data into the instrument. This flag must always be specified on the
last, or only invocation of genObjectImage to load the frame buffer.

–m mode
selects the CCD quadrant readout mode that is to be simulated, overriding any "mode =" statement in
the input script. mode must be either "ABCD", "AC", or "BD" (or their lower case equivalents). If
omitted entirely, the default is "ABCD".

–n count
commands the frame buffer to write the following data to the instrument a total of count times. If
omitted, the frame buffer loops continuously until reset. This option can only be specified on the first
of a series of invocations of genObjectImage when loading the frame buffer.

–o noclks
specifies the number of overclocks to be used per quadrant, overriding any "overclocks =" statement in
the input script. If omitted entirely, the default is 4.

–r rows
specifies the number of rows in the output image, overriding any "rows =" statement in the input script.
If omitted entirely, the default is 1024.

–s seed
specifies a seed integer to be used to start the random number generator, overriding any "seed ="
statement in the input script. If omitted entirely, the default is the value returned by a call to the time()
function.

–u omits the special image-loader codes. No compression is possible; stdout contains only valid FEP pixel
codes.
104 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - genObjectImage
–v runs genObjectImage in verbose mode, writing a description of each node and display object to stderr,
and summarizing the number of pixels in the output image.

INPUT SCRIPTS

A script consists of a series of ASCII statements of the form

keyword = value . . .

followed by zero or more object "call-outs" of the form

object row column

which will be described below. The script statements are case-insensitive—upper and lower case characters
may be freely mixed. Each statement must appear on a separate line, but may be surrounded by any number
of blanks and tabs. Any number of spaces or tabs may separate statement arguments.

Null lines, lines containing only whitespace, and lines whose first non-whitespace character is ’#’, are
interpreted as comments, and ignored.

The statements are grouped logically into five classes:

• Global Parameter Assignments
These statements affect the entire output image. All except wedge and noop may be overridden by
options on the genObjectImage command line, as described above.

columns = ival
The number of pixels to write for each output node. This may be overridden by the –c option.
The default value is determined by the mode: 256 if ABCD, otherwise 512.

mode = string
The CCD output shift register mode to be simulated. Possible string values are ABCD, AC,
and BD. This may be overridden by the –m option. The default value is ABCD.

noop = ival where what
The number of NOOP pixels to write between various parts of the output pixel stream. where
may be either before or after. what may be either vsync, hsync, or oclks. That number of
NOOPs will be written (for each of the 4 output nodes) before or after VSYNC or HSYNC OP
codes, or before or after writing each row’s overclock section.

overclocks = ival
The number of overclock pixels to write for each output node. This may be overridden by the
–o option. The default value is 4.

rows = ival
The number of rows of pixels to write. This may be overridden by the –r option. The default
value is 1024.

seed = ival
An integer to initialize the random number generator used when dbias or doverclock is non-
zero.

wedge = drow dcol drowcol
Adjust all pixels in this image by adding

drow * irow + dcol * icol + drowcol * irow * icol

where the row index, irow, varies from 0 for the first row to rows–1 for the last, and the column
index, icol, varies from 0 for the first pixel of node A to (nodes * columns – 1) for the first
pixel of node D. This statement allows genObjectImage output to mimic various CCD
behaviors, e.g., light leaks.

• Node Blocks
A node block, a group of statements delimited by "begin node" and "end node" statements, should be
specified for each CCD output node that is to be simulated. It is good practice to define all 4, A, B, C,
and D, even when the mode is AC or BD, since you may want to override it on the command line. The
ACIS Test Tools Rev. 3.1 • 105 of 148June 20, 1997 12:43 pm

UNIX Commands - genObjectImage
contents of the node block generates the background pixel and overclock values, on which the other
display object are superimposed.

begin node = char

bias = ival
Initialize all data pixels (but not overclocks) in this node to the integer value, ival. This serves
as a base on which to apply various adjustments.

dbias = fval
Adjust all pixels in this node by adding a zero-mean Gaussian random variable of variance
fval. This mimics the real variability of CCD pixel values.

overclock = ival
Initialize all overclocks in this node to the integer value, ival. This serves as a base on which
to apply various adjustments.

doverclock = fval
Adjust all overclocks in this node by adding a zero-mean Gaussian random variable of
variance fval.

end node = char

• Event Blocks
Each event block, a group of statements delimited by "begin event" and "end event" statements, defines
an array of integers to be added to the CCD pixel array. Each block is named, and these names are used
later in the script (see "Object Call-outs", below) to perform this task, perhaps many times at different
image locations.

begin event = name

columns = ival
The width of the values array.

rows = ival
The height of the values array.

values = ival ival...ival
A series of columns × rows integer values to be added to the CCD pixel image. The values are
supplied in row-major order, i.e. the first row values are followed by the second row, and so
on. Within a row, the values are in ascending column order.

end event = name

• Blob Blocks
A blob block, a group of statements delimited by "begin blob" and "end blob" statements, specifies an
elliptical artifact to add to the CCD image. It is defined by its width, height, orientation angle, and
maximum (additional) pixel value. The blob is modeled as a double Gaussian in width and height. Each
block is named, and these names are used later in the script (see "Object Call-outs", below) to perform
this task, perhaps many times at different image locations.

begin blob = name

angle = fval
The rotation angle of the blob, in degrees counter-clockwise.

height = fval
The Gaussian width of the blob in the column direction, before rotating through angle.

value = fval
The additional pixel value of the center of the blob.

width = fval
The Gaussian width of the blob in the row direction, before rotating through angle.

end blob = name
106 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - genObjectImage
• Object Call-outs
Zero or more statements of the form

name row column

where name represents a previously defined object (event or blob) which is to be added to the CCD
image, centered at row and column. These call-outs are necessary for adding events and blobs—merely
defining them in "begin" blocks won’t affect the image because their centers are undefined.

SCRIPT EXAMPLE

#
General Image Parameters
#
Rows = 1024
Columns = 256
Mode = ABCD
Overclocks = 4
Seed = 12345678
#
Simulated light leak
#
Wedge = 0.001 -0.0025 0.000001
#
Add NOOPs before and after SYNC codes
#
Noop = 4 before VSYNC
Noop = 4 after VSYNC
Noop = 2 before Oclks
Noop = 2 before HSYNC
Noop = 2 after HSYNC
#
Describe the CCD output nodes
#
Begin Node = A
 Bias = 230
 dBias = 5
 OverClock = 190
 dOverClock = 2
End Node = A

Begin Node = B
 Bias = 230
 dBias = 5
 OverClock = 190
 dOverClock = 2
End Node = B

Begin Node = C
 Bias = 230
 dBias = 5
 OverClock = 190
 dOverClock = 2
End Node = C
ACIS Test Tools Rev. 3.1 • 107 of 148June 20, 1997 12:43 pm

UNIX Commands - genObjectImage
Begin Node = D
 Bias = 230
 dBias = 5
 OverClock = 190
 dOverClock = 2
 End Node = D
#
Define an X-ray event
#
Begin Event = event_1
 Rows = 3
 Columns = 3
 Value = 0 0 0 0 1500 0 0 0 0
End Event = event_1
#
Define a split X-ray event
#
Begin Event = event_2
 Rows = 3
 Columns = 3
 Value = 0 0 0 0 1000 500 0 0 0
End Event = event_2
#
Define a "bloom" event
#
Begin Blob = bloom
 Width = 8
 Height = 16
 Angle = 30
 Value = 1000
End Blob = bloom
#
Insert some events into the image
#
event_1 100200
event_1 475891
bloom 25129
event_2 100131
end of script

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

Frame Buffer Specification, ACIS Memo, M. Doucette, MIT, October 27, 1995.

The Coordinate System of ACIS FITS Files, ACIS Memo, J. W. Woo and S. E. Kissel, MIT, December 7,
1994.

DIAGNOSTICS

• bad blob statement: statement
unrecognized statement within a "blob" block.
108 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - genObjectImage
• bad blob name: name
the name in an "end blob" statement must match that in the preceding "begin blob" statement. "begin"
blocks may not be nested.

• bad event statement: statement
unrecognized statement within an "event" block.

• bad event name: name
the name in an "end event" statement must match that in the preceding "begin event" statement. "begin"
blocks may not be nested.

• bad keyword: name
the "noop" value must be followed by "before" or "after", which must be followed in turn by either
"hsync", "vsync", or "oclks".

• bad node statement: statement
this statement is illegal within "begin node" and "end node" statements.

• bad node: char
the node designator must be a single character in the range ’A’ through ’D’ (or equivalently ’a’ through
’d’). The node name in an "end node" statement must match that in the preceding "begin node". "begin"
blocks may not be nested.

• bad value[n]: value
the n’th item in the "values =" list of an "event" block is invalid.

• duplicate blob: statement
object names (events and blobs) must be unique.

• duplicate event: statement
object names (events and blobs) must be unique.

• misplaced statement: statement
"begin" blocks may not be nested.

• missing columns
the "event" block must contain a "columns =" statement.

• missing height
the "blob" block must contain a "height =" statement.

• missing rows
the "event" block must contain a "rows =" statement.

• missing value
the "blob" block must contain a "value =" statement.

• missing values
the "event" block must contain a "values =" statement.

• missing width
the "blob" block must contain a "width =" statement.

• negative value: statement
variances (dbias and dover) must be non-negative.

• unknown statement: statement
the statement is unrecognized.

• unknown mode: statement
the mode is unrecognized. Valid values are "ABCD", "AC", "BD", and their lowercase equivalents.
ACIS Test Tools Rev. 3.1 • 109 of 148June 20, 1997 12:43 pm

UNIX Commands - genPixelImages
10.16 genPixelImages

NAME

genPixelImages – generate an ACIS image from a command script

SYNTAX

genPixelImages [–n] [–?]

DESCRIPTION

genPixelImages reads input commands from stdin and writes images to stdout in a format suitable for
transferring to an "Image Loader". This format consists of 16 bit-words containing frame-buffer directives,
FEP synchronization codes, and pixel and overclock values. Each image begins with four VSYNC codes and
may contain from 1 to 1024 "rows", each beginning with four HSYNC codes. Each row may contain between
4 and 1024 "columns", divided into "nodes" (four in "ABCD" mode, two in either "AC" or "BD" mode), and
followed by 0 to 15 pairs of overclocks per node. Note that the fourth, diagnostic, clocking mode generates
no pixel values. It is therefore simulated by "ABCD" mode and no separate genPixelImages option is
required.

Before generating any output, genPixelImages verifies (1) that the dimension of the images (number of rows,
columns, and overclocks) are within ACIS constraints; (2) that the number and position of pixels and
overclocks correspond to the image requested, i.e. each row contains the required number of pixels, followed
by the required number of overclocks; (3) that each repeatRowBlock command operates on one or more
whole rows.

OPTIONS

–n do not reorder the image bytes.

–? print option list

COMMAND SCRIPTS

The stdin commands consist of lines of ASCII text obeying a formal grammar. Each output image is described
by a statement of the form

row n col m overclock o mode pixelDefinition

where n, m, and o are integers (m and o must be even) and mode specifies the CCD readout node
configuration-ABCD, AC, or BD. These are followed on the same line by pixelDefinition- a series of
commands that define the pixels and overclocks that will comprise the image.

The basic commands are

p v

which defines a single pixel with value v (an integer between 0 and 4095), and

c v

which defines a single overclock with value v (also an integer between 0 and 4095). A pixel or overclock
value may be repeated by preceding the p or c command by r, e.g.

r n p v

generates a sequence of n pixels, each of value v. r, p, and c commands may be grouped by enclosing them
in parentheses and repeated by prefixing the group with a repeatSec command, e.g.

repeatSec i (r n p v r m c v)
110 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - genPixelImages
repeats the commands within the parentheses a total of i times. This process continues until one or more full
rows have been defined. A group of rows may be repeated with the repeatRowBlock command, e.g.

repeatRowBlock n [
 repeatSec n (r n p v r n p v)
 repeatSec n (r n p v r n c v)
]

Note that the repeatSec commands are grouped by enclosing them in square brackets. Similarly,
repeatRowBlock commands may be grouped by enclosing them within braces, e.g.

row 200 col 1024 overclock 4 ac {
 repeatRowBlock 50 [
 repeatSec 2 (
 r 100 p 1 r 100 p 2 r 100 p 3 r 100 p 4 r 100 p 5
 r 100 p 6 r 100 p 7 r 100 p 8 r 100 p 9 r 100 p 10
 r 24 p 11 c 30 c 31 c 32 c 33
)
]
 repeatRowBlock 50 [
 repeatSec 2 (r 100 p 20 r 100 p 30 r 824 p 40 r 4 c 34)
]
}

The last image must be followed by an end command. Blank lines, and all text between a "#" character and
the end of that line, will be treated as comments and ignored.

genPixelImages locates each pixel in the 2-dimensional coordinate system of n rows and m columns defined
by the physical CCD image store. Since the pixels are simultaneously sampled by 2 or 4 output nodes,
genPixelImages must rearrange the pixel order according to the output node configuration. It also outputs
VSYNC codes before each image, HSYNC codes before each row, and, only in AC or BD readout mode, a
"null" pixel between each data pixel. It can also be instructed to add "null" pixels before or after
synchronization codes, e.g.

row 8 col 8 overclock 4 delay vsync before 3 abcd [
 repeatSec 2 (r 8 p 1 r 4 c 10)
 repeatSec 3 (r 4 p 2 r 4 p 8 r 4 c 30)
 repeatSec 3 (r 8 p 3 r 4 c 20)
]

If genPixelImages is invoked with the single command go, it instructs the Frame Buffer to keep sending to
the FEPs the image or images currently stored in its buffer, until commanded to halt. Alternatively, the image
definitions may be prefixed with repeatFile n to repeat the images exactly n times. If this is omitted, the
images will be repeated until the Frame Buffer is commanded to halt,

(genPixelImages <<EOF
repeatFile 1 row 8 col 8 ac {
 repeatRowBlock 8 [
 repeatSec 1 (p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8)
]
}
end
EOF
) | putImages

DETAILED EXAMPLES
ACIS Test Tools Rev. 3.1 • 111 of 148June 20, 1997 12:43 pm

UNIX Commands - genPixelImages
The reported examples show the correspondence between input commands and pixel image represented by
them, and illustrate the available command to control the transfer of the image to the "Frame Buffer".

Pixel Pattern

This example shows the use of pixel and overclock patterns with and without repetitions to define
pixel image.

row 3 col 4 overclock 4 abcd (
 p 100 p 200 p 250 p 200 r 4 c 120
 r 4 p 240 r 4 c 130
 r 4 p 150 c 100 c 110 c 120 c 130
)

Image size: 3x4 + 4 overclocks. Image values row by row:

100 200 250 200 120 120 120 120
240 240 240 240 130 130 130 130
150 150 150 150 100 110 120 130

repeatSec

This example shows the use of repeatSec to define rows.

row 9 col 8 overclock 4 abcd [
 repeatSec 3 (r 8 p 40 r 4 c 15)
 repeatSec 2 (r 1 p 100 r 1 p 150 r 1 p 100 r 1 p 10)
 repeatSec 1 (r 4 c 8)
 repeatSec 2 (r 1 p 120 r 1 p 250 r 1 p 120 r 1 p 10)
 repeatSec 1 (r 4 c 8)
 repeatSec 2 (r 1 p 120 r 1 p 250 r 1 p 120 r 1 p 10)
 repeatSec 1 (r 4 c 8)
 repeatSec 3 (r 8 p 40 r 4 c 6)]
end

Image size: 9x8 + 4 overclocks per row.

Image values row by row:

 40 40 40 40 40 40 40 40 6 6 6 6
 40 40 40 40 40 40 40 40 6 6 6 6
 40 40 40 40 40 40 40 40 6 6 6 6
 100 150 100 10 100 150 100 10 8 8 8 8
 120 250 120 10 120 250 120 10 8 8 8 8
 100 150 100 10 100 150 100 10 8 8 8 8
 40 40 40 40 40 40 40 40 6 6 6 6
 40 40 40 40 40 40 40 40 6 6 6 6
 40 40 40 40 40 40 40 40 6 6 6 6

repeatRowBlock

This example shows the use of repeatRowBlock to generate images containing multiple equal blocks
of rows

row 14 col 8 overclock 2 ac {
repeatRowBlock 2 [
 repeatSec 2 (r 8 p 10 r 2 c 8)
 repeatSec 2 (r 1 p 100 r 1 p 150 r 1 p 100 r 1 p 10)
 repeatSec 1 (r 2 c 10)
 repeatSec 2 (r 1 p 120 r 1 p 200 r 1 p 120 r 1 p 10)
 repeatSec 1 (r 2 c 12)
112 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - genPixelImages
 repeatSec 2 (r 1 p 100 r 1 p 150 r 1 p 100 r 1 p 10)
 repeatSec 1 (r 2 c 10)
 repeatSec 2 (r 8 p 10 r 2 c 8)]
repeatRowBlock 2 [
 repeatSec 1 (r 8 p 10 r 2 c 8)
 repeatSec 2 (r 1 p 100 r 1 p 150 r 1 p 100 r 1 p 10)
 repeatSec 1 (r 2 c 10)
 repeatSec 2 (r 1 p 120 r 1 p 200 r 1 p 120 r 1 p 10)
 repeatSec 1 (r 2 c 10)
 repeatSec 2 (r 1 p 100 r 1 p 150 r 1 p 100 r 1 p 10)
 repeatSec 1 (r 2 c 10)
 repeatSec 2 (r 8 p 10 r 2 c 8)]
}
end

The image size: 10x8 + 2 overclocks

The image values row by row:

 8 8 8 8 8 8 8 8 8 8
 8 8 8 8 8 8 8 8 8 8
100 150 100 10 100 150 100 10 10 10
120 200 120 10 120 200 120 10 10 12
100 150 100 10 100 150 100 10 12 10
 8 8 8 8 8 8 8 8 8 8
 8 8 8 8 8 8 8 8 8 8
 8 8 8 8 8 8 8 8 8 8
 8 8 8 8 8 8 8 8 8 8
100 150 100 10 100 150 100 10 10 10
120 200 120 10 120 200 120 10 10 12
100 150 100 10 100 150 100 10 12 10
 8 8 8 8 8 8 8 8 8 8
 8 8 8 8 8 8 8 8 8 8

Delay

This example show the use of delay to introduce time delays before beginning to image transfer.

row 8 col 8 overclock 4 delay vsync before 3 after 2 abcd [
 repeatSec 2 (r 8 p 100 r 4 c 10)
 repeatSec 3 (r 4 p 200 r 4 p 100 r 4 c 15)
 repeatSec 3 (r 8 p 150 r 4 c 120)]
end

The image loading is delayed by the insertion of three NULL pixels before and two after the VSYNC
code. No delay is introduced between rows.

repeatFile

This example shows the use of repeatFile to send the same file multiple times to the "Frame Buffer".

repeatFile 2 row 22 col 8 overclock 4 abcd {
repeatRowBlock 2 [
 repeatSec 2 (r 8 p 1 r 4 c 10)
 repeatSec 3 (r 4 p 2 r 4 p 3 r 4 c 30)
 repeatSec 3 (r 8 p 4 r 4 c 20)]
repeatRowBlock 3 [
 repeatSec 2 (r 8 p 5 r 4 c 33)]
ACIS Test Tools Rev. 3.1 • 113 of 148June 20, 1997 12:43 pm

UNIX Commands - genPixelImages
}
end

The output image is preceded by a keyword requesting the "Frame Buffer" to repeat the loading of
the same image twice.

AUTHOR

Rita Somigliana, MIT CSR <rita@space.mit.edu>

SEE ALSO

genObjectImage(1), loadFitsImage(1), putImages(1)
114 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - getPackets
10.17 getPackets

NAME

getPackets - read AXAF-I telemetry frames and extract ACIS-related information

SYNOPSIS

getPackets

DESCRIPTION

getPackets reads a stream of AXAF-I telemetry frames from its standard input and writes a stream of ACIS
telemetry packets and pseudo-packets to its standard output. getPackets typically receives AXAF-I telemetry
frames from SHIM. It extracts ACIS-related information and passes it to its client, which is typically
filterServer. getPackets processes only AXAF-I telemetry formats 1 and 2. It accepts but ignores all other
formats. It must first identify the current telemetry format –– either 1 or 2. In the former, ACIS science data
is being generated at 512 bits/sec; in the latter at 24 Kbits/sec. In both cases, getPackets assembles the serial
telemetry from ACIS, locates the individual packets by their synch words and lengths, and writes them to
filterServer as a stream of separate logical records. getPackets also sends filterServer two types of "pseudo-
packet", i.e. records whose format mimics genuine ACIS telemetry packets but whose Format Tag codes are
distinguished from those used by the instrument itself.

One type, the Science Frame Pseudo-Packet, contains telemetry-generated and ACIS-generated timestamps.

The other, the Engineering Pseudo-Packet, contains ACIS and other AXAF-I engineering data that resides
in the non-science areas of the telemetry frames. getPackets determines the content of the engineering
pseudo-packet by reading a file at run time. This file specifies the locations in the AXAF-I telemetry frames
of the telemetry mnemonics that getPackets will extract and write as engineering pseudo-packets. The FILES
section below explains how to specify which file getPackets will use.

The interface between getPackets and its various clients (via the filterServer/filterClient combination) may
be described as a single stream of binary bytes, with no timing constraints. getPackets writes a stream of
telemetry packets and pseudo-packets to standard output. These are passed through filterServer to each
filterClient, which writes a user-selected sub-set to its standard output. The four packet types that getPackets
writes are: "ACIS Science Packets", "ACIS Analog Housekeeping Packets", "Science-Frame Pseudo-
Packets", and "Engineering Pseudo-Packets". Each packet consists of a telemetry header followed by
application data, as defined in the IP&CL. The header formats and contents are defined in Table 26.

All fields are written in "little-endian" format, e.g. the packet synch word, 0x736f4166, is written as 4 bytes,
0x66, 0x41, 0x6f, and finally 0x73. The contents of all packets originating within ACIS are defined in the

TABLE 26. Header Format and Content

Packet Header
Fields

Field Length
(bits)

Science or
Housekeeping Packet

Science Frame
Pseudo-Packet

Engineering
Pseudo-Packet

Synch 32 0x736f4166 0x736f4166 0x736f4166

Length 10 Varying1

1. The packet length (number of 32 bit words) varies with the contents.

7 Varying1

Format Tag 6 Varying 62 61

Sequence Number 16
incremented by 1 for each

packet in the telemetry stream
02

2. The sequence number of a pseudo-packet is always zero.

02
ACIS Test Tools Rev. 3.1 • 115 of 148June 20, 1997 12:43 pm

UNIX Commands - getPackets
IP&CL. The data portion of the Science Frame pseudo-packet is described in Table 27 and that of the
Engineering pseudo-packet in Table 28. .

The 6-byte IRIG-B timestamp in the AXAF-I minor frame is the result of packing 4 separate bit fields into
a 48-bit string. However, getPackets treats the 6 bytes of the IRIG-B timestamp as 3 unsigned 16-bit integers.
It copies them into the Engineering Pseudo-Packet and converts them to little-endian format, which is the
ACIS standard. Table 29 describes how to decipher the Engineering Pseudo-Packet’s irigb field.

Each packet will be written to the getPackets standard output stream as soon as the last data byte that
contributes to it is read from SHIM. A Science Frame Pseudo-Packet will be written after the last byte of each

TABLE 27. Science Frame Pseudo-Packet Format and Content

Field
Name

Source filterClient
Output
Format

Description
Location Start Lengt

h

format
Virtual Channel

ID
bit 10 3 bits unsigned int

Frame format identifier, either 1
(signifying 512 bps) or 2 (24

kbps), i.e. the AXAF tlm code +
1.

major-
FrameId

CCSDS Header bit 16 17 bits unsigned int
Virtual Channel Data Unit Major

Frame Count (0 to 131071)

minor-
FrameId

CCSDS Header bit 33 7 bits unsigned short
Virtual Channel Data Unit Major

Frame Count (0 to 127)

irigb Science Header
byte
32

6 bytes
unsigned short

[3]
Time (msec) from the IRIG-B

interface

bepSciTime
Science Data

byte
56 4 bytes unsigned int

Latched version of the BEP sci-
ence pulse 1 MHz timestamp

Next-in-line Data TBD

TABLE 28. Engineering Pseudo-Packet Format and Content

Field
Name

Source filterClient
Output
Format

Description
Location Star

t
Lengt

h

format
Virtual Channel

ID
bit
10

3 bits unsigned int
Frame format identifier, either 1
(signifying 512 bps) or 2 (24

kbps), i.e. the AXAF tlm code + 1.

majorFrameId CCSDS Header
bit
16

17 bits unsigned int
Major Frame Counter (0 to

131071)

followed by an array of one or more elements, each consisting of the following fields

data
Variable location

within major
frame

var 8 bits
 unsigned

char
Engineering data

minorFrameId CCSDS Header
bit
33

7 bits
unsigned

char
Virtual Channel Data Unit Frame

Counter (0 to 127)

minorFrame-
Byte

unsigned
short

Byte number in the minor frame (0
to 1024)
116 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - getPackets
complete minor frame that contains a science data area header has been read. An Engineering Pseudo-Packet
will be written after the last byte of each complete major frame is read.

EXAMPLES

The following UNIX pipe uses getPackets as part of commanding the ACIS instrument:

... | buildCmds | sendCmds | shim lrctu | getPackets | filterServer ...

FILES

$ACISTOOLSDIR The path name of the ACIS Test Tools directory. If this variable does not exist in the
user’s environment, getPackets will exit.

$ACISTTMFILE The name of the file that specifies the locations in the AXAF-I telemetry frames of the
telemetry mnemonics that getPackets will extract and write as engineering pseudo-packets. If this variable
exists in the user’s environment, getPackets will attempt to open $ACISTOOLSDIR/lib/
$ACISTTMFILE. If it doesn’t, getPackets will attempt to open $ACISTOOLSDIR/lib/acisEng.ttm
instead.

AUTHOR

Demitrios Athens, MIT CSR

STATUS

The current version should work with either the CTUE or the LRCTU (if its telemetry output is passed
through ltp2mnf).

The current version is only capable of processing Format 2 telemetry. Its behavior if fed any other format is
unknown but is liable to be objectionable.

The current version is implemented by having getPackets fork into 2 processes. One process, the original one
as it turns out, reads AXAF-I telemetry and produces pseudo-packets. It also pipes the ACIS telemetry packet
stream to the other process, which assembles and writes the ACIS packets. Both processes change their
argv[0] environment value to either "axafFrames" or "acisPackets" as appropriate. This fools ps(1) into
reporting the new name of each process. However, top(1) reports both as "getPackets."

TABLE 29. IRIG-B Field Format and Contents

 Field Name Bit Length Byte Word

Julian Day 11 0,1 0

Seconds 17 1,2,3 0,1

Milliseconds 10 3,4 1,2

Microseconds (always zero) 10 4,5 2
ACIS Test Tools Rev. 3.1 • 117 of 148June 20, 1997 12:43 pm

UNIX Commands - lcmd
10.18 lcmd

NAME

lcmd – list contents of ACIS command stream

SYNOPSIS

lcmd [–Bindent] [–V] [–lc] [–lh] [–lp] [–r] [–v] [–w cols] [file ...]

DESCRIPTION

This Perl script reads one or more ACIS command files and writes a formatted listing to the standard output
stream, stdout. If no input file is specified, lcmd reads the standard input stream, stdin.

The output consists of a series of "keyword = value" lines, in which the keywords are derived from the IP&CL
field names, translating to uppercase all characters that immediately follow an embedded blank, and then
removing the blank, e.g. "command length" is written as "commandLength". The "value" fields are rendered
in decimal, with the following exceptions • 32-bit addresses and block IDs are in hexadecimal, prefixed with
"0x"; • command tags are displayed as enumerated names, e.g. "CMDOP_LOAD_1D", followed by their
decimal value in parentheses; • the timed-exposure "gradeSelection" value is written as a series of 8-character
hexadecimal fields.

Each command begins with a header line of the form "name[n] = {", and ends with a matching right brace.
Command blocks are separately numbered, starting at zero.

OPTIONS

–B n inserts n blank characters at the start of each output line—used by ltlm when invoking lcmd internally.
The default is to insert no blanks.

–V write two lines to stderr reporting the RCS update level of this command and of the IP&CL structure
description to which it refers.

–lc does no processing; merely lists the names of ACIS software serial command blocks, their
"commandIdentifier" codes, and decimal equivalents.

–lh does no processing; merely lists the names of ACIS hardware serial commands, their IP&CL
mnemonics, and hexadecimal equivalents.

–lp does no processing; merely lists the names of ACIS high-level pulse commands, their IP&CL
mnemonics, and their decimal and hexadecimal RCTU channel values.

–r raw mode—the commands are not assumed to be prefixed by 4-byte headers, two 16-bit binary integers
containing the command type and channel number, respectively.

–v becomes very verbose, listing the values of all large arrays. Otherwise lcmd will only list the number
of elements in each array.

–w cols
sets the column width—array values that exceed this width will be continued on the next output line.
The default value is 73.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

The Web page "http://acis.mit.edu/ipcl", which tabulates ACIS command and telemetry packet formats.

DIAGNOSTICS
118 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - lcmd
bad commandOpcode: code in packet n
the "commandOpcode" in command n is illegal. lcmd lists only the command header.
ACIS Test Tools Rev. 3.1 • 119 of 148June 20, 1997 12:43 pm

UNIX Commands - lerv
10.19 lerv

NAME

lerv – display contents of binary ERV event data files

SYNOPSIS

lerv [–N] [–V] [file]

DESCRIPTION

This Perl script reads an ERV event file, e.g. one generated by psci, and writes the contents of each record in
ASCII to stdout. The ERV record data fields are as follows:

typedef struct {
unsigned short expnum; /* exposure number [5] */
unsigned short exposure; /* exposure time (msec) [5] */
unsigned long irigtime; /* IRIG timestamp [8] */
unsigned short nodenum; /* output node index [1] */
unsigned short col; /* column index [4] */
unsigned short row; /* row index [4] */
unsigned short data[9]; /* event data values [4] */
short doclk; /* delta overclock [2] */

} RvRec;

They are written out as decimal numbers, right-justified with blank fill and separated by single blanks. The
numbers in square brackets in the above definitions represent the minimum field widths. If the ASCII value
of a particular field exceeds this, the remaining fields will be shifted right in the output line to accommodate
it. Thus, although most output lines will contain 80 characters followed by a newline, some could be longer.

OPTIONS

–N interpret the input field as big-endian (MSB first) integers. Use this flag to read a MSB event file, e.g.
one created on a Sun, on a LSB machine, e.g. a DecStation.

–V interpret the input field as little-endian (LSB first) integers. Use this flag to read a LSB event file, e.g.
one created on a DecStation, on a MSB machine, e.g. a Sun.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

psci(1)
120 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - lhuff
10.20 lhuff

NAME

lhuff – display contents of binary Huffman table block

SYNOPSIS

lhuff [–N] [–V] [file]

DESCRIPTION

This Perl script reads a binary Huffman table block, e.g. as created by psci, and writes the contents in ASCII
to stdout.

OPTIONS

–N interpret the input field as big-endian (MSB first) integers. Use this flag to read a MSB Huffman file,
e.g. one created on a Sun, on a LSB machine, e.g. a DecStation.

–V interpret the input field as little-endian (LSB first) integers. Use this flag to read a LSB Huffman file,
e.g. one created on a DecStation, on a MSB machine, e.g. a Sun.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

psci(1)

DIAGNOSTICS

• file: bad table header
one of the 4-byte offsets at the beginning of file points beyond the end of the file.

• file: bad table length: n
the length of a single table exceeds that of the remainder of the file.
ACIS Test Tools Rev. 3.1 • 121 of 148June 20, 1997 12:43 pm

UNIX Commands - loadFitsImage
10.21 loadFitsImage

NAME

loadFitsImage – convert FITS file to FEP image load format

SYNOPSIS

loadFitsImage [–a] [–m mode] [–n noclks] [–o col1,...,col8] [–p
col1,...,col8] [–r nrows] [–s row1] [–v] [file ...]

DESCRIPTION

This command loads one or more FITS images and reformats them for an ACIS Image Loader, rearranging
the pixels and overclocks according to the simulated CCD readout mode specified by the –m option. If the
list of files is omitted, a single FITS image will be read from the standard input stream, stdin.

OPTIONS

–a determine the image dimensions and the location of the valid pixels and overclocks from the FITS
header keywords alone. When the –v flag is specified, the values of the –n, –o, –p, –r, and –s options
are copied to stderr.

–m mode
selects the CCD quardant readout mode that is to be simulated. mode must be either abcd, or ac, or bd.

–n noclks
specifies the number of overclocks to be used per quadrant. At least this number must be available in
each of the input FITS files.

–o col1,col2,col3,col4,col5,col6,col7,col8
selects the column limits of overclocked pixels in the 4 quadrants of the input FITS files. The pixels
from quadrant A are located in columns col1 through col2 of each line, those of quadrant B in columns
col3 through col4, etc. It is assumed that the input pixel order is as in the ACIS Memo cited below.

–p col1,col2,col3,col4,col5,col6,col7,col8
selects the column limits of good pixels in the 4 quadrants of the input FITS files. The first column is
indexed 0. The pixels from quadrant A are located in columns col1 through col2 of each line, those of
quadrant B in columns col3 through col4, etc. It is assumed that the input pixel order is as in the ACIS
Memo cited below.

–r nrows
specifies the number of output rows to write, each of which will be followed by a HSYNC code.

–s row1
specifies the index of the first row in the input image (counting from 0) to write to the output.

–v puts loadFitsImage into verbose mode, writing statistics to stderr, detailing the number of rows and
columns of each output image.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

The Coordinate System of ACIS FITS Files, ACIS Memo, J. W. Woo and S. E. Kissel, December 7, 1994.

DIAGNOSTICS

EOF while reading FITS header
the input probably isn’t in FITS format.
122 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - loadFitsImage
IcMAXCOL: header keyword missing
the –a option has been specified, but the FITS header doesn’t contain sufficient information to specify the
pixel locations.

IcMINCOL: header keyword missing
the –a option has been specified, but the FITS header doesn’t contain sufficient information to specify the
pixel locations.

bad pixel range in quadrant val
the number of pixels in each quadrant is not the same.

bad BITPIX value: val
the value of the FITS header keyword BITPIX must be 16.

bad NAXIS1 value: val
the value of the FITS header keyword NAXIS1 must be not less than 1024+4×noclks, where noclks is as
specified in the –n option.

bad NAXIS2 value: val
the value of the FITS header keyword NAXIS2 must be not less than nrows+row1, where nrows is as
specified by the –r option, and row1 by the –s option.

bad overclock offsets: list
the overclock column list must contain exactly 8 unsigned integers, separated by commas, without any
other whitespace or punctuation.

bad pixel offsets: list
the pixel column list must contain exactly 8 unsigned integers, separated by commas, without any other
whitespace or punctuation.

unable to allocate input buffer
the value of the FITS header keyword NAXIS1 is too large and loadFitsImage is unable to allocate a buffer
to hold the input record.

unexpected EOF in record val
an end-of-file was encountered while reading record val of the input file, indicating that the file is
truncated, or that one or more FITS header keywords are incorrect.

name: n lines, each n pixels + n oclks
generated by the –v verbose flag, this indicates that the FITS file name generated a number of output lines,
each containing the specified number of pixels and overclocks.

BUGS

On-chip summation is not currently implemented. It is assumed that all output nodes generate either 256
pixels (ABCD mode) or 512 pixels (AC or BD mode).
ACIS Test Tools Rev. 3.1 • 123 of 148June 20, 1997 12:43 pm

UNIX Commands - logGet
10.22 logGet

NAME

logGet – get CTUE command abort log messages

SYNOPSIS

logGet

DESCRIPTION

logGet listens on the TCP/IP port number that the CTUE will try to connect to for sending command abort
log messages. It prints any messages it receives on its standard output.

If logGet is run with root priviledges, it will listen on port 542 for a connection from the CTUE. If it is run
with regular user priviledges, logGet will listen on port 7542. The appropriate port number must be entered
in the CTUE’s c:\windows\ethernet.cfg file. logGet adds its own time stamp to each message.

EXAMPLES

The following UNIX command uses logGet as part of commanding ACIS:

acisEgseHost% logGet

AUTHOR

Ann M. Davis, MIT CSR

Demitrios Athens, MIT CSR

STATUS

The current version is working according to specification.
124 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - ltlm
10.23 ltlm

NAME

ltlm – list contents of ACIS telemetry stream

SYNOPSIS

ltlm [–E] [–V] [–e type] [–f from] [–lc] [–lt] [–p type] [–s] [–t to]
[–v] [–w cols] [file ...]

DESCRIPTION

This Perl script reads one or more ACIS telemetry files and writes a formatted listing to the standard output
stream, stdout. If no input file is specified, ltlm reads the standard input stream, stdin.

The output consists of a series of "keyword = value" lines, in which the keywords are derived from the IP&CL
field names, translating to uppercase all characters that immediately follow an embedded blank, and then
removing the blank, e.g. "command length" is written as "commandLength". The "value" fields are rendered
in decimal, with the following exceptions • synch codes, 32-bit addresses, timestamps and block IDs are in
hexadecimal, prefixed with "0x"; • command and packet tags are displayed as enumerated names, e.g.
"TTAG_CMD_ECHO", followed by their decimal value in parentheses; • the timed-exposure
"gradeSelection" value is written as a series of 8-character hexadecimal fields.

Each telemetry packet and embedded command block begins with a header line of the form "name[n] = {",
and ends with a matching right brace. Each type of command block and telemetry packet is separately
numbered, starting at zero. Embedded arrays of data structures are also numbered from zero, but the index is
reset at the start of each array instance.

OPTIONS

–E write two lines to perform extended error checking on ACIS packets. Currently, the only test is to verify
that the packet sequence numbers are in ascending order. Missing or out-of-sequence packets are noted
by messages to stderr.

–V write two lines to stderr reporting the RCS update level of this command and of the IP&CL structure
description to which it refers.

–e type
excludes output of those packets whose decimal "formatTag" value is type. Allowed values are
tabulated by invoking ltlm with the –lt flag. Multiple –e options may be specified to exclude more than
one type of packet.

–f from
don’t list packets with "sequenceNumber" values less than from.

–lc does no processing; merely list the names of ACIS command blocks, their "commandIdentifier" codes,
and decimal equivalents.

–lt does no processing; merely list the names of ACIS telemetry packets, their "formatTag" codes, and
decimal equivalents.

–p type
restricts output to those packets whose decimal "formatTag" value is type. Allowed values are tabulated
by invoking ltlm with the –lt flag. Multiple –p options may be specified to list more than one type of
packet.

–s print only a tally of packet statistics: the number of packets, the packet type, and its TTAG format code.

–t to don’t list packets with "sequenceNumber" values greater than to.
ACIS Test Tools Rev. 3.1 • 125 of 148June 20, 1997 12:43 pm

UNIX Commands - ltlm
–v becomes very verbose, listing the values of all large arrays within the telemetry packets. Otherwise ltlm
will only list the number of elements in each array.

–w cols
sets the column width—array values that exceed this width will be continued on the next output line.
The default value is 73.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

The Web page "http://acis.mit.edu/ipcl", which tabulates ACIS command and telemetry packet formats.

DIAGNOSTICS

bad commandOpcode: code in packet n
the "commandOpcode" in packet n is illegal. ltlm lists only the command header.

bad formatTag: tag in packet n
the format tag in the header of packet n is illegal. ltlm ignores this packet and reads the next.

decompression unimplemented in packet n
this version of ltlm cannot list the values of compressed pixels in "dataCcRaw", "dataTeBiasMap", or
"dataTeRaw" packets.
126 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - monitorScience
10.24 monitorScience

NAME

monitorScience – display ACIS run-time information on an X11 server

SYNTAX

monitorScience

DESCRIPTION

monitorScience creates a multi-window display, reads the stdout stream from processScience, and writes it
into one of the windows.

monitorScience uses colors to signal various conditions: fatal anomalies are shown in red, warnings in blue.
The initiation and termination of science or monitor requests are displayed in green. Colors are also used to
distinguish decimal numbers (black) from hexadecimal numbers (brown).

Black and brown colors are also used to facilitate the reading of parameter names. In science data windows,
they distinguish telemetry packet names (black) from parameter names (brown). In the Dea Housekeeping
window, packet header fields are colored brown, and data fields black (see below). In Sw Housekeeping,
packet header fields are brown, data fields are black, red, or blue, depending on the type of information
displayed.

Normally, window backgrounds are colored "linen", but background of the most recently updated window is
colored "white".

WINDOW LIST

Echo Command Packets
This window displays the command name, arrival time, execution time, and command ID of all
commands echoed from the ACIS instrument. The list shows what commands were sent to the BEP,
and the order in which they were executed.

Science General Parameters
This window displays information about any BepStartupMessage","Dump Parameter", and "Science
Report" telemetry packets. It identifies the most recent science parameter block, and the result of the
most recent science run.

Science Data
This window displays information about the most recent science and bias telemetry packets received
from ACIS. The window is divided vertically into three regions -- two for science data and one for bias
data -- and horizontally into six columns, one for each FEP. The first science data packet is displayed
in the top window, the next in the middle window, the third in the top window again, and so on.

Fatal Messages
This window displays the time at which a fatal error was detected by the BEP and the corresponding
error code and value.

Read and Write
This window displays information about the execution of write-to-memory commands, i.e. "Read Bad
Columns" (TE and CC), "Read Bad Pixels", "Read System Configuration", "Read Patches", "Read
Huffman Tables", and "Read Parameter Slots" (TE, CC, 2D window, 1D window, and DEA).

Sw Housekeeping
This window displays information about "Software Housekeeping" telemetry packets in the form of a
table containing rows of two types. One contains the start and end times of the housekeeping collection
period, the other contains the name, repetition times, and value of each monitored parameter.
ACIS Test Tools Rev. 3.1 • 127 of 148June 20, 1997 12:43 pm

UNIX Commands - monitorScience
Dea Housekeeping
This window displays information about "Dea Housekeeping" telemetry packets in the form of a table
containing rows of two types. One contains the "Dea Block id" and "Command Id" of the most recent
"Start Dea Housekeeping" command and the BEP time corresponding to the most recent housekeeping
packet. The other contains monitor information:; the "Board Id", "Query Id" name and value.

ENVIRONMENT VARIABLES

ACISTOOLSDIR
must point to the top-level test directory within which the monitorScience modules are located, e.g.
"~acis/toolstest".

TCL_LIBRARY
must point to the TCL run-time library, e.g. "$ACISTOOLSDIR/src/Other/tcl7.4/lib/tcl7.4".

TK_LIBRARY
must point to the TK run-time library, e.g. "$ACISTOOLSDIR/src/Other/tk4.0/lib/tk4.0".

AUTHOR

Rita Somigliana, MIT CSR <rita@space.mit.edu>
128 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - processDEAhkp
10.25 processDEAhkp

NAME

processDEAhkp – extract DEA query response data from a DEA housekeeping ACIS telemetry packet

SYNOPSIS

processDEAhkp -f outFileName [filename...]

DESCRIPTION

processDEAhkp reads DEA housekeeping ACIS telemetry packets either from the standard input or from one
or more files specified as command line arguments. It rewrites the outFileName whenever it reads a DEA
housekeeping ACIS telemetry packet from its input.

For each query response that the DEA housekeeping packet contains, processDEAhkp writes to the
outFileName the ccdId, queryId, and value. The output is in ASCII and is the decimal value of the item in
the packet. A blank delimits the end of each of the first two items and a newline delimits the end of the last
item. processDEAhkp expects its input to consist of DEA housekeeping ACIS telemetry packets. It silently
ignores any other packets in its input. It also silently ignores the other elements of the DEA housekeeping
ACIS telemetry packet: deaBlockId, commandId, and bepTickCounter. processDEAhkp always removes any
existing contents of outFileName when starting.

EXAMPLES

The following UNIX pipe uses processDEAhkp as part of monitoring DEA housekeeping information:

filterClient -h | processDEAhkp -f DEAhkp | monitorDEAhkp -f DEAhkp ...

AUTHOR

Demitrios Athens, MIT CSR <da@space.mit.edu>

STATUS

The current version has been been tested but not used extensively.

The current version does not ensure that its first argument is "-f" but simply assumes that its second argument,
if present, is the outFileName. If the "-f" option is missing and processDEAhkp is to read its input from a file,
then the contents of the first input file will be lost.
ACIS Test Tools Rev. 3.1 • 129 of 148June 20, 1997 12:43 pm

UNIX Commands - psci
10.26 psci

NAME

psci – parse an ACIS serial telemetry stream

SYNOPSIS

psci [–DVacmpqsuv] [–h file] [–l prefix] [file]

DESCRIPTION

This program reads a stream of ACIS packets, verifies their format and internal consistency, and optionally,
sorts, reformats, and writes them to a series of data streams and disk files. Packets are read from the input file,
or, if omitted, from the standard input stream, stdin. They are subjected to a variety of tests. If the –l option
is specified, their headers are translated into ASCII and written to log files. If –m is specified, a one-line
description is written to stdout, suitable for display by monitorScience(1). Most packets are then discarded,
and psci goes on to read the next one, but some are retained, as follows:

• the most recent exposure header packet from each FEP,

• all event data packets, until a corresponding exposure header packet is encountered,

• multi-packet memory read-out packets originating from a single BEP command,

• the most recent dumped*Block and dumpedHuffman packets.

psci has been compiled with tables derived directly from the IP&CL Structures database. Packets with
unrecognized TTAG codes (as defined in the "acis_h/interface.h" file) cause warning messages to be written
to stderr, and are ignored. All fields in recognized packets and pseudopackets are then checked against their
IP&CL limits—bit fields are expanded to "unsigned long int" values unless their minimum permissible values
(column 15 in the IP&CL structure tables) are negative, in which case, psci treats them as twos-complement
signed integers and expands them to "long int". If a field is discovered to be out of range, psci writes a
message to stderr:

file: packet[ntotal,ncount].field[index] above maximum (val > maxval)
file: packet[ntotal,ncount].field[index] below minimum (val < maxval)

All stderr messages begin with a "file:" argument; for errors and warnings, this is the name of the input file
(or stdin); for informatory messages, it is usually the name of an output file. Packets are designated by their
IP&CL names, e.g., exposureTeRaw, followed by ntotal, the sequence number of the packet within the input
stream, and ncount, its sequence number among packets of its particular type. Both counts start at zero, so the
first packet is [0,0]. Multi-dimensional fields within packets are followed by an array index, which also starts
at [0]. The value of the field is displayed as a decimal integer. Since out-of-limits field-values are not
considered to be sufficient reason for halting the program, psci writes these messages and continues
processing. The messages themselves can be suppressed by invoking psci with the –q option.

When the –l option is used, psci writes packet-header information to log files. The format of these files is
derived from that of data structures in the C language. Fields whose values are enumerated in "acis_h/
interface.h" will be followed by "#" and the enumeration. Unsigned values larger than 32767 are shown in
hexadecimal base, preceded by "0x". The values of arrays of fields with dimension > 9 are not shown—
merely their dimension. When a packet contains one or more command blocks, e.g. dumpedTeBlock, which
contains a science parameter block (either loadTeBlock or loadCcBlock) and an optional window block
(either load1dBlock or load2dBlock), the individual fields are also logged, shifted to the right by 2 columns.

When a dumpedCcBlock or dumpedTeBlock packet is received, a comment is written into all open log files,
and the science run number is incremented. Any opened science and bias data files are automatically closed,
and a warning message is written to stderr since they should have been closed: science files by the receipt of
a previous scienceReport packet, and bias files when complete.
130 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - psci
When psci is invoked with the –m flag, monitor records are written to stdout.

OPTIONS

–D run psci in debug mode, appending the source file name and line number to all error and warning
messages. If the program terminates abnormally, the failing packet header will also be logged to stderr.

–V print the RCS revision ID of the psci program and of the IP&CL structure tables used in its compilation.

–a write log and data files in ASCII mode. If omitted, these files will consist of 32-bit binary fields in the
host machine’s byte order.

–c concatenate log files, i.e. append to any existing files of the same name. If omitted, existing log files
will be overwritten.

–h file
initialize the Huffman compression tables from file, which must consist of a binary Huffman block. The
format is that of a binary Huffman file written by a previous invocation of psci.

–l prefix
generate log and data file, prefixing their names with the prefix string. If omitted, no files will be
written.

–m write monitor information to stdout, one line per input packet, in the format accepted by
monitorScience.

–p write the contents of pseudo-packets to "prefix.pseudo.log", where prefix is specified by the –l option.
If omitted, pseudopackets will be ignored, except for those requested by the –u flag.

–q execute psci in quiet mode, suppressing all warning messages.

–s write all log files to stdout, rather than to disk files. This and the –m flag are mutually exclusive.

–u write text messages in user pseudo-packets to stderr. If omitted, user pseudopackets will be ignored.
These messages are null terminated strings beginning at word 4 of those packets whose 3rd word is
zero.

–v execute psci in verbose mode, writing informatory messages to stderr, detailing the names and contents
of log and data files, the status of scienceReport packets, etc.

FILES

Files used to build psci

acis_h/interface.h enumerations
cmd.aux command definition overrides
enum.aux more enumerations
ipcl-struct*.tsv IP&CL structures
pseudo.map pseudopacket definitions
tlm.aux telemetry definition overrides

Files generated by psci (ASCII listings of packet contents)

prefix.s.bias.log bias packet headers
prefix.command.log BEP commands
prefix.deahk.log analog housekeeping
prefix.s.science.log science mode packets
prefix.packet.log miscellaneous packets
prefix.pseudo.log pseudopackets (–p only)
prefix.swhk.log S/W housekeeping packets

Memory Dumps (ASCII if –a specified, otherwise binary)
ACIS Test Tools Rev. 3.1 • 131 of 148June 20, 1997 12:43 pm

UNIX Commands - psci
prefix.bepReadReply.n.dat BEP memory readout (binary)
prefix.bepReadReply.n.txt BEP memory readout (ASCII)
prefix.dumpedSysConfig.n.dat Configuration tables (binary)
prefix.dumpedSysConfig.n.txt Configuration tables (ASCII)
prefix.dumpedBadPix.n.dat Bad pixel lists (binary)
prefix.dumpedBadPix.n.txt Bad pixel lists (ASCII)
prefix.dumpedBadTeCol.n.dat Bad Te column lists (binary)
prefix.dumpedBadTeCol.n.txt Bad Te column lists (ASCII)
prefix.dumpedBadCcCol.n.dat Bad Cc column lists (binary)
prefix.dumpedBadCcCol.n.txt Bad Cc column lists (ASCII)
prefix.dumpedPatches.n.dat Patch list (binary)
prefix.dumpedPatches.n.txt Patch list (ASCII)
prefix.dumpedHuffman.n.dat Huffman tables (binary)
prefix.dumpedHuffman.n.txt Huffman tables (ASCII)
prefix.dumpedTeSlots.n.dat Te parameter blocks (binary)
prefix.dumpedTeSlots.n.txt Te parameter blocks (ASCII)
prefix.dumpedCcSlots.n.dat Cc parameter blocks (binary)
prefix.dumpedCcSlots.n.txt Cc parameter blocks (ASCII)
prefix.dumped2dSlots.n.dat 2D window blocks (binary)
prefix.dumped2dSlots.n.txt 2D window blocks (ASCII)
prefix.dumped1dSlots.n.dat 1D window blocks (binary)
prefix.dumped1dSlots.n.txt 1D window blocks (ASCII)
prefix.dumpedDeaSlots.n.dat DEA H/K list (binary)
prefix.dumpedDeaSlots.n.txt DEA H/K list (ASCII)
prefix.fepReadReply.n.dat FEP memory readout (binary)
prefix.fepReadReply.n.txt FEP memory readout (ASCII)
prefix.pramReadReply.n.dat PRAM memory readout (binary)
prefix.pramReadReply.n.txt PRAM memory readout (ASCII)
prefix.sramReadReply.n.dat SRAM memory readout (binary)
prefix.sramReadReply.n.txt SRAM memory readout (ASCII)

Data Files (produced by FEP n from science run s.)

prefix.s.n.erv.dat event data (binary ERV format)
prefix.s.n.erv.txt event data (ASCII ERV format)
prefix.s.n.i–j.hist.fits pixel histograms (FITS format)
prefix.s.n.i–j.hist.txt pixel histograms (ASCII)
prefix.s.n.bias.fits bias FITS files
prefix.s.n.m.raw.fits raw pixel FITS files
prefix.s.n.TMP.fits temporary raw pixel files

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

"IP&CL Structure Definitions", MIT CSR

DIAGNOSTICS

Fatal Messages:

The following messages will always be written to stderr, after which psci will exit with non-zero system
return code. If –D is specified, the header of the last packet will be logged to stderr before exiting.
132 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - psci
• packet[ntot,npkt] Huffman table slot n is empty
A raw-mode or bias packet referenced a non-existent Huffman table slot.

• packet[ntot,npkt] illegal Huffman table slot: n
A Huffman table slot header is damaged.

• packet[ntot,npkt] truncated Huffman table slot n
A Huffman table header contains a length field that is too large for the Huffman block.

• –l and –s are mutually exclusive
The –l option directs logging output to disk files; –s sends it to stdout.

• –m and –s are mutually exclusive
The –m option writes monitor information to stdout; the –s option uses stdout for logging.

• no more memory
Insufficient memory was available to initialize psci symbol tables.

• unable to allocate memory for packet n
psci ran out of memory for storing packets.

Warning Messages:

These are written to stderr unless the –q flag appears on the psci command line.

• packet[ntot,npkt] ‘file’ partially filled
• last data packet was packet[ntot,npkt]

a science run was terminated while incomplete raw-mode data files were being written.

• packet[ntot,npkt] ‘file’ partially filled
• packet[ntot,npkt].ccdRow=n in last bias packet

a science run was terminated while incomplete bias files were being written.

• packet[ntot,npkt] missing parameter block
A science packet cannot be processed because no science-mode parameter block has been
received.

• packet[ntot,npkt] no Huffman table specified
An initial table can be pre-allocated by using the –h option.

• packet[ntot,npkt] no histogram data packets received
An exposureTeHistogram packet was received with no preceding dataTeHist packets.

• packet[ntot,npkt] no parameter block was found
A scienceReport packet was received without any prior dumpedCcBlock or dumpedTeBlock
packets.

• packet[ntot,npkt].readAddress != packet[ntot,npkt.requestedAddress + 4*n
The readAddress is inconsistent with the position of this packet within a group of memory-
readout packets.

• packet[ntot,npkt].readIndex != packet[ntot,npkt].requestedIndex + 2*n
The readIndex is inconsistent with the position of this packet within a group of DEA memory-
readout packets.

• packet[ntot,npkt] unpacking failure in=m/n out=p/p
This packet has failed Huffman decompression. n 32-bit words (out of m) remain to be
unpacked; p 12-bit values (out of an anticipated q) have resulted.

• packet[ntot,npkt] unpacking length inconsistency
The unpacked length of this packet does not conform to that expected from its header fields.

• packet[ntot,npkt] warning: no data packets
A raw-mode exposure packet was not preceded by any raw-mode data packets.

• packet[ntot,npkt].startExposureNumber=n <= packet[ntot,npkt].endExposureNumber=n
The startExposureNumber of this histogram exposure packet is not greater than the
endExposureNumber of the previous exposure packet.
ACIS Test Tools Rev. 3.1 • 133 of 148June 20, 1997 12:43 pm

UNIX Commands - psci
• packet[ntot,npkt].ccdRow=n > packet[ntot,npkt].(subarrayStartRow+subarrayRowCount)=n
The ccdRow field of the current packet is inconsistent with the subarrayStartRow and
subarrayRowCount fields in the science-mode parameter block.

• packet[ntot,npkt].field[n] above maximum (val > maxval)
The named field is larger than the limit defined in the IP&CL Structures table.

• packet[ntot,npkt].field[n] below minimum (val < minval)
The named field is smaller than the limit defined in the IP&CL Structures table.

• packet[ntot,npkt].(ccdRow-ccdRowCount)=n < packet[ntot,npkt].subarrayStartRow=n
The ccdRow and ccdRowCount fields of this packet are inconsistent with the
subarrayStartRow field in the science-mode parameter block.

• packet[ntot,npkt].sequenceNumber=n != n
The packet sequence number is not one larger than that of the preceding (non-pseudo-) packet.

• packet n ignored: unknown type n
The packet’s formatTag is not defined in the IP&CL Structures table.

• unrecognized commandOpcode n in packet[ntot,npkt]
The commandOpcode is not defined in the IP&CL Structures table.

• warning: non-zero dutyCycle, ERV timetags may be inaccurate
psci does not attempt to generate "reasonable" acistime fields for timed-exposure mode with
non-zero dutyCycle.

Informatory Messages:

These are only written to stderr if the –v flag appears on the psci command line.

• written n bytes to log file ‘file’
a log file has been successfully closed.

• packet[ntot,npkt] written to ‘file’
a memory-read packet, or groups of packets, has been written to a disk file.

• packet[ntot,npkt] run n irig n:n exp n fep n ccd n dea n bep n
A science run has terminated with the specified number of exposures and FEP, DEA, and BEP
completion codes.

• Executing packet[ntot,npkt] run n
A science run has begun.

• written n bytes to bias file ‘file’
A bias file has been successfully closed.

• start packet run n fepmode bepmode bep timestamp irig days:secs exptime secs
A science run has started and psci has figured out the approximate IRIG start time and inter-
exposure interval.

• written n exposures n events to ‘file’
An event file has been successfully closed.

• written histogram to ‘file’
A histogram file has been successfully closed.

• written n bytes to raw image file ‘file’
A raw-mode FITS file has been successfully closed.
134 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - runacis
10.27 runacis

NAME

runacis – Execute ACIS FEP and BEP software simulators

SYNOPSIS

runacis [–B file] [–D dir] [–F file] [–b file] [–c] [–h host] [–nc ccd]
[–nf fep] [–x file]

DESCRIPTION

runacis starts a simulated ACIS back-end processor (BEP) on a remote DecStation host and copies its
telemetry stream to the standard output stream, stdout. It reads its standard input stream, stdin, copying the
contents to the software serial port of the simulated BEP. This input stream may be constructed from the
standard output of buildCmds, invoked with the –p flag to suppress channel code prefixes.

The –b and –x options are used to specify programs that will supply CCD pixel values to a simulated ACIS
front-end processor (FEP) that will be started on the same remote host as was the BEP simulator. The –b file
is intended for bias pixels, and –x for subsequent science-mode pixels. If both –b and –x are omitted, no FEP
simulator will be started.

All error messages from the simulator(s) will be written to files named host.type.log in the current directory,
where host is the name of the remote DecStation that is running the simulator(s), and type is bep for output
from acisBepUnix, fep for output from acisFepUnix, img for output from the fepImage2 loader, cmd for
output from the cclient command sender, and tlm for output from filterClient, the telemetry receiver. The
standard error stream, stderr, from runacis itself will only contain short informatory messages, e.g.
"acisBepUnix: starting", etc., along with the stderr of commands specified in the –b and –x options.

OPTIONS

–B file
specifies the name of the BEP software simulator. The default is acisBepUnix.

–D dir
specifies the name of the directory tree within which the various executables (acisBepUnix,
acisFepUnix, fepImage2, etc.) are to be found. If dir is a relative pathname, it is assumed to be located
within ~acis.

–F file
specifies the name of the FEP software simulator. The default is acisFepUnix. It will only be started if
the –x option is used.

–b file
starts the executable file, passing its standard output to a copy of fepImage2 running on the remote host.
This standard output should therefore consist of a stream of DEA pixel values with legal control codes.
For instance, rows should be ended with HSYNC codes and frames with VSYNC codes. Unless either
this option or –x (q.v.) is specified, no FEP simulator will be started on the remote host.

–c clean up the software simulator processes running on the remote host and release any shared memory
that remains allocated.

–h host
the name of the remote DecStation host that is to run the simulators.

–nc ccd
the number of the CCD/DEA to simulate. The default is CCD 0. runacis will only start a single
simulated CCD, and then only if the –x option is used.
ACIS Test Tools Rev. 3.1 • 135 of 148June 20, 1997 12:43 pm

UNIX Commands - runacis
–nf fep
the number of the FEP to simulate. The default is FEP 0. runacis will only start a single simulated FEP,
and then only if the –x option is used.

–x file
waits until acisBepUnix writes the string ":invokeDataProcess" to its stderr stream, and then starts the
executable file, passing its standard output to a copy of fepImage2 running on the remote host. The
contents are as described for the –b option described above.

EXAMPLE

In the following, only the first telemetry packet, a cmdEcho, and a scienceReport packet, are shown.

$ buildCmds –p < te.1 | runacis –h quasar –b genbias –x genfep |
ltlm –v –e11
acisBepUnix: starting
acisFepUnix: starting
filterClient: starting
quasar: configuring
commandEcho[0] = {
 synch = 0x736f4166
 telemetryLength = 8
 formatTag = 7 (TTAG_CMD_ECHO)
 sequenceNumber = 1
 arrival = 0x00000097
 result = 1 (CMDRESULT_OK)
 changeConfigSetting[1] = {
 commandLength = 7
 commandIdentifier = 0
 commandOpcode = 32 (CMDOP_CHANGE_SYS_ENTRY)
 entries[0] = {
 itemId = 0 (SETTING_DEA_POWER)
 itemValue = 1
 }
 entries[1] = {
 itemId = 1 (SETTING_FEP_POWER)
 itemValue = 1
 }
 }
}
cclient: starting
fepImage2: starting FEP 0 sequencer for bias
genbias: bias 1 written
genbias: bias 2 written
genbias: bias 3 written
fepImage2: starting FEP 0 sequencer for science run
genfep: image 1 written
genfep: image 2 written
genfep: image 3 written
scienceReport[0] = {
 synch = 0x736f4166
 telemetryLength = 12
 formatTag = 15 (TTAG_SCI_REPORT)
 sequenceNumber = 13
136 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - runacis
 runStartTime = 0x09af8da0
 parameterBlockId = 0x12345678
 windowBlockId = 0xffffffff
 biasStartTime = 0x04460e20
 biasParameterId = 0x12345678
 exposuresProduced = 2
 exposuresSent = 2
 biasErrorCount = 0
 fepErrorCodes = 0 0 0 0 0 0
 ccdErrorFlags = 0 1 1 1 1 1
 deaInterfaceErrorFlag = 0
 terminationCode = 1 (SMTERM_STOPCMD)
}
acisBepUnix: stopping science run

The user must now type CTRL–C to stop the run. runacis will respond "Cleaning up", and will continue to
run until the processes are killed on the remote host and the shared memory released.

FILES

host.bep.log stderr from acisBepUnix running on host.
host.cmd.log stderr from cclient sending commands to host.
host.fep.log stderr from acisFepUnix running on host.
host.img.log stderr from fepImage2 running on host.
host.tlm.log stderr from filterClient receiving telemetry from host.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

acisBepUnix(1), acisFepUnix(1), buildCmds(1), cclient(1), fepImage2(1), filterClient(1), filterServer(1),
ltlm(1), processScience(1)

DIAGNOSTICS

Bad –nc value
the CCD value must lie in the range 0 through 9.

Bad –nf value
the FEP value must lie in the range 0 through 5.

BUGS

runacis makes various assumptions about the time required for the various processes to start up. If the
network connection to the remote host is particularly slow, it will fail.

If acisFepUnix isn’t correctly cleaned up on the remote host, a subsequent runacis job may fail because the
shared memory segments are still in use. The remedy is to invoke runacis with the –c flag to repeat the clean-
up and then run it a second time in its usual manner.
ACIS Test Tools Rev. 3.1 • 137 of 148June 20, 1997 12:43 pm

UNIX Commands - sciglue
10.28 sciglue

NAME

sciglue – convert psci monitor output for monitorScience

SYNOPSIS

sciglue [file]

DESCRIPTION

This Perl script reads the standard output of psci, invoked with the –m flag, and converts it into a format
suitable for input to monitorScience.

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

monitorScience(1), psci(1)
138 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - sendCmds
10.29 sendCmds

NAME

sendCmds - send the output of buildCmds to shim

SYNOPSIS

sendCmds

DESCRIPTION

sendCmds receives a binary command stream from buildCmds, containing command type, command
channel, command data triplets. It constructs 23-bit, formatted command strings, packages them into 24-bit
strings to simplify the output interface, and sends them to stdout, which is assumed to be piped to SHIM.
sendCmds expects its standard input to consist of pairs of 16-bit words (command type and command
channel) followed by zero or more 16-bit words comprising the command data, as described below. All 16-
bit words are assumed to start with their least significant bytes, i.e. little-endian order. The format and content
of commands are contained in the AXAF IP&CL documents..

High Level Pulse commands are completely specified by the Command Type and Command Channel pair.
Therefore, no command data will follow.

Serial Digital Hardware commands will consist of a single 16-bit word that will immediately follow the
Command Type and Command Channel pair.

Serial Digital Software commands will consist of from 3 to 256 16-bit words contained in an ACIS software
command packet that will immediately follow the Command Type and Command Channel pair. All software
command packets contain length fields which are extracted by sendCmds to determine how to read the
remainder of the command packet.

TABLE 30. Command Type and Channel Definition

Command Type Command Channel Description

Name Value Name Value

Serial Digital 2
Software 2 Command used to control the ACIS software

Hardware 3 Command used to control the ACIS hardware

High Level Pulse 0
Pulse Cmd

Channel Number
0-98

PS and MC commands, whose action is determined by
the Command Channel value

No-Op 3 TBD TBD Potential RCTU/CTUE operation commands

TABLE 31. sendCmds Command Formats

Serial Digital Commands High Level Pulse Commands

Bit1

1. bit 0 is the most significant bit and is transmitted/received first

Contents Bit Contents

0 Unspecified 0 Unspecified

1-2 Command Type 1-2 Command Type

3-18 Command Data 3-14 Unspecified

19-23 Command Channel 15-23 Command Channel
ACIS Test Tools Rev. 3.1 • 139 of 148June 20, 1997 12:43 pm

UNIX Commands - sendCmds
When sendCmds reads an illegal command type or command channel from stdin, it writes an error message
to stderr and terminates processing. When sendCmds reads an illegal software command packet from stdin,
it writes an error message to stderr, but it processes the command anyway. No warning is given if an
unknown opcode is encountered. These shortcomings will be fixed in a later version.

EXAMPLES

The following UNIX pipe uses sendCmds as part of commanding the ACIS instrument to start executing
stored timed exposure parameter block 1:

echo ‘start 22 te 1’ | buildCmds | sendCmds | shim ...

AUTHOR

Demitrios Athens, MIT CSR

STATUS

The current version does not check for and remove critical commands.

The current version has been used with the LRCTU and the CTUE.

The current version produces its output in the bit order shown above, which is as defined in the CTUE and
the Command and Data Management equipment specifications. However, to make the software work
successfully with the LRCTU, the current version REVERSES THE BYTE ORDER OF ALL SERIAL
DIGITAL COMMAND DATA that it receives. This seems to work when talking to the CTUE.

The current version has successfully handled both software and hardware Serial Digital commands and High
Level Pulse commands.

The values currently used for software and hardware command channels are updated to the current IP&CL
values as expressed in the beta version of the "interface.h" file.

The curent version will may be modified to emit No-Op commands that will be used to convey a command
count for use in assembling CTUE command blocks.

Software commands with unrecognized opcodes are passed through. This responds to a request from the
flight software folks to provide flexibility during testing.

Hardware command data is not checked for validity.
140 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - shim
10.30 shim

NAME

shim - common interface for both CTUE and LRCTU

SYNOPSIS

shim ctue|lrctu

DESCRIPTION

shim provides a consistent interface between ACIS and all user applications that either generate ACIS
commands or receive ACIS telemetry. It can communicate with ACIS using either the CTUE/RCTU
combination or the Jim Littlefield RCTU emulator, the LRCTU. It always expects its command input to be
in the 24-bit sendCmds format. It always produces its telemetry output in the AXAF-I minor frame format.

OPTIONS

ctue
communicate with ACIS using the CTUE/RCTU combination. shim extracts the 23-bit input command
words from the 24-bit sendCmds format and packs them into 48-bit Ground Command format strings.
It then assembles these strings into command blocks, which it sends to the CTUE/RCTU via a TCP/IP
interface. shim receives telemetry via the same interface and passes it to its client, which is typically
getPackets, without modification.

lrctu
communicate with ACIS using the Jim Littlefield RCTU emulator, the LRCTU

When sending commands to an LRCTU, shim reads the 24-bit output of sendCmds and passes it to the
LRCTU via a serial interface. Note that High Level Pulse commands will not be executed because the
LRCTU does not support them.

When receiving telemetry from an LRCTU via the same serial interface, shim reformats the LRCTU
telemetry packets into AXAF-I, Format 2, telemetry minor frames, adding frame synchs and CCSDS
headers as appropriate. shim always resets the LRCTU hardware (by sending an ASCII character with
many zero bits to the LRCTU’s reset port) and then copies the LRCTU’s operating code to the device’s
memory.

EXAMPLE

... buildCmds | sendCmds | shim lrctu | getPackets ...

ENVIRONMENT

ACISTOOLSDIR
The name of the top-level ACIS Test Tools directory. shim will use this directory as its starting point when
looking for executables. See the FILES section immediately below.

FILES

${ACISTOOLSDIR}/bin/sun4/lrctu.unix
Jim Littlefield’s code that runs on UNIX and communicates with the LRCTU through the fast tty device.

${ACISTOOLSDIR}/bin/mips/lrctu.mongoose.srec
Jim Littlefield’s code that runs on the Mongoose processor on the LRCTU and communicates with UNIX
through the fast tty device.

/dev/ttyC?0
LRCTU command and telemetry fast tty device (? is typically 4)
ACIS Test Tools Rev. 3.1 • 141 of 148June 20, 1997 12:43 pm

UNIX Commands - shim
/dev/ttyC?1
LRCTU hardware reset fast tty device (? is typically 4)

/dev/ct.o
fast tty device driver

/etc/rc/sts
fast tty device system boot file

/etc/sts/bin/cdmknods
fast tty device system boot file

AUTHOR

Demitrios Athens, MIT CSR

STATUS

The current version only works with the Jim Littlefield RCTU Emulator.

The current version creates AXAF-I telemetry major frames from LRCTU telemetry by piping LRCTU
telemetry to ltp2mnf.

The current version does not put bilevels (LED’s) reported in the LRCTU telemetry packets into the AXAF-
I minor frames. Expect this to change soon.

The current version of the LRCTU does not produce real-time or even near-real-time timestamps when it
issues science header pulses to the BEP. It merely copies the BEP timestamp, which is the latched value of a
free running counter, and uses this information in its telemetry packet headers. The ability to obtain near-real-
time timestamp information from the LRCTU has been proposed but has neither been made a requirement
nor been implemented. ltp2mnf creates pseudo IRIG-B timestamps and puts them into the AXAF-I format
minor frames that it creates. Times come from the host system clock, not from an actual IRIG-B interface,
and are not adjusted to account for processing or transmission delays.

The ability to command BEP and FEP hardware resets through the LRCTU has been proposed but has neither
been made a requirement nor been implemented.
142 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - tlmsim
10.31 tlmsim

NAME

tlmsim – simulate ACIS telemetry packet stream

SYNOPSIS

tlmsim [–c file] [–f] [–p] [–t] [–w file] ringfile biasfile

DESCRIPTION

This command generates a stream of ACIS telemetry packets from a timed-exposure ring-buffer file (ringfile)
and a bias map in FITS format (biasfile). These files are generated by the output and dumpbias directives in
fepCtlTest scripts.

OPTIONS

–c file
Load a timed-exposure parameter block from file, which must contain a series of "keyword = value"
lines, as exemplified in the following section. If this option is omitted, tlmsim will use a default block.

–f Simulate Format 1 output, i.e. with ACIS out of the focal plane and restricted to 512 baud downlink.
This will affect the ratio of telemetry packets to science-frame pseudo-packets.

–p Generate science-frame pseudo-packets in the format described in the ACIS Test Tools document. If
this option is used in conjunction with the –f flag, a huge number of pseudo-packets will be generated.

–t Use the current UNIX system clock as a basis for BEP timestamps. If omitted, these fields will be
zeroed out, making it easier to compare tlmsim output files.

–w file
Load a 2-dimensional window block from file, which must contain a series of "keyword = value" lines,
as exemplified in the following section. If this option is omitted, tlmsim uses no windows.

PARAMETER BLOCK EXAMPLE

Keywords may be expressed in upper, lower, or mixed case characters. In this example, a simple 3x3 faint-
with-bias science run is defined, using CCD number 6 and FEP number 2, as specified by the fep*CcdSelect
keywords. All keyword values are unsigned integers, or arrays of unsigned integers, with the following
exceptions: • parameterBlockId, deaLoadOverride, and fepLoadOverride are hexadecimal integers with "0x"
prefixes; • gradeSelection is an array of 8 hexadecimal integers, without any "0x" prefix. With these
exceptions, tlmsim does not check the values in any way. Blank lines, and all characters between "#" and
newline, are ignored.

teBlockSlotIndex = 1
parameterBlockId = 0x00000fab
fepCcdSelect = 10 10 6 10 10 10
fepMode = 2
bepPackingMode = 1
onChip2x2Summing = 0
ignoreBadPixelMap = 0
ignoreBadColumnMap = 0
recomputeBias = 1
trickleBias = 1
subarrayStartRow = 0
subarrayRowCount = 0
overclockPairsPerNode = 15
outputRegisterMode = 0
ACIS Test Tools Rev. 3.1 • 143 of 148June 20, 1997 12:43 pm

UNIX Commands - tlmsim
ccdVideoResponse = 0 0 0 0 0 0
primaryExposure = 28
secondaryExposure = 0
dutyCycle = 0
fep0EventThreshold = 0 0 0 0
fep1EventThreshold = 0 0 0 0
fep2EventThreshold = 100 100 100 100
fep3EventThreshold = 0 0 0 0
fep4EventThreshold = 0 0 0 0
fep5EventThreshold = 0 0 0 0
fep0SplitThreshold = 0 0 0 0
fep1SplitThreshold = 0 0 0 0
fep2SplitThreshold = 0 0 0 0
fep3SplitThreshold = 0 0 0 0
fep4SplitThreshold = 0 0 0 0
fep5SplitThreshold = 0 0 0 0
lowerEventAmplitude = 0
eventAmplitudeRange = 65535
gradeSelection = ffff0000 0 0 0 0 0 0 0
windowSlotIndex = 65535
histogramCount = 0
biasCompressionSlotIndex = 255 255 255 255 255 255
rawCompressionSlotIndex = 255
ignoreInitialFrames = 20
biasAlgorithmId = 0 0 1 0 0 0
biasArg0 = 0 0 0 0 0 0
biasArg1 = 0 0 10 0 0 0
biasArg2 = 0 0 0 0 0 0
biasArg3 = 0 0 100 0 0 0
biasArg4 = 0 0 70 0 0 0
fep0VideoOffset = 0 0 0 0
fep1VideoOffset = 0 0 0 0
fep2VideoOffset = 127 128 129 130
fep3VideoOffset = 0 0 0 0
fep4VideoOffset = 0 0 0 0
fep5VideoOffset = 0 0 0 0
deaLoadOverride = 0x00000000
fepLoadOverride = 0x00000000

WINDOW BLOCK EXAMPLE

Keywords may be expressed in upper, lower, or mixed case characters. In this example, two windows are
defined, one for CCD 5 and the other for CCD 6. All keyword values are unsigned integers, except for
windowBlockId, which must be a hexadecimal integer with leading "0x". Otherwise, tlmsim does not check
the values in any way. Blank lines, and all characters between "#" and newline, are ignored.

windowSlotIndex = 1
windowBlockId = 0x00000baf

ccdId = 5
ccdRow = 1
ccdColumn = 1
width = 1022
height = 1022
144 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - tlmsim
sampleCycle = 0
lowerEventAmplitude = 0
eventAmplitudeRange = 65535

ccdId = 6
ccdRow = 1
ccdColumn = 1
width = 1022
height = 1022
sampleCycle = 0
lowerEventAmplitude = 0
eventAmplitudeRange = 65535

AUTHOR

Peter G. Ford, MIT CSR

SEE ALSO

dumpring(1), fepCtlTest(1), ltlm(1)
ACIS Test Tools, ACIS Document, Version 1.0, July, 1996
ACIS IP&CL Structures, Version 1.17, July, 1996

DIAGNOSTICS

bad argument: arg(s)
tlmsim too many arguments have been specified on the command line.

does not scan: line
the statement in a parameter or window block is invalid, either because the keyword is unrecognized, or
the value(s) is(are) illegal, or because there is no equals sign between them.

missing file name(s)
takes exactly two non-optional command line arguments, the name of the ring-buffer file, followed by the
name of the FITS bias file.

multiple CCDs selected
the parameter block can contain only one fep*ccdSelect field whose value is less than 10, i.e. tlmsim can
only simulate a single CCD at a time.

no CCD selected
the parameter block must contain at least one fep*ccdSelect whose value differs from 10.

no window specified
the window block contains no window-specific keywords.

out of order: line
one or more header keywords comes after the first window-specific keyword in a window block.

unknown flag: flag
the flag is unrecognized. There must be whitespace between the flag and the file name in the –c and –w
options.

unsupported biasCompressionSelect[n] value: val
this version of tlmsim requires that all biasCompressionSelect fields have the value 255, i.e. no
compression at all.

unsupported rawCompressionSelect value: val
this version of tlmsim requires that the rawCompressionSelect field has the value 255, i.e. no compression
at all.
ACIS Test Tools Rev. 3.1 • 145 of 148June 20, 1997 12:43 pm

UNIX Commands - writeCCB
10.32 writeCCB

NAME

writeCCB – package the output of sendCmds into CTUE command blocks

SYNOPSIS

writeCCB [actu|bctu] [abus|bbus]

DESCRIPTION

writeCCB receives a series of 24-bit command strings from sendCmds that contain command type,
command data, and command channel triplets. It constructs CTUE command blocks that contain the
commands and sends them either to stdout, or, over a TCP/IP connection, to the CTUE’s command port.
writeCCB expects its standard input to consist of 3-byte groups as produced by sendCmds. writeCCB
places each 24-bit command into a 48-bit CTUE format command that looks like this:

 writeCCB places each 48-bit CTUE format command into a command block that looks like this:

writeCCB automatically checks the environment when starting. If it discovers a CTUE_CMD_SD variable,
it writes the output CTUE command blocks to the socket descriptor that the variable indicates. (ACISshell
will set this variable when the CTUE connects to accept ACIS commands.) Output goes to stdout otherwise.

OPTIONS

actu | bctu
selects either the A or B side of the spacecraft’s CTU. If the user does not specify a side, writeCCB
defaults to using the A side.

TABLE 32. CTUE command

Bit1

1. bit 0 is the most significant bit and is transmitted/received first

Contents

0-6 Spacecraft address

7 CTU A/B select

8 Fixed bit ’1’

9-11 Command routing

12-16 RCTU address

17-39 sendCmds output

40 Fixed bit ’1’

41-47 Polynomial check code

TABLE 33. CTUE command block

Byte1

1. byte 0 is the most significant byte and is transmitted/received first

Contents

0 Command count

1-6 CTUE Command

7-8 Check sum
146 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

UNIX Commands - writeCCB
abus | bbus
selects either Bus A or Bus B command routing from either the CTUE or the spacecraft CTU to the
RCTU. If the user does not specify a bus, writeCCB defaults to using the A bus.

EXAMPLES

The following UNIX pipe uses writeCCB as part of commanding the ACIS instrument to start executing
stored timed exposure parameter block 1. The command prompt indicates that ACISshell has been executed
and that the CTUE has established a connection. ACISshell% echo ‘start 22 te 1’ | buildCmds | sendCmds |
writeCCB

AUTHOR

Demitrios Athens, MIT CSR

SEE ALSO

sendCmds(1) ACISshell(1)

STATUS

The current version has been used with the CTUE only.

The actu|bctu option is probably meaningless and best left alone when using a CTUE, which has only an A
side. (The B side was so good that it’s being saved for the album.)

The interaction of the abus|bbus option and the CTUE’s own GUI, which allows the operator to select a
command bus, is a complete mystery. It’s probably best not to specify the option unless you’re looking for
adventure.
ACIS Test Tools Rev. 3.1 • 147 of 148June 20, 1997 12:43 pm

ACIS Data Analysis and Database

148 of 148 • ACIS Test Tools Rev. 3.1 June 20, 1997 12:43 pm

Appendix A Test Tool Status

TABLE A–1. Test Tools and their Current Status

Program Name Author Status Comments

GSE Transport Software

ACISshell Athena Implemented

acispkts Davis/Ford Implemented Replaced by shim | getPackets

filterClient Ford Implemented

filterServer Ford Implemented

sendCmds Athens Implemented

getPacktes Athens Implemented

shim Athens Implemented

writeCCB Athens Implemented

GSE Test Tool Software

analyzeData Woo Implemented Function provided by existing programs

bcnd Ford Implemented Alternative to buildCmds

buildCmds Somigliana Implemented

diff6 Ford Implemented Untested

lcmd Ford Implemented

lerv Ford Implemented

lhuff Ford Implemented

ltlm Ford Implemented

monitorDEAHousekeeping Shaff Implemented May require modifications

monitorEngineeringData Athens In progress

monitorScience Somigliana Implemented Filter input through sciglue first

psci Ford Implemented Replacement for processScience

processDEAhkp Athens Implemented No documentation

processEngrData Athens In progress No documentation

runacis Ford Implemented

DEA Image Operations

getImages Shaff Implemented

genPixelImages Somigliana Partially Implemented Lacks image compression

genObjectImage Ford Implemented

generatedExpectedData - Abandoned

loadFitsImage Ford Implemented

putImages Athens Implemented

	Revisions
	ACIS Test Tools
	Items to be Determined
	Table of Contents
	1.0 Introduction�1
	2.0 GSE Transport Tools�3
	3.0 GSE Test Tools�9
	4.0 Image Tools�18
	5.0 The psci Command�21
	6.0 Simulated ACIS Telemetry�42
	7.0 ACIS Timing Algorithms�50
	8.0 Frame Buffer Specification�53
	9.0 ACIS Data Analysis and Database�57
	10.0 UNIX Commands�70
	Appendix A Test Tool Status�148

	List of Figures
	1.0 Introduction
	2.0 GSE Transport Tools
	2.1 sendCmds
	2.2 cclient
	2.3 cserver
	2.4 shim
	2.5 getPackets
	2.6 filterServer
	2.7 filterClient
	2.8 Transport Tool Interfaces
	2.8.1 Stdin to sendCmds
	2.8.2 Stdout from filterClient
	2.8.3 filterClient arguments

	3.0 GSE Test Tools
	3.1 buildCmds
	3.1.1 buildCmds Examples

	3.2 lcmd
	3.3 ltlm
	3.4 psci
	3.5 analyzeData
	3.6 runacis
	3.7 monitorDeaHousekeeping
	3.8 monitorEngineeringData
	3.9 monitorScience
	3.10 processEngineeringData

	4.0 Image Tools
	4.1 getImages
	4.2 putImages
	4.3 genPixelImages
	4.4 loadFitsImage
	4.5 genObjectImage
	4.6 generateExpectedData
	4.7 Image Tool Interfaces
	4.7.1 stdin to putImages
	4.7.2 Output from getImages

	5.0 The psci Command
	5.1 Packet Field Verification
	5.2 Packet Logging
	5.3 Monitor Output
	5.4 Science Event Modes
	5.5 Event Frame Timestamp Files
	5.6 Histogram Files
	5.7 Raw Mode
	5.8 Bias Files
	5.9 Memory Readout
	5.10 Huffman Tables
	5.11 Pseudopackets
	5.12 Architecture
	5.13 Tests applied to packet fields

	6.0 Simulated ACIS Telemetry
	6.1 fepCtlTest—simulate the ACIS front-end processor
	6.2 dumpring—display ring-buffer records
	6.3 tlmsim—create simulated telemetry packets
	6.3.1 Bias Map
	6.3.2 Timing
	6.3.3 Miscellaneous

	6.4 Examples

	7.0 ACIS Timing Algorithms
	7.1 The Timeline of Single Exposure Time Modes
	7.2 The Timeline of Alternating Exposure Time Modes

	8.0 Frame Buffer Specification
	8.1 Significant Changes in this Version
	8.2 Terms
	8.3 Initial Requirements/Specifications
	8.4 Basic Design Concept
	8.5 Operating Modes
	8.5.1 Ramp Mode
	8.5.2 Normal Mode

	8.6 Directive Functions
	8.6.1 “EXXX” Last Pixel Flag (LPF)
	8.6.2 “Annn” Repeat Segment “nnn” times (RS) “Xnnn” Segment Length argument (SL)
	8.6.3 “7nnn” Repeat Frame “nnn” times (RF)
	8.6.4 “6000” Go (TBR)

	8.7 Current Status
	8.8 Proposed Additional Features
	8.8.1 Front Panel Status LEDs
	8.8.2 Error LED(s)

	9.0 ACIS Data Analysis and Database
	9.1 Data Format
	9.2 Raw Image Format
	9.2.1 FSF Format
	9.2.2 ARV Format
	9.2.3 IDL Format

	9.3 Analysis Procedure
	9.3.1 ACISANAL1
	9.3.2 ACISANAL2
	9.3.3 Data Products

	9.4 Utility Software
	9.5 Database

	10.0 UNIX Commands
	10.1 ACISshell
	10.2 acisBepUnix
	10.3 acisFepUnix
	10.4 acispkts
	10.5 bcmd
	10.6 buildCmds
	10.7 cclient
	10.8 cserver
	10.9 diff6
	10.10 dumpring
	10.11 fepCtlTest
	10.12 fepImage2
	10.13 filterClient
	10.14 filterServer
	10.15 genObjectImage
	10.16 genPixelImages
	10.17 getPackets
	10.18 lcmd
	10.19 lerv
	10.20 lhuff
	10.21 loadFitsImage
	10.22 logGet
	10.23 ltlm
	10.24 monitorScience
	10.25 processDEAhkp
	10.26 psci
	10.27 runacis
	10.28 sciglue
	10.29 sendCmds
	10.30 shim
	10.31 tlmsim
	10.32 writeCCB

	Appendix A Test Tool Status

