
To: ACIS Science Operations Team

From: Peter Ford, NE83-545 <pgf@space.mit.edu>

Date: June 10th 2019

Subject: The Architecture of acisCtl 2.0

1. Introduction

The uses of the acisCtl command are to send commands to the ACIS instrument and to its power supply, to
create bias maps and run science observations, to display science results and the status of ACIS hardware and
software, and to assist in debugging and patching ACIS flight software. Since many of these functions cannot
be performed on the flight instrument, acisCtl runs in one of three modes: flight mode when it is started with
the –f flag, when it only displays telemetry, engineering mode when started with –e, in which it can also send
commands to the ACIS DPA, and PSMC mode when started with –P, in which it can fully control both the
ACIS DPA and its power supply and related mechanisms. Full PSMC mode has been unavailable since
pre-launch testing but the hardware and software interfaces no longer exist to support it.

The acisCtl script is a small Bourne shell wrapper that initializes some environment variables and launches
acisCtl.tcl, a script written in the Tcl/Tk language, which loads a set of core tcl functions and controls the
graphical interface through Tk primitives, but these in turn can start a number of standalone tcl and sh tasks
to control additional display windows. The scripts communicate through a large number of environment
variables, many of which are initialized from customizable parameter files which may be updated and saved
by the user through the “Parameters...” button in the main menu.

A note on the typographic conventions used in this report. In the text, examples of Tcl/Tk syntax will be
written in Typescript, environment variables will appear as in a shell script, e.g., $HOME, which in Tcl would
be accessed as $env(HOME), and external items, e.g., file names and UNIX executables, will be italicized. In the
code examples, system commands will be colored in purple, user-defined commands in brown, and numeric
constants in blue. There is a Glossary of technical terms and abbreviations in Chapter 8.

2. Components

Appendix A lists the Tcl modules that constitute the core task. The acisCtl script commands the Tcl/Tk wish
interpreter to run acisCtl.tcl, which embeds the other core modules to add functionality. Tables in Appendix B
list the standalone Tcl/Tk scripts that are invoked by the core modules and execute as independent wish tasks.
The “mode” column indicate which acisCtl modes use that module: flight (FL), engineering (EU), PSMC (PS),
or all of them. Within acisCtl modules, engineering mode is indicated by $ACISEUFLG=1 and PSMC mode by
$ACISPSMCFLG=1, both of which are set in the initial acisCtl script.

3. Input and Output

All standalone acisCtl modules receive ACIS telemetry packets by reading the channelId returned from a call
to the openStream procedure, e.g., when video11.tcl wants to read packets, it includes the following code:

if {[catch {set fid [openStream \x0c ACISV11TEST} err]} {
! errMsg $err {DEA Housekeeping}
! return
}

and reads binary telemetry packets from fid in non-blocking mode. The second argument to openStream
causes it to check whether the value of $ACISV11TEST is non-null. If so, openStream opens a file of that
name and returns its channelId. Otherwise, it opens a socket to $DATAPORT of $DATAHOST. The first
argument to openStream is a one-byte binary code that is written to the socket, telling filterServer which
class(es) of packet to send. Refer to Section 5.4 and the filterServer manual for details. Since openStream
performs no error checking, it is executed by the catch command to trap any error messages in $err.

Kavli Institute, MIT NE83-545
Building 300, One Kendall Square

 Cambridge MA, 02139–4307
 Tel: +1-617-253-7277
 Fax: +1-617-253-8084

 r e p o r t

mailto:pgf@space.mit.edu
mailto:pgf@space.mit.edu

3.1. Flight Mode

In flight mode, acisCtl displays (and optionally records) realtime ACIS telemetry. All components receive data
from the flight instrument in the form of 1029-byte minor frames, possibly wrapped in SFDU and/or EHS
headers. They can be converted to ACIS packets by a variety of programs: from EHS by getnrt, from SFDU
by getPackets, and from minor frames by getPackets or getp. To achieve this flexibility, acisCtl invokes a shell script
to start the input interface. The script is defined by the environment variable $RCTU_CMD, and is invoked by
the TCL command [open “| $env(RCTU_CMD)” r].

The default value of $RCTU_CMD is “acisTstShim”. Its contents may vary, but after deciding which flags and
arguments to use, it should invoke a shell pipe of the following form:

(tlmGet -p $COGPORT | $GETPACKETS_CMD | filterServer -p $DATAPORT) 2>&1

where tlmGet receives binary TCL input in any format acceptable to $GETPACKETS_CMD, (i.e,. getnrt, getp or
getPackets), which converts it to ACIS packets, and filterServer parcels them out to the standalone acisCtl clients.
Once $RCTU_CMD has been started, the core task issues a “ps clx” command to determine the process IDs
of its sub-tasks, including that of tlmGet.

The “Start Raw Input Logging” button sends a “kill –usr1” signal to tlmGet, which opens and starts to copy
the incoming data to the file named in tlmGet’s option “–d file”. If this name ends in “.Z” or “.gz”, the data
will be compressed through “gzip”. Also, if it contains “%”, it will be reformatted by strftime() to replace “%”
fields with local time and date information, e.g., at 𝜏-time on π-day, “ACIS-%DT%T-mnf.gz” would compress
the data and write it to “ACIS-03/14/19T18:28:00-mnf.gz”. For details, consult the manual for strftime(3).

Logging ACIS packets is simpler. The “Start Packet Logging” button invokes the runLogPkts procedure in
runacis.tcl which creates and executes the following pipe:

filterClient | $1 > ${TLM_LOG_DIR}/`date +”${TLM_LOG_FILE}”`$2

where $1 and $2 represent the first and second words in $LOGCOMPRESS. If the latter is “gzip .gz”, the output
will be compressed, but if $LOGCOMPRESS is “cat”, it won’t. runLogPkts saves the PID of the filterClient task
in $run(pid) so that it can be killed when the “Stop Packet Logging” button is clicked. The “+fmt” of the
“date” command is used to translate “%” fields into data and time values in a similar way to strftime(3).

3.2. Enginerering Mode

The default value of $RCTU_CMD is “acisEUshim”, which starts a pipe:

(cserver $CMDPORT | sendCmds | shim lrctu | $GETPACKETS_CMD | filterServer -p $DATAPORT) 2>&1

A TCP server, cserver, accepts binary command packets as generated by “bcmd ”, pipes them through
“sendCmds” to add channel headers, and into “shim” which writes them to the engineering unit via the
L-RCTU interface. shim also writes the output of the engineering unit to stdout in the form of ACIS minor
frames, which are converted to packets by $GETPACKETS_CMD, and sent to filterServer to distribute to
standalone acisCtl tasks via TCP. Earlier versions of acisCtl also supported a third I/O function with an
alternative version of shim, sending commands to the PSMC to control the power supply, open and close
doors and valves, etc., and receive PSMC serial digital and 8-bit A/D telemetry. The command function has
been removed but the “psmc.tcl” module accepts variables $PSMC_HOST and $PSMC_PORT as alternatives to
$DATAHOST and $DATAPORT when running in flight mode and displays telemetry related to PSMC functions.

4. Variables

4.1. Local

To keep the number of variable names to a minimum, as many as possible have been collected into hashes
(associative arrays) whose names reflect that of the module that uses them. In most cases, a hash is restricted
to a single module, where it is declared global and used to pass values between functions. The following
table lists the globals used exclusively within the core task.

THE ARCHITECTURE OF ACISCTL V 2.0

2

Hash Module Use

dea deaif.tcl Miscellaneous controls and DEA channel values

disp textDisp.tcl Miscellaneous control values

hst highspeedtap.tcl Miscellaneous control and High-Speed Tap channel values

image imageLoad.tcl Miscellaneous control values

opt options.tcl Miscellaneous control values

pblk pblocks.tcl Miscellaneous control values

ps acisPrint.tcl Miscellaneous control values

run runacis.tcl Miscellaneous control values

table acisTable.tcl Miscellaneous control values

Standalone modules also use hashes in favor of individual variable names to pass values between their
internal procedures and, in the case of debug.tcl, between it and debugAux.tcl.

Hash Module Use

cmd
addrBEP addrFEP
cmds config
fatal cmdres
feperr pkts
smterm swstat

commands.tcl cmd stores miscellaneous control values. cmds and pkts contain the
ASCII names of ACIS commands and telemetry packets. The
remainder contain ASCII names of particular packet fields.

debug
addrBEP addrFEP
abbrevBEP
abbrevFEP
fileBEP fileFEP
fmtBEP fmtFEP
lenBEP lenFep
mips[CIJKLNRT]
nameBEP yBEP
nameFEP yFEP

debug.tcl
debugAux.tcl

debug stores miscellaneous control values. *BEP and *FEP store
global FEP and BEP addresses and names from the load maps,
fileBEP and fileFEP. mipsC through mipsT contain information
used to reverse-assemble MIPS instructions. Note that addrBep and
addrFEP are also global in the commands module, but debug runs in a
separate wish task so they are independent.

dump dump.tcl Miscellaneous control values

int interface.tcl Miscellaneous control values

man manual.tcl Miscellaneous control values

psmc
chan

psmc.tcl psmc stores miscellaneous control values; chan stores channel IDs

rctu
rctu[CPV]

rctu.tcl rctu stores miscellaneous control values; rctuC stores channel
names; rctuP stores flag values; rctuV stores channel values.

show
show[CEFMS01]

showit.tcl show stores miscellaneous control values; showC stores colors; showE
stores exposure IDs; showF stores event record formats; showM
stores a propeller (see Glossary); showS stores CCD names; show0
stores PHA minima; show1 stores PHA maxima.

tlm
tlmdat

showtlm.tcl tlm stores miscellaneous control values; tlmdat stores the structure
of each type of telemetry packet.

v11 video11.tcl Miscellaneous control and Board 11 channel values

vtm videotm.tcl Miscellaneous control and DEA housekeeping channel values

v 2.0 THE ARCHITECTURE OF ACISCTL

3

4.2. Global

Finally, there are a small number of variables and hashes that are genuinely global, mostly used to pass values
within modules running in the acisCtl.tcl task.

Hash Module Use

acisgeom acisAux.tcl
acisProcs.tcl

This is a hash, indexed by top level Tk window name (leading “.” included),
whose values are the corresponding window geometries. To update an entry,
procedures within acisCtl.tcl call putGeometry in acisProcs; standalone
procedures call putGeometry in acisAux with same arguments.

acispid acisCtl.tcl
acisProcs.tcl
acisTable.tcl
runacis.tcl
rawpackets.tcl

This is a hash containing the process IDs of standalone wish procedures
started within the acisCtl.tcl task, currently cmd, psmc, and table, and used to
destroy those tasks when cleaning up within acisCtl and acisProcs.

ccd acispower.tcl
acisProcs.tcl

A hash containing power off/on bits for each CCD extracted from the most
recent configuration table read by acisCtl.

errorInfo commands.tcl
debug.tcl
interface.tcl
manual.tcl
psmc.tcl
rctu.tcl
showit.tcl
showtlm.tcl
video11.tcl
videotm.tcl

This is not a hash. It is a global variable set by Tcl/Tk when encountering an
error. Most error-prone commands within acisCtl are executed within a catch
argument, and errors are handled immediately, but most stand-alone modules
are split into two procedures: the first to define the output window(s) when any
error will terminate the module, and the second to run under catch, when any
error not caught within that procedure will cause its $errorInfo text to be
written to stderr in the terminal window in which acisCtl was started.

fep acispower.tcl
acisProcs.tcl

A hash containing power off/on bits for each FEP extracted from the most
recent configuration table read by acisCtl.

relay acispower.tcl
deaif.tcl

A hash containing status bits for each DEA power relay extracted from the
most recent Board 11 housekeeping packet read by acisCtl.

4.3. Environment

While most global variables are used to restrict their range, the env hash, which is initialized by wish with
the values of the shell’s environment variables, and used extensively within acisCtl to pass values between
modules, e.g., from the acisCtl.tcl task to the stand-alone tasks that it starts. Appendix C contains a description
of all environment variables used by acisCtl.

5. Coding Conventions

5.1. Standalone Modules

The standalone modules are all coded in a similar manner, as in the following example, where “xxx”
represents some short mnemonic that recalls the name and function of the module:

global env xxx errorInfo
InitGlobals.xxx
ShowWindow.xxx
if {[catch ReadPackets.xxx]} {puts stderr “$xxx(title): $errInfo”}
if {$env(ACISxxxTEST) ne {}} {vwait forever}
DestroyWindow.xxx

The global command gives access to environment variables through $env() and system error messages
through $errorInfo. It also accesses a global hash $xxx() for sharing variables such as $xxx(title), the
window title between procedures.

THE ARCHITECTURE OF ACISCTL V 2.0

4

$xxx() and other variables are initialized by the InitGlobals.xxx function and the display window is
created by ShowWindow.xxx. Any errors up to this point that were not invoked as an argument of a catch
command will cause the module to crash.

The ReadPackets.xxx command does the dynamic work, reading ACIS telemetry and, in engineering
mode, sending commands to the instrument. If an uncaught error occurs, ReadPackets.xxx will return and
print an error message to stderr, but the module will keep running.

If environment variable $ACISxxxTEST is non-zero, it will be interpreted by ReadPackets.xxx as a file
supplying telemetry input in place of filterServer, so “vwait forever” will pause the window display for the
user to examine until killing the module with CTRL-C from the terminal. Otherwise, DestroyWindow.xxx
will clear the window and terminate the module.

5.2. Module Initialization

The first step in the initialization of acisCtl.tcl and of each standalone module – i.e., within the
InitGlobals.xxx procedure in the above example – is to initialize control variables, usually within the
$xxx() hash, and supply default values to the environment variables used in the module. The latter is done in
the following consistent manner:

global env
foreach ii [list \
! {ACISTOOLSDIR! {~acis/tools}} \
! {ACISxxxTEST!{}} \
! {name! {value}} \
! {LibPath! {$env(ACISTOOLSDIR)/lib/acisctl}} \
! {imgdir! {$env(LibPath)/images}} \
] {
! lassign $ii name val
! if {! [info exists env($name)]} {
! ! eval “set env($name) \”$val\””
! }
}

The environment variable names are paired with their default values. If the variable doesn’t yet exist, its
default is evaluated and assigned, so the defaults can themselves be defined in terms of other environment
variables, or even themselves if the programmer is willing to accept the consequences.

5.3. Window Initialization

Most of the standalone modules display a single graphical window. These are also created in a consistent way
across all modules, e.g., within ShowWindow.xxx in our example, as follows:

proc ShowWindow.xxx { }{
! global env xxx
! frame .xxx -background {color}
! set revision “0”
! regexp {: ([^]+)} {$Revision$ } xxx revision
! set xxx(name) “ACIS Window Title $revision”
! putGeometry .xxx $xxx(name) +col+row
! ...
}

The top-level name of the new window will be known to Tk as “.xxx”, so its widgets – its buttons, labels,
text fields and graphics – will have names beginning “.xxx.”. Once committed into the CVS document
control system, the module will be assigned a numeric revision code and the regexp command copies this
code into $revision, and into the full window name, $xxx(name). Finally, the putGeometry procedure
inserts the full name into the window title, sources the “~/.acisctlgeom” file, and if acisgeom(.xxx) doesn’t
exist, sets it to “+col+row”, updates “~/.acisctlgeom”, and positions the top left of the new window at
acisgeom(.xxx).

v 2.0 THE ARCHITECTURE OF ACISCTL

5

5.4. Reading ACIS Packets

All standalone modules read packets directly from filterServer, in processes named ReadPackets.xxx, where
xxx is our fictitious module name. They establish a socket via a call to openStream, and described in Section
3, above, and then enter a loop that goes something like this:

while {! [catch {set rec [read $xxx(fid) 8]}] && ! [eof $xxx(fid)]} {
! if {$rec eq {} || [fblocked $xxx(fid)]} {
! ! after 1000
! ! catch {update}
! } elseif ([binary scan $rec {ii} sync hdr] == 2} {
! ! set tag [expr ($hdr >> 10) & 63]
! ! set len [expr 4*($hdr & 1023)-8]
! ! set rec [read $xxx(fid) $len]
! ! if {$tag == 62) {set xxx(time) [irigTime $rec]}
! ! ...
! }
}

Since the socket $xxx(fid) is non-blocking, we check whether it still exists (or we are reading from a test
file named in $ACISxxxTEST) by invoking the eof command. Otherwise, if we read a null record or if the
socket is blocked, we wait for 1000 milliseconds and tell Tcl/Tk to update anything pending. Once we have a
2-word (8 byte) header in $rec, we convert it to integers $sync and $hdr, from which we extract the packet
type $tag and length $len, and read the remainder of the record. Most modules want to display the date and
time contained in IRIG-B format in the pseudoScience packet with tag=62, and in this example we use the
irigTime procedure from acisAux.tcl to convert it to ASCII and save it in $xxx(time). Creating a text field
within “.xxx.” with the attribute “-textvariable xxx(time)” ensures that whenever “xxx(time)” is
changed updated, the window field will also update.

5.5. Terminating a Module

Most standalone windows terminate because their input sockets are closed when filterServer quits and they fall
out of the while loop in their xxxRun procedure and invoke DestroyWindow.xxx:

proc DestroyWindow.xxx {} {
! global xxx
! putGeometry .xxx {} {}
! catch {close $xxx(fid)}
! catch {destroy .}
! exit 0
}

The call to putGeometry with null in the second and third arguments updates the global acisgeom(.xxx)
with the window coordinates and saves all acisgeom values in “~/.acisctlgeom”, ensuring that the window will
appear in that position next time it is created. Since certain error conditions will cause the window to be
destroyed when the input socket is closed, this is done after saving the window geometry. Finally, any root
window “.” created by the module is also destroyed.

5.6. Terminating the Telemetry Server

The “Start ACIS Interface” button in the “I/O Server” menu starts the standalone interface.tcl module which
executes the $RCTU_CMD shell command in a new window. This may also start several additional processes, so
both runacis.tcl in the core task and the interface.tcl task itself invoke “/bin/ps clx” and store the IDs of their
tasks’ sub-processes in run(pids) and int(pids), respectively. The “Stop” button of interface.tcl kills these
tasks before destroying its own window and the core task does the same when the “Stop ACIS Interface” or
“Quit” buttons are clicked.

While parsing the output of “/bin/ps clx”, runacis.tcl also saves the process ID of any of its subtasks named
tlmGet in $run(tlmGet) so that the runacis.tcl buttons can subsequently start or stop logging the input
telemetry by sending tlmGet a SIGUSR1 (start) or SIGUSR2 (stop) signal.

THE ARCHITECTURE OF ACISCTL V 2.0

6

6. External Executables

The following executable programs have been developed for use with acisCtl.

Name Environment Use

acisEUshim $RCTU_CMD Shell script to communicate between acisCtl and ACIS engineering unit
(EU), as described in Section 3. The cserver program listens on TCP port
$CMDPORT for bcmd output, interfaces with the EU via “shim lrctu”, converts
the output into ACIS packets and distributes then via TCP with filterServer.

acisEUshim500 $RCTU_CMD Identical to acisEUshim except that it uses “shim500 lrctu” to interface to the
EU at 500 baud to emulate flight format 1, i.e., HRC in the focal plane.

acisPmon $PMON_CMD Shell script to pipe ACIS packets from filterClient into the pmon program to
display science and housekeeping data in a terminal window that is created
in acisCtl by executing “$DISP_TERM -e $PMON_CMD”.

acisTables Perl script to read ACIS configuration and table files from $ACIS_CFGS
and $ACIS_PBLKS, respectively, and write to stdout. The syntax is:
acisTables mode item write binary value of item in mode table
acisTables –l mode write ASCII list of packet names in mode table
acisTables -l mode item write ASCII description of item in mode table
where mode is “cfg” or“cfgi”, item is an SIMODE in the configuration file;
when it is “data”, item is the name of a BEP command in the command file.
When “cfg” is specified, acisTables pauses for the number of seconds
requested in the configuration file after writing each command. Otherwise,
“cfg” and “cfgi” are identical.

acisTstShim $RCTU_CMD Shell script to start a TCP server (usually getTlm) to wait for a connection
from the COG interface, extract ACIS packets (usually via getPackets or getp),
and pass them to the TCP server filterServer for distribution to standalone
acisCtl modules. acisTstShim clears existing system semaphores before starting
getPackets.

dapkts $LOAD_RAW_CMD An executable program to copy ACIS command packets from stdin to stdout,
pausing after each multi-word packet to keep the overall data rate below 4
kilobaud, i.e., 500 bytes/second, so as not to overload the interfaces to the
ACIS engineering unit.

7. Applicable Documents

Chandra Proposers’ Observatory Guide, Section 6.22, Revision 21.0, December 2018.

ACIS EGSE Software Manuals, online at “ftp://acis.mit.edu/pub/acistools.pdf”.

Long-Term ACIS Maintenance and Verification, online at “ftp://acis.mit.edu/pub/LongTermMaintenance.pdf ”.

ACIS EGSE User Commands, MIT, revised January 31, 2019.

ACIS Science Instrument Software User’s Guide, MIT 36–54003, NAS8–37716, Revision A (1999).

ACIS IP&CL Structures, MIT, revised July 28 2014.

ACIS IP&CL Structure Definition Notes, MIT 36–53204.0204, Revision N (2003).

v 2.0 THE ARCHITECTURE OF ACISCTL

7

8. Glossary

COG TCP client supplying Chandra realtime telemetry

Configuration Set of ACIS BEP serial digital commands to execute a science observation

Core Module A Tcl/Tk file executing in the task initiated by the acisCtl script

CVS Concurrent Versions System – revision control system used to manage acisCtl

DEA ACIS Detector Electronics Assembly – CCD controllers, amplifiers, digitizers

DPA ACIS Digital Processor Assembly – DEA controller, pixel filter, telemetry source

EGSE Electronic ground support equipment, including acisCtl and auxiliary programs

EHS Chandra telemetry format – up to 4 SFDU structures per block

EU The ACIS Engineering Unit – payload simulator using flight spare components

Hash Tcl associative array variable indexed by string

High-Speed Tap External interface to an ACIS DEA video board to receive synchronous pixel stream

Housekeeping Information about ACIS analog and digital systems included in output telemetry

IRIG-B 48-bit time format used in ACIS pre-launch tests and saved in pseudoScience packets

L-RCTU High-speed serial interface between ACIS DPA unit and UNIX workstation

Image Loader DMA interface between ACIS pixel switch and UNIX workstation

MIPS Common architecture of all ACIS processors

Major Frame Group of 128 consecutive minor frames – 32.8 seconds of Chandra telemetry

Minor Frame Basic unit of Chandra telemetry – 4 byte sync code + 1025 byte data

Module In Tcl/Tk, a file to run under the wish interpreter, or sourced by another module

PHA The pulse height amplitude of an ACIS x-ray event

PID The process ID of a UNIX task

PSMC The ACIS power and systems management controller – the power supply

Pseudoscience ACIS packet created by ground s/w to contain timing information

Packet ACIS multi-word uplink command or downlink telemetry from the ACIS DPA

Propeller Serial “|/-\” characters, an ASCII indication of the passage of time

RCTU Remote Command and Telemetry Unit relaying data to Chandra downlink telemetry

SFDU Standard Formatted Data Unit – Chandra minor frame + ground station header

Shim Software to interface between UNIX processes and the EU hardware interface

SIMODE Name of an ACIS configuration – commands to execute a science observation

Standalone Module A Tcl/Tk file and its secondary imbeds that executes as a separate task

Video Within ACIS, the name given to the analog processors within the DEA

THE ARCHITECTURE OF ACISCTL V 2.0

8

Appendices

A. Core Modules

The acisCtl script passes acisCtl.tcl to the wish interpreter. This is the ‘core’ task and it loads the remaining code
modules and provides default values for uninitialized environment variables before passing control to
runacis.tcl to display the startup menu that does the work.

Core ModulesCore ModulesCore Modules

Name Mode Description

acisCtl.tcl all Loads the core modules listed in column 2, verifies that $ACISTOOLSDIR, $DATAHOST
and $PRINTER possess ‘reasonable’ values, provides default values for the remaining
environment variables, and starts runAcis.tcl.

acisPrint.tcl all Provide procedures: (a) printText to convert ASCII text to PostScript and write it to
$PRINT_CMD, or (b) saveText to write ASCII text to an external file.

acisProcs.tcl Define commands to perform a series of common functions:acisProcs.tcl

all runTcl invoke wish to run a stand-alone TCL/TK script

acisProcs.tcl

EU doCmd send a command to the ACIS instrument

acisProcs.tcl

EU doCmdKill kill any previous doCmdLoad process

acisProcs.tcl

EU doCmdLoad send raw command/patch load to ACIS

acisProcs.tcl

EU doTable run acisTables to display or execute offline table item

acisProcs.tcl

all errMsg display error dialog

acisProcs.tcl

all infoBlock invoke $EDITOR to edit a file

acisProcs.tcl

all killInterface locate and kill all active acisCtl telemetry servers

acisProcs.tcl

PS killPsmcRctu! kill any previous launchPsmcRctu process

acisProcs.tcl

EU killTable kill previous acisTables process

acisProcs.tcl

all launchPmon invoke $DISP_TERM to display pmon with $PMON_CMD

acisProcs.tcl

PS launchPsmcRctu invoke the PSMC telemetry display

acisProcs.tcl

PS launchPsmcTlm display data channels from $PSMC_SERVER

acisProcs.tcl

EU loadImage run $LOAD_IMAGE_CMD to send pixels to image loader

acisProcs.tcl

EU loadPblock load parameter block to start/stop a science/DEA housekeeping run

acisProcs.tcl

all putGeometry update and save window geometries

acisProcs.tcl

EU selectAB toggle the pixel switch between DEA and image loader

acisProcs.tcl

EU sendCcdCmd set CCD power on or off for individual boards

acisProcs.tcl

PS sendDeaPower turn DEA power on/off

acisProcs.tcl

EU sendDpaBoot warm- or cold-boot the active BEP

acisProcs.tcl

PS sendDpaPower turn DPA power on/off

acisProcs.tcl

EU sendFepCmd set FEP power on or off for individual boards

acisProcs.tcl

PS sendHstCmd set high-speed taps on or off

acisProcs.tcl

all show_down locate and kill all active processes started by acisCtl

v 2.0 THE ARCHITECTURE OF ACISCTL

9

Core ModulesCore ModulesCore Modules

Name Mode Description

acispower.tcl EU Respond to the “Control FEP/CCD” button on the main menu by creating and displaying
the “FEP/CCD Power” dialog which contains separate toggle buttons for each FEP and
CCD, with “Send” buttons to command FEP or CCD to power up/down according to the
user’s selections. The “Refresh” button executes the bcmd command “dump 0
systemconfig”, waits for the instrument response, and sets the toggle buttons accordingly.

acisTable.tcl all Display a window containing scrolling text: either the SIMODEs from an ACIS
configurations file “.cfg” or from an ACIS command packet file “.dat”. Functions
tableFilter and tableSelect reduce the range of items displayed. Buttons permit the
user to display the content of selected configurations or packet(s) converted to ASCII by the
acisTables script, or (in EU mode only), send the packet(s) to the instrument via doTable.

beppower.tcl EU Display a dialog of buttons that send bcmd commands to the BEP’s hardware serial port via
doCmd, or send FEP or DEA power commands to the BEP via sendDpaPower or
sendDeaPower calls (see acisProcs.tcl, above)

deaif.tcl EU Display a dialog of buttons and text entry windows to control the BEP-DEA interface.
When acisCtl starts, all signals are assumed “off ” and the coarse focal plane temperature is –
120°C. The user is expected to set the buttons and the coarse and fine temperature settings
and then click the “Send” button, when a single “change systemConfig” command is
sent to ACIS through doCmd.

highspeedtap.tcl PS Display a dialog through which the user can select a video board to transmit pixel output
through its high-speed tap interface. Buttons select whether to do this via sendHstCmd (see
acisProc.tcl) or by loading the “hstfly” patch and executing its switchHst() method directly at
BEP address 0x800e1c20.

imageLoad.tcl EU Open an “Image Loader Control” window to display the names of the image definition files
in $IMAGE_LIB. These are ASCII files in the format accepted by the genObjectImage(1)
program. Once a file has been selected, buttons let the user list it in a window (via textDisp
in textDisp.tcl) or copy it to the Image Loader (via loadImage in acisProcs.tcl).

options.tcl all Display a table of environment variable names, their current values, and a short description
of each. acisCtl maintains a table of all $env() names that it uses, but only displays those that
are useful in the current mode. All are loaded from ~/.acisctlrc when acisCtl starts up, and all
are written back there when the “Save” button is clicked, but within acisCtl itself, a value is
changed as soon as the user updates the value field. When acisCtl is started with the –D flag,
additional fields will appear below the Options table. The “Exec” button evaluates the TCL
command entered in the “Command” field, “Clear” clears it, and “Reload” loads the
embedded scripts for acisCtl.tcl, which may be necessary if the command loads text that calls a
procedure in one of those scripts.

THE ARCHITECTURE OF ACISCTL V 2.0

10

Core ModulesCore ModulesCore Modules

Name Mode Description

pblocks.tcl EU Display a list of bcmd files in $PARAM_BLOCK_LIB with particular extensions:
cc continuous clocking parameter blocks
dea DEA housekeeping parameter blocks
te timed-exposure parameter blocks
1d one-dimensional window blocks
2d two-dimensional window blocks

Buttons at the bottom of the window perform the following functions:
Slot define the BEP slot to hold that parameter block
List display the contends of the parameter block
Edit invoke $EDITOR to edit the parameter block
Load send the parameter block to the active ACIS BEP
Start start the science run or DEA housekeeping
Stop stop the science run or DEA housekeeping
Close close this window

In addition, the CC and TE windows have a “Start Bias” button to start a bias-only
science run with the selected parameter block. All window types use a text entry field to
permit the user to filter file names via wild card characters.

rawpackets.tcl EU Display a list of bcmd and raw packet files (extensions .bcmd and .pkts) in $RAW_CMD_LIB
and use buttons to List (in a text window), Edit (.bcmd only), Execute (send to ACIS and
wait until a commandEcho is received in response, Stop (the execution), Cancel (the
selection), or Close (the dialog).

runacis.tcl all Creates and displays the main acisCtl menu using the “runB flag command background title”
procedure and then enters an indefinite wait. The menu buttons either call runTcl to
execute a stand-alone module or showWin to show a window within the current task. In flight
mode, there are buttons to start and stop the incoming telemetry interface, and buttons to
control Raw Input and Packet logging. In engineering mode, additional buttons select FEP
input between the DEA and the Image Loader. In “psmc” mode, more buttons start/stop
additional command and telemetry servers to the PSMC. The ACIS interface is started by
starting interface.tcl with wish as a separate task, which is responsible for raw input logging (see
the section below on tlmGet). The necessary parameters are passed in the environment. Packet
logging is performed by starting gzip and saving its PID in $run(pid) so that it can be
killed later.

textDisp.tcl all Execute “textDisp title ext text” to display the ASCII string text in a window
named title. with buttons Save (to save text into a file named “$title.$ext”), Print
(to $PRINTER), or Close (the window). The “#” character is assumed to begin a comment,
which will be colored blue. In lines beginning “xxx = {”, the “xxx” will be bolded.

v 2.0 THE ARCHITECTURE OF ACISCTL

11

B. Standalone Modules

These modules are started from core modules as arguments of the Tcl/Tk wish interpreter. They all source
acisAux.tcl to supply common procedures and some also source acisPrint.tcl to provide a Print function.

Standalone ModulesStandalone ModulesStandalone ModulesStandalone Modules

Module Embeds Mode Description

commands.tcl acisPrint.tcl EU Read telemetry from $DATAHOST:$DATAPORT (or from $ACISCMDTEST if
defined) and convert and list packet contents in a scrolling text window.
Summarize the content of each non-event, non-exposure packet (or group of
packets of the same type), coloring to assist interpretation, e.g., red for anomalies,
green for commands, blue for other packet names, etc. The bottom of the
window contains an entry field for the maximum number of rows to retain in the
scrolling window, All to list all addPatch commands, buttons Save to write the
retained text to a disk file, Print to convert the text to PostScript and send it to
$PRINTER, Mark to add data and time to the text, Pause to stop reading the
telemetry until the button is checked again, and Close to drop the socket and
close the window.

commands.tcl

acisAux.tcl all doPrint Execute $PRINT_CMD to print file with title.

commands.tcl

acisAux.tcl

all errMsg Display error dialog with title and message. If an error occurs,
write the message to stderr.

commands.tcl

acisAux.tcl

all irigTime Return IRIG field and $DATAYEAR as date/time.

commands.tcl

acisAux.tcl

all openStream Open $DATAHOST:$DATAPORT (or test filename if defined in
environment), write mode byte to select data packet type (see
filterServer(1)), set for non-blocking I/O, and return stream
descriptor.

commands.tcl

acisAux.tcl

all putGeometry Execute ~/.acisctlgeom to initialize $acisgeom. If new
geometry for this window, save its value. Then update
~/.acisctlgeom. with the geometry of all active windows.

debug.tcl acisAux.tcl
acisPrint.tcl

EU The “I/O Interface” dialog contains a Debug button that displays a scrolling list
of $BEP_MAP contents. When the user selects an item, a readBep or readFep
command is sent to ACIS to dump all addresses from that item up to, but not
including, the address of the next higher item in the load map. The result is
converted to ASCII and displayed in the lower scrolling text area. Several
conversions are available: hex, data, and two types of disassembly: “asm1” which
doesn’t attempt to recognize global locations, and “asm2” which does. There is
no “write” function: to update the EU: users must issue “echo writeBep ...| bcmd |
cclient ...” commands from the terminal.

debug.tcl

debugAux.tcl EU Contains routines to disassemble MIPS code and data segments for debug.tcl.
Globals are interpreted as positive offsets from the globals in $BEP_MAP and
$FEP_MAP.

THE ARCHITECTURE OF ACISCTL V 2.0

12

Standalone ModulesStandalone ModulesStandalone ModulesStandalone Modules

Module Embeds Mode Description

dump.tcl acisAux.tcl
textDisp.tcl
acisPrint.tcl

EU Display a menu of functions to dump or reset data structures within the BEP or
one of the FEPs. Each dump action is performed by the dumpCmd procedure:
dumpCmd tag type lim fmt namelen name
tag the button’s TK sub-tag in .dump.frame1.
type bcmd dump sub-command
lim maximum number of reply packets expected
fmt expected formatTag of reply packets
namelen byte length of ASCII title
name block name for title

and each reset action is performed by dumpAsk:
dumpAsk cmd msg
cmd complete bcmd command
msg description of action (for errMsg)

The dump task reads and decodes the headers of all packets received while it is
running but only searches for replies while $dump(state)==1. Having found
the desired packet(s), it reformats them into ASCII and invokes textDisp to
display the result in a sub-window of the dump task.

interface.tcl acisAux.tcl
acisPrint.tcl

all Start the $RCTU_CMD script and display its stdout in a scrolling window. Lines
containing ugly words such as “connection dropped” or “cannot bind” are
displayed in red. Comments are in blue. The DestroyWindow function is given
the job of finding the children of $RCTU_CMD and killing them.

manual.tcl acisAux.tcl all Create a window in which to display the individual pages of the acisCtl manual,
which is stored in $ACISTOOLSDIR/lib/acisctl/images as a set of GIF files named
$ACISCTLMAN_nn.gif. Buttons at the foot of the window step through the pages
and send the current page to $PRINTER as a graphic.

psmc.tcl acisAux.tcl all Respond to the “Show PSMC Monitor” button in the main menu by displaying a
window showing the status of the PSMC in a set of TK graphics. Each PSMC
function is shown as enabled, on, off, and/or disabled in state “A” ot “B”. In
addition, the various under- and over-current status bits are displayed. Active
values are shown in color, with red reserved for unexpected or downright
dangerous states. The display isn’t valuable in engineering mode: only the “Side
A/Side B” display will be set from the ACIS bilevels, unless acisCtl is invoked with
the –P option and the PSMC is being accessed via $PSMC_SERVER and
$PSMC_CMD.

rctu.tcl acisAux.tcl all Respond to the “Show RCTU Telemetry” button in the main menu by displaying
a window showing the values of ACIS-related engineering channels. In engineering
mode, only the bilevel values are reported unless acisCtl is invoked with the –P
option to show that the PSMC output is being received and formatted by a special
interface. In flight mode, the engineering channels are displayed in one of three
formats, selected at the bottom of the window: engineering units (volts, amps, °C,
etc), or in “raw” units (hexadecimal or decimal).

v 2.0 THE ARCHITECTURE OF ACISCTL

13

Standalone ModulesStandalone ModulesStandalone ModulesStandalone Modules

Module Embeds Mode Description

showit.tcl acisAux.tcl all Respond to the “Show CCD Events” button in the main menu by displaying a
window showing the 10-CCD ACIS focal plane. Read science telemetry packets
and show the location of each event as a dot, colored according to its PHA. To
the left of the I-array, a table shows the number of events from each CCD, and
the minimum and maximum of each PHA. Fields at the bottom of the window
let the user select the minimum and maximum PHA to assign to the available
colors and the resulting color scale is displayed to the right of the I-array. Buttons
select between Small, Large and Huge dots, Save the window as a graphic,
Print it on $PRINTER, Clear the dots and table, and Close the window. The
size of the window is governed by $CCD_SCALE, which is the number of screen
pixels to be used for each row and column of each CCD.

showtlm.tcl acisAux.tcl
acisPrint.tcl

all Respond to the “Show Packet Monitor” button in the main menu by displaying a
window showing a scrolling text detailing each ACIS telemetry packet received
from the I/O Server. The packet names are in boldface, followed in brackets by
the number of items they contain; then the packet sequence number followed by
the single-valued fields in name=value format with values in blue. Packets and
fields whose presence or value implies bad news are colored red. A “Rows:” field
beneath the window specifies the number of lines to be retained in the scrolling
window. In enginering mode, ticking the “Eng:” box displays pseudo-packets in
magenta; otherwise they are hidden. Buttons permit the user to Save the text as a
simple ASCII file, Print the text to $PRINTER as colored PostScript, Mark the
text with the current date and time, Pause the display while buffering the input,
and Close the window.

video11.tcl acisAux.tcl all Respond to the “Show Board 11 Telemetry” button in the main menu by
displaying a window showing the values of engineering channels reported in
DEA housekeeping. In engineering mode, the BEP must run with the deaeng
patch to access these channels. Also, the positions of the power relays are only
displayed when the DEA is powered from the A-side of the PSMC. The analog
values from the individual boards are unreliable unless all CCDs are powered
simultaneously. Analog channel values are displayed in one of three formats,
selected by the leftmost the bottom of the window: Eng (engineering units, i.e.,
volts, amps, °C, etc), or Hex (hexadecimal) or Dec (decimal). Other buttons Save
the window as a graphic file, Print the colored graphic to $PRINTER, Clear
the values, or Close the window.

videotm.tcl acisAux.tcl all Respond to the “Show All DEA Telemetry” button in the main menu by
displaying a window showing the values of engineering channels reported by the
BEP-DEA interface board. In engineering mode, the BEP must run with the
deaeng patch to access these channels. Also, the positions of the power relays are
only displayed when the DEA is powered from the A-side of the PSMC. The
engineering channels are displayed in one of three formats, selected by the
leftmost the bottom of the window: Eng (engineering units, i.e., volts, amps, °C,
etc), or Hex (hexadecimal) or Dec (decimal). Other buttons Save the window as
a graphic file, Print the colored graphic to $PRINTER, Clear the values, or
Close the window.

THE ARCHITECTURE OF ACISCTL V 2.0

14

C. Appendix – Environment Variables

In the table of environment variables below, the key letters in the “Type” column have the following meaning:

Key Description

D used only for debugging and testing of standalone modules

E useful in engineering mode; can be edited/saved in the “Parameters...” window

F useful in flight mode; can be edited edited/saved in the “Parameters...” window

H inherited from the environment

I cannot be changed by the user; for internal use only

P useful in (obsolete) PSMC mode; can be edited/saved in the “Parameters...” window

S used only by interface programs started by acisCtl

Many of the variables are initialized by sourcing “$ACISTOOLSDIR/lib/$ARCH/acisegse.parms” or, if
the “–p file” option is supplied, by sourcing file. The intention is to supply “reasonable” values for sufficient
environment variables to get the novice user running.

The personal start-up file “~/.acisctlrc” will contain definitions of those variables with “E”, “F” or “P” in the
“Type” column. Selecting “Parameters . . .” in the root menu displays those parameters that are editable, i.e.,
useful, in the current mode. Any changes will take effect immediately in the core task, but will not affect
standalone modules until these are stopped and restarted. Saving the Parameter table will update all entries in
“~/.acisctlrc”, whether or not they are “editable” in the current mode.

Variable Name Type Module Default Description

ACIS_CFGS EFP acisTables.tcl
options.tcl

ACIS configuration table, passed to acisTables executable

ACIS_PBLKS EFP acisTables.tcl
options.tcl

ACIS command table, passed to acisTables executable

ACISCCDTEST D showit.tcl () Read packets from this input file instead of filterServer

ACISCMDTEST D commands.tcl () Read packets from this input file instead of filterServer

ACISCTLMAN D manual.tcl () Read manual pages from $ACISCTLMAN_%02d.gif

ACISCTLTEST D acisCtl
options.tcl

0 Set if acisCtl started with –D; adds debugging fields, buttons

ACISCTLWISH I acisCtl
acisCtl.tcl
acisProcs.tcl
debug.tcl

wish Overrides “wish” as Tcl/Tk interpreter to run acisCtl modules

ACISEUFLG I acisCtl
acisCtl.tcl
commands.tcl
runacis.tcl

0 Set if acisCtl started with –e indicating engineering mode;
selects type of telemetry interface to run. Value is passed to
shell scripts acisPmon and acisTable, and to standalone modules
psmc and rctu

ACIS_IN_HRC S Parameters to pass to getPackets to determine the location of
ACIS data in format 1 telemetry

ACISPSMCFLG P acisCtl
runacis.tcl

0 Set if acisCtl started with –P indicating that the PSMC is to be
accessed by $PSMC_SERVER and $PSMC_PORT. It is passed
to standalone module psmc

ACISPSMCTEST D psmc.tcl () Read packets from this input file instead of filterServer

ACISRCTUTEST D rctu.tcl () Read packets from this input file instead of filterServer

v 2.0 THE ARCHITECTURE OF ACISCTL

15

Variable Name Type Module Default Description

ACISTLMTEST D showtlm.tcl () Read packets from this input file instead of filterServer

ACISTOOLSDIR H acisCtl
acisCtl.tcl

Location of ACIS EGSE executables and libraries; it is
verified at the start of each standalone module and script

ACISTTMFILE EFPS psmc.tcl
rctu.tcl
options.tcl

Name of ACIS telemetry format file, exported to the
engineering telemetry interface modules

ACISV11TEST D video11.tcl () Read packets from this input file instead of filterServer

ACISVTMTEST D videotm.tcl () Read packets from this input file instead of filterServer

ARCH H acisCtl.tcl System architecture, e.g,. “linux”, “solaris”, “darwin”

BEP_MAP EFP acisCtl.tcl
commands.tcl
debug.tcl
dump.tcl
options.tcl

Pathname of BEP load map

CCD_SCALE EFP showit.tcl
options.tcl

128 Number of pixel rows and columns in each CCD

CMDLOG PS options.tcl Directory to contain PSMC logs used only when acisCtl was
started with the –P option

CMDPORT EP acisCtl.tcl
acisProcs.tcl
debug.tcl
dump.tcl
options.tcl

8541 Command port established by the ACIS interface script in
engineering mode to send serial digital commands to the s/w
and h/w ports of the ACIS DPA

COGPORT F acisCtl
acisCtl.tcl
acisProcs.tcl
runacis.tcl
options.tcl

7543 TCP listening port established by the ACIS interface script in
flight mode

CTU_SIDE PS options.tcl actu
abus

Used by scripts $RCTU_CMD, $PSMC_CMD that communicate
with ACIS DPA and PSMC via the obsolete acisServer or
acisServer-tee interfaces. It expects that acisCtl was started with
the –P option

DANGER_CMD EP acisCtl.tcl
psmc.tcl
options.tcl

Executable program to create a critical ACIS bcmd command

DATAHOST EFP acisCtl
acisCtl.tcl
acispower.tcl
options.tcl

Domain name of host running filterClient, also exported to all
standalone acisCtl modules

DATAPORT EFP acisCtl
acisCtl.tcl
acispower.tcl
options.tcl

7002 Port on $DATAHOST from which to read ACIS telemetry,
exported to all acisCtl standalone modules

DATAYEAR EFP options.tcl Calendar year to use when none indicated in telemetry; leave
blank to use current year; exported to all acisCtl standalone
modules

THE ARCHITECTURE OF ACISCTL V 2.0

16

Variable Name Type Module Default Description

DISP_TERM EFP acisCtl.tcl
acisProcs.tcl
options.tcl

rxvt Executable to create a scrolling window within which to run
$EDITOR (or $PSMC_SERVER in PSMC mode.)

EDITOR EP acisCtl.tcl
acisProcs.tcl
options.tcl

gvim Shell command to edit an ASCII file

EXECUTE_CMD EP options.tcl Shell command to format an ACIS command through bcmd
and send it to the command server

FEP_MAP EFP acisCtl.tcl
commands.tcl
debug.tcl
dump.tcl
options.tcl

Pathname of FEP load map

FILTERSERVER_OPTS EFPS options.tcl -v
-n16

Options to pass to filterServer

FIXED_FONT EFP textDisp.tcl
options.tcl

Fixed-pitch font for all X11 displays; exported to debug, dump,
and showit standalone modules

GETPACKETS_CMD EFP options.tcl getp Shell command to extract ACIS packets from telemetry

GRAB_WIN1 I acisCtl.tcl
acisAux.tcl

Value of $PRINT_CMD prior to “–P”, or the whole string if
“–P” is missing

GRAB_WIN2 I acisCtl.tcl
acisAux.tcl

Value of $PRINT_CMD from “–P” to the end, or null if “–P”
is missing

GRAB_WINDOW EFP acisCtl.tcl
runacis.tcl
options.tcl

Command to prompt the user to select an X11 window to be
converted to graphic and printer by $PRINT_CMD

HOME H acisCtl.tcl
acisAux.tcl
acisPrint.tcl
textDisp.tcl

The user’s home directory, mostly used as a default location to
which to save window contents

IMAGE_LIB EP acisCtl.tcl
imageLoad.tcl
options.tcl

Default pathname of directory containing pixel images to be
send to the image loader

imgdir I manual.tcl
psmc.tcl
video11.tcl
videotm.tcl

Pathname of directory containing mostly bitmap images used
by Tcl/Tk commands to display window graphics

LibPath I acisCtl.tcl Pathname of directory containing acisCtl modules; this is
exported to all standalone modules

LOAD_IMAGE_CMD EP acisCtl.tcl
acisProcs.tcl
options.tcl

Shell command to send a pixel image to the image loader

LOAD_RAW_CMD EP acisCtl.tcl
rawpackets.tcl
options.tcl

Shell command to send a raw ACIS command file to the
command server

LOGCOMPRESS EFP acisCtl.tcl
runacis.tcl
options.tcl

gzip
.gz

Shell command and optional file extension to write input
ACIS packets to $TLM_LOG_FILE.

v 2.0 THE ARCHITECTURE OF ACISCTL

17

Variable Name Type Module Default Description

PARAM_BLOCK_LIB EP acisCtl.tcl
pblocks.tcl
options.tcl

Pathname of directory containing parameter block files, with
extensions: te (timed-exposure), cc (continuous clocking), 1d
(CC windows), 2d (TE windows), or dea (DEA housekeeping)

PIXEL_AB_DEV EP acisCtl.tcl
acisProcs.tcl
options.tcl

/dev/ttya Device on $DATAHOST that switches FEP pixel input from
DEA to Image Loader when sent “1” or “0”, respectively

PMON_CMD EFP acisCtl.tcl
acisProcs.tcl
options.tcl

Shell command to execute within $DISP_TERM to run the
pmon command to display ACIS science telemetry

PRINT_CMD EFP acisCtl.tcl
acisPrint.tcl
runacis.tcl
textDisp.tcl
options.tcl

Shell command to print its stdin to $PRINTER

PRINTER HS acisCtl.tcl
acisPrint.tcl

ps Printer spool type or name

PSMC_CMD P acisCtl.tcl
psmc.tcl
options.tcl

Shell command to send bcmd commands to the PSMC. It
expects that acisCtl was started with the –P option and that a
suitable command interface is available

PSMC_PORT P acisCtl.tcl
psmc.tcl
options.tcl

7002 Port on $PSMC_SERVER from which to read PSMC
telemetry. It expects that acisCtl was started with the –P
option and that a suitable telemetry interface is available

PSMC_SERVER P acisCtl.tcl
acisProcs.tcl
psmc.tcl
options.tcl

Host from which to read PSMC telemetry. In flight mode,
this is initialized to $DATAHOST. Otherwise, it is initialized
from the –P option of acisCtl.

PWD H acisProcs.tcl Used by the infoBlock command to save and restore the
user’s working directory when editing a file

RAW_CMD_LIB EP acisCtl.tcl
rawpackets.tcl
options.tcl

Pathname of directory containing either bcmd commands
(extension .bcmd) or binary commands (extension .pkts)

RCTU_CMD EFP acisCtl
acisCtl.tcl
interface.tcl
options.tcl

Shell command to start filterServer to distribute ACIS telemetry
and (in engineering mode only) start a command server to
send bcmd commands to ACIS

RCTU_DUMP_DIR EFP acisCtl.tcl
options.tcl

/tmp Pathname of directory into which to write raw telemetry logs

RCTU_DUMP_FILE EFP acisCtl.tcl
options.tcl

File to contain telemetry log; “%” fields will be replaced by
strftime; files ending “.gz” or “.Z” will be compressed

TERMLINES EFP commands.tcl
showtlm.tcl

200 Default number of lines to retain in scrolling acisCtl windows

TEXT_FONT EFP acisCtl.tcl
options.tcl

Default text font for all X11 displays; exported to commands,
debug, dump, interface, and showtlm standalone modules

TCL_LIBRARY EFP acisCtl
options.tcl

TCL function library required by wish

TK_LIBRARY EFP acisCtl
options.tcl

TK function library required by wish

THE ARCHITECTURE OF ACISCTL V 2.0

18

Variable Name Type Module Default Description

TLM_LOG_DIR EFP acisCtl.tcl
runacis.tcl
options.tcl

/tmp Pathname of directory into which to write ACIS packet logs

TLM_LOG_FILE EFP acisCtl.tcl
runacis.tcl
options.tcl

File to contain packet log; “%” fields will be replaced by
strftime; files ending “.gz” or “.Z” will be compressed

v 2.0 THE ARCHITECTURE OF ACISCTL

19

	The Architecture of acisCtl 2.0
	1. Introduction
	2. Components
	3. Input and Output
	3.1. Flight Mode
	3.2. Engineering Mode

	4. Variables
	4.1. Local
	4.2. Global
	4.3. Environment

	5. Coding Conventions
	5.1. Standalone Modules
	5.2. Module Initialization
	5.3. Window Initialization
	Reading ACIS Packets
	5.5. Terminating a Module
	5.6. Terminating the Telemetry Server

	6. External Executables
	7. Applicable Documents
	8. Glossary
	Appendices
	A. Core Modules
	B. Standalone Modules
	C. Environment Variables

