
 MIT Kavli Institute 
 One Kendall Square, Room 300-545 
 Cambridge MA 02139–4307 
 Tel: 617-253-7277 
 Fax: 617-253-8084

To: ACIS Science Operations Team
From: Peter Ford, NE83-545 <pgf@space.mit.edu>
Date: June 6th 2016
Subject: Creating and Testing ACIS Flight Software Patches (v 1.0)

1. Preliminaries

Before starting out, check that the ACISFS, FS, and CVSROOT environment variables are set, and that the MIPS
cross-compilers are at the head of your PATH and LD_LIBRARY_PATH variables. These definitions are essential
to ensure that the procedures described in this document execute correctly.

setenv ACISFS /nfs/acis/h3/acisfs
setenv FS $ACISFS/flightbld/flight1.5
setenv CVSROOT $ACISFS/configcntl
setenv PATH $ACISFS/$ARCH/bin:$PATH
setenv LD_LIBRARY_PATH $ACISFS/$ARCH/lib:$LD_LIBRARY_PATH 

The unpatched flight software must be accessible at “$FS” and it is assumed that you have created a private
copy of the patch build tree using cvs, i.e.,

cvs checkout patches

Before starting on a new patch, it is good practice to check that you have no outstanding updates to existing
patches. To verify this, change your working directory to “patches” and type

cvs diff

Before testing your patches, check that the expect and wish (tcl interpreter) commands are in your execution
path and that they access their dynamic tcl and tk libraries.

2. Updating an Existing Patch

This is much easier than creating a new patch. If you add new procedures or class methods to an existing
patch, e.g., to “mypatch”, you’ll need to update PKGFUNCS in “mypatch/standalone.mak” (if that file exists) and add
new “func” command lines in “mypatch/mypatch.pkg”. Several other lines in that file may need to be updated,
especially the “test” commands that are to be run automatically during regression testing, which refer to test
scripts, usually written in the expect dialect of tcl, in subdirectories of “mypatch/testsuite”. See §4,5 for details.

3. Adding a New Patch

The first step is to think up a name for you patch, e.g., “mypatch”, and create a new subdirectory of that name
in your local “patches” directory. Within that directory, you should create a series of files. The precise choice
will depend on the type of patch. For instance, inline patches will need only an assembler source, “mypatch.S”.

Makefile to create a stand-alone “mypatch.bcmd” (sometimes named standalone.mak)
mypatch.C to replace one or more C++ methods in the BEP
mypatch.H to define variables and C++ classes and structures for the BEP
mypatch.c to replace one or more C routines in the FEPs
mypatch.h to define variables and C structures for the FEPs
mypatch.S to create inline assembler patches in the BEP or FEPs
mypatch.mak to compile “mypatch” as part of a patch release
mypatch.pkg to control all phases of compilation, linking and testing
testsuite directory used for regression tests  

 r e p o r t

mailto:pgf@space.mit.edu

CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES V 1.0

The “mypatch.pkg” and “mypatch.mak” files are always required. Consult the following sections for examples of
how to set them up. Once the various files are present, tell cvs about them by executing the following com-
mand in your “patches” directory:

cvs add mypatch

This merely alerts cvs to the locations of these files and directories. Once you have compiled a stand-alone
version of “mypatch” and tested it a few times, you’ll want to save the files you added. Do this by typing

cvs commit mypatch

You’ll be prompted to edit one or more lines of text which will act as descriptions of the files. If you want to
describe the files individually, execute a separate “cvs commit filename” for each file. If you need to change a
file after committing it, just edit and save it and then execute “cvs commit filename”. This time, the text that
you enter will be logged against a release number and will serve to document your changes.

4. Contents of *.pkg Files

Much information about the patch is to be contained in the ASCII file “mypatch/mypatch.pkg”, which contains
a mixture of comments and commands. Comments begin with “#” and continue to the end of the line.
Commands begin with one of the following keywords:

 approval 5 fields: <release> <patch-load-eco-number> <username> <date> <action>
bcmd file to contain addpatch commands for standalone patch
docref MKI document reference <36-*****.**> (optional)
eco number of the ECO describing this patch
environment either “flight” or “engineering”
fepinline 2 fields: <pseudo-assembler-listing of patch> <pseudo-assembler-listing of FEP module>
fepobject “mypatch.o” to link with other FEP objects
func 2 fields: <original BEP method> <replacement BEP method>
ident id field for revision control
object “mypatch.o” to link with other BEP objects
partnumber ACIS configuration database ID for the patch item
reason a brief description of the patch
sco number of software change order relating to this patch
ser number of software enhancement request relating to this patch
source name of pkg, mak, or source file to build patch
spr number of software problem report relating to this patch
test 3 fields: <test-type> <test-directory> <test-command>
tool set to “PENDING” if no bcmd file is to be generated
version the revision number or letter of this patch

Most of these commands should only appear once in the file, but others can be repeated, e.g., “approval”
should define each successive version of the patch; “func” should name each function that is to be replaced;
“source” should identify each source file that is to be compiled or assembled; multiple “spr” reports may be
applicable; and there can be as many “test” lines as necessary to run each of the regression tests.

Finally, “mypatch.pkg” should end with four sections containing ASCII text to describe the patch, its usage and
its impact on ACIS execution. These sections must be headed with the four capitalized lines, displayed in blue
in the following:

 NOTES:
The reason for the patch, symptoms and impact of the anomaly, description of the fix, etc.

COMMAND IMPACT:
Commanding changes required when this patch is active.

 2

V 1.0 CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES

TELEMETRY IMPACT:
Telemetry changes to expect when this patch is active.

SCIENCE IMPACT:
Changes that may appear in ACIS science data when this patch is active.

5. Patches that replace BEP methods

These are usually the simplest patches to write. To replace one or more BEP methods, e.g., MyProg() in My-
Class with a method of the same name, create a “mypatch.C” file containing the following C++ code:

// Include C++ headers that define the existing classes you’re using
#include “ipcl/interface”
#include “filesscience/MyClass.H”

// Define a new class Test_MyClass and define its replacement method(s)
class Test_MyClass : public MyClass
{
public:

void MyProg();
};

// Define the replacement method(s)
void Test_MyClass::MyProg()
{

// insert code
}

Since your replacement method will probably want to access private or protected variables in MyClass,
most ACIS classes already define themselves as friends of a class of the same name but prefixed with
“Test_”, i.e.,

class MyClass {
 friend class Test_MyClass;
 . . .
}

but this may not always be the case, so you may have to override the private and/or protected statements
in the “*.H” include files by adding the following lines before the #include statements:

// Include this redefinition if you have trouble accessing private variables
#ifndef private
#define private public
#endif

// Include this redefinition if you have trouble accessing protected variables
#ifndef protected
#define protected public
#endif

If mypatch is a standard (required) patch, copy “BUILD-template/MakeStandard” to “mypatch.mak”. Then add
the following line at the start of “mypatch.mak”.

PKG = mypatch

Alternatively, if mypatch is an optional patch, copy “mypatch.mak” from “BUILD-template/MakeOptions” and add
the following line at the beginning:

OPTIONS = mypatch.o

 3

CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES V 1.0

Standard patches can replace FEP subroutines in the same way as BEP methods: when building the patch
load, each object file is automatically relinked into a single FEP object which the addPatch commands append
to the FEP load array in BEP memory. However, there is no easy way to create an optional patch that re-
places FEP subroutines, since there is no optional FEP object to link against, so the patch has to include BEP
code to load its FEP component. Look at the ctireport1 and ctireport2 patches for examples.

To process our simple patch example, “mypatch.pkg” must include “source” commands to name the files re-
quired to compile it, a “func” command to name each replaced method, and an “object” command to indi-
cate that the patch will create an object file that is to be linked with others into a common patch load. Finally,
there should be one or more “test” commands to replicate the problem that necessitated the patch, and one
or more “test” commands that show that the problem has gone away when the patch is applied.

func MyClass::MyProg Test_MyClass::MyProg
object mypatch.o
source mypatch.pkg
source mypatch.mak
source mypatch.C
test bug1 testsuite/bug make SCRIPT=runtest1.tcl ACISSERVER=$(ACISSERVER) \

TOOLS=$(TOOLS) PATCHDIR=$(PATCHDIR)
test bug2 testsuite/bug make SCRIPT=runtest2.tcl ACISSERVER=$(ACISSERVER) \

TOOLS=$(TOOLS) PATCHDIR=$(PATCHDIR)
test fix testsuite/fix make SCRIPT=runtest.tcl ACISSERVER=$(ACISSERVER) \

TOOLS=$(TOOLS) PATCHDIR=$(PATCHDIR)

In this example, two tests demonstrate the problem, run from expect scripts “runtest1.tcl” and “runtest2.tcl” in
the “mypatch/testsuite/bug” directory, and one test verifies the patch: “runtest.tcl” in “mypatch/testsuite/fix”.

You will also need to create a “Makefile” to compile mypatch into a stand-alone “mypatch.bcmd”. You can start by
executing the following in your “mypatch” directory:

../tools/bin/standalone.sh mypatch

which will create “standalone.mak” in that directory and then use it to attempt to create “mypatch.bcmd”. For
complicated patches, you may need to edit “standalone.mak”, and you might choose to rename it “Makefile” for
later convenience.

6. Inline BEP Patches

Before attempting an inline patch, some familiarity with the MIPS CPU architecture and its assembler lan-
guage is a necessity. You also need to know how the GNU g++ compiler uses the CPU registers. To help de-
sign inline patches, all ACIS flight software has been compiled with the ‘-Wa,”-alh”' option which writes a
commented pseudo-assembly listing to stdout. The current build in “/nfs/acis/h3/acisfs/flightbld/flight1.5” con-
tains a “*.lst” listing for every compiled object “*.o”, and if the rules of the previous sections are adopted, the
patch objects will do so too.

The first step after identifying the code to be patched is to identify its “*.lst” file. Since the sources were com-
piled with maximum debugging, the listing will contain many extraneous lines. If they get in the way, filter the
file through lst2txt to remove them: only the assembler instructions and commented C and C++ code will
remain. The assembler code is output in columns, as follows:

line-number hex-offset hex-value mnemonic arguments # comment

Note that some instructions will generate two or more “hex-value” words: the GNU assembler recognizes
more instruction mnemonics than are implemented in the MIPS 3000 architecture, so these will be translated
into groups of two or more MIPS instructions to perform the task. In most cases the inline patch will not
need to reference addresses outside the patch itself, but if this is necessary, the registers must be loaded by
hand, as described below.

 4

V 1.0 CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES

There are two MIPS peculiarities that you must remember at all times: (1) when the CPU executes a ‘branch’
or a ‘jump’ instruction (hint: the mnemonic starts with ‘b’ or ‘j’), it always executes the next instruction as
well, whether or not it takes the branch or jump, and (2) when an instruction calls for a word to be loaded
from memory into a register, or stored into memory from a register, the word will not arrive at its destination
until at least two machine cycles later, e.g., when loading into a register, its contents cannot be used by the next
instruction. This feature will often force the GNU compiler to add a null instruction, “nop”, between ‘load’
and ‘use’. These nop’s are very useful for inline patches since they can be replaced by any single-instruction
command not associated with the registers that are currently loading or storing their contents.

As an example, the rquad patch fixes a problem in the BEP’s Pixel3x3::attachData() method which was
compiled from the following C++ code:

if (col > 0) {
 quad = exposure->getQuadrant(col - 1);
 doclk[0] = exposure->getOverclockDelta(quad);
 split[0] = exposure->getSplitThreshold(quad);
}

quad = exposure->getQuadrant(col);
doclk[1] = exposure->getOverclockDelta(quad);
split[1] = exposure->getSplitThreshold(quad);

quad = exposure->getQuadrant(col);
doclk[2] = exposure->getOverclockDelta(quad);
split[2] = exposure->getSplitThreshold(quad);

The third “quad =” instruction is passing the wrong value to getQuadrant() – it should be col+1. Here’s
that part of “/nfs/acis/h3/acisfs/flightbld/flight1.5/filesscience/pixel3x3.lst” that includes the bad instruction:

209: **** split[1] = exposure->getSplitThreshold (quad);
1066 05b0 8e020054 lw $2,84($16)
1067 05b4 00000000 nop
1068 05b8 8c42000c lw $2,12($2)
1068 00000000 nop
1069 05c0 02002021 move $4,$16
1072 05c4 0040f809 jal $31,$2
1073 05c8 02202821 move $5,$17
1077 05cc afa2002c sw $2,44($sp)
210: ****
211: **** quad = exposure->getQuadrant (col); # <== should be (col+1)
1080 05d0 8e020054 lw $2,84($16)
1081 05d4 00000000 nop
1082 05d8 8c420008 lw $2,8($2)
1082 00000000 nop
1083 05e0 02002021 move $4,$16
1086 05e4 0040f809 jal $31,$2
1087 05e8 02402821 move $5,$18
1091 05ec 00408821 move $17,$2
212: **** doclk[2] = exposure->getOverclockDelta (quad);
1094 05f0 8e020054 lw $2,84($16)
1095 05f4 00000000 nop
1096 05f8 8c420004 lw $2,4($2)
1096 00000000 nop
1097 0600 02002021 move $4,$16
1100 0604 0040f809 jal $31,$2
1101 0608 02202821 move $5,$17
1105 060c afa20020 sw $2,32($sp)

 5

CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES V 1.0

The calls to the functions getSplitThreshold(), getQuadrant() and getOverclockDelta() are made with
‘jal’ instructions. By convention, register $4 points to the class object associated with the method, i.e., expo-
sure, and the function arguments are in registers $5, $6, and $7. (If more arguments are needed, they are
passed on the execution stack.) Note that in these examples, $5 is loaded while the branch is being taken. All
functions return their results in register $2 and (if needed) register $3, and they return to the address in $31.
Starting at line 1080 (offset 0x05d0), our example performs the following operations:

1080 05d0 lw $2,84($16) # load address of ‘exposure’ into register 2
1081 05d4 nop # wait while register 2 loads
1082 05d8 lw $2,8($2) # load address of getQuadrant() into register 2
1082 05dc nop # do nothing
1083 05e0 move $4,$16 # copy contents of register 16 (which contains the
 # address of the pix3x3 object) into register 4
1086 05e4 jal $31,$2 # save address of next instruction in register 31
 # and branch to the address in register 2
1087 05e8 move $5,$18 # copy the contents of register 18 (which contains
 # the value of ‘col’) into register 5
1091 05ec move $17,$2 # copy the value returned by getQuadrant() into reg 17

Since the ‘move’ instruction at line 1087 (offset 0x05e8) is executed while the jump instruction is being pro-
cessed, getQuadrant() is called with register 4 pointing to the pix3x3 object and register 5 contains the value
of col. A careful inspection of “pixel3x3.lst” shows that register 18 isn’t used after line 1087, so its contents
can easily be incremented by replacing an available ‘nop’ instruction. The rquad patch replaces the last ‘nop’
before the call, at line 1082 (offset 0x05dc). The code to insert a single unsigned add instruction is written to
“rquad.S” and contains the following assembler instructions:

.text

.globl pixel3x3_lst_05d4_05d4

.ent pixel3x3_lst_05d4_05d4
pixel3x3_lst_05d4_05d4:

addu $18,$18,1 # $18 contains the "col" value
.end pixel3x3_lst_05d4_05d4

where the “addu” command replaces offsets 0x05d4 through 0x05d4 of “pixel3x3.lst”, i.e., a single instruc-
tion The starting location of the patch must also appear in a “.globl” instruction so that it can be recog-
nized by the loader. The remaining directives are required by the MIPS cross-assembler, which should be in-
voked with the following options:

acis-g++ -fvtable-thunks -c -g -mno-gpopt -G 0 -mlong-calls -Wa,”-alh”

Compiling “mypatch.S” with these options will create “mypatch.o”, which can be ignored, and will write a listing
to its standard output, which you should redirect into “mypatch.lst” and then process as follows:

../tools/bin/digestInline.pl patchId mypatch.lst bepmap > mypatch.bcmd

where patchId is the 16-bit integer value for the patchId field of the first addPatch command (subsequent values
will be incremented), and bepmap is a valid BEP load map used to resolve global references in “mypatch.lst”.
The patchId values will be reassigned when flight versions are created: all values in a given load must be
unique. The above inline example makes no references to BEP addresses outside the patch itself. If this is
necessary, the address should be determined from the BEP load map and loaded into a register explicitly. For
instance, if the patch is to call the “BiasThief::biasReady(void)” method, the assembler code would be:

lui $2,0x800a # $2 = 0x800a0a10
or $2,$2,0x0a10 #
jalr $2,$31 # call BiasThief::biasReady(void)

 6

V 1.0 CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES

The address of biasReady() must be split into upper and lower half-words and loaded into register 2 in two
steps. Note that the MIPS assembler can do this for you in a single “la” instruction, but this will not be cor-
rectly interpreted by the “tools/bin/digestInline.pl” script run by “mypatch.mak”.

7. Patching the FEPs

A purely inline patch to apply identically to all FEPs is prepared in the same way as an inline BEP patch de-
scribed above, but the “digestInline.pl” script must be called with two additional arguments: a valid FEP load
map (the unpatched version is “$FS/fep/acisFepSci.map”) and the file that contains the default FEP software
load array, “$FS/fep/acisFep.c”.

If a FEP patch adds a new subroutine or replaces an existing one, the process is quite different. Any inline
code should be collected in “mypatch.S” and the subroutine(s) in “mypatchX.c”. The latter must be compiled,
linked, and converted to FEP loader format:

acis-gcc -fvtable-thunks -c -g -nostartfiles -nostdlib \
 -Wl,”-Tfeppatch.x” -Wl,”-RacisFepSci.ab” mypatchX.o -o mypatchX.ab -lc
acis-nm —numeric-sort —demangle mypatchX.ab > mypatchX.map
cnvrtFepObj.pl cmbox ringbuf mypatchX.ab > mypatchX_patch.c

The resulting “mypatchX_patch.c” defines one or more structures to be added to the FEP load array in BEP
memory. The next step is to compile the inline code “mypatch.S” and resolve its external references. In this
example, it is assumed that these references are in a FEP source module “$FS/fep/fepSource.c” which has been
compiled into a pseudo-assembler file “fepSource.lst”:

acis-gcc -fvtable-thunks -c -g -mno-gpopt -G 0 -mlong-calls -Wa,”-alh” \
 mypatch.S > mypatch.lst
resolveFep.pl mypatchX.map mypatchX.lst fepSource.lst > mypatchX_tmp.lst

Finally, the inline code and the subroutines are merged into the patch load, “mypatch.bcmd”:

digestInline.pl patchId mypatchX_tmp.lst bepmap mypatchX.map acisFep.c > mypatch.bcmd
mergefep.pl patchId bepmap mypatchX.map acisFep.c mypatchX_patch.c >> mypatch.bcmd

The above prescription will allow you to build stand-alone FEP patches. If more than one is to be run in the
same patch load, the load maps and absolute FEP image must be updated as each patch is created. The code
in “release/Makefile” will do this automatically provided “mypatch.pkg” contains the following entries:

fepobject mypatchX.o
fepinline mypatch.lst fepCtl.lst

For this to work, “mypatch.mak” must correctly refer to the various maps and images, i.e., “feppatch.x”, “acisFep-
Sci.map”, “acisFepSci.ab”, “fepSource.lst”, and “acisFep.c”. Consult the existing patches, e.g., condoclk, for examples.

8. Adding New FEP Modes

If the FEP patches are not intended to be permanent, but only to be applied for the duration of a single sci-
ence run, the build procedure is rather different because the BEP must itself load the patches into the FEP
and then ensure that the usual FEP software is reloaded for the next science run. The patch source will con-
sist of one or more C++ source files (e.g., “mypatch.C”) containing new and/or replacement BEP methods, a
“mypatchFep.S” file containing inline FEP instructions, and perhaps a “mypatchFepX.c” file containing new FEP
subroutines. The first step is to compile “mypatchFepX.c” into “mypatchFepX.ab”, “mypatchFepX.map” and “my-
patchFepX.c”, as in the previous section. Then “mypatchFep.S” should be compiled, linked against “mypatch-
FepX.map”, and appended to “mypatchFepX.c”:

 7

CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES V 1.0

acis-gcc -fvtable-thunks -c -g -nostartfiles -nostdlib \
 -Wl,”-Tfeppatch.x” -Wl,”-RacisFepSci.ab” mypatchFepX.o -o mypatchFepX.ab -lc
acis-nm —numeric-sort —demangle mypatchFepX.ab > mypatchFepX.map
cnvrtFepObj.pl cmbox ringbuf mypatchFepX.ab > mypatchFepX_patch.c
acis-gcc -fvtable-thunks -c -g -mno-gpopt -G 0 -mlong-calls -Wa,”-alh” \
 mypatchFep.S > mypatchFep.lst
digestFep.pl mypatchFepX acisFepSci.map mypatchFep.lst >> mypatchFepX_patch.c
acis-gcc -fvtable-thunks -c -g -mno-gpopt -G 0 -mlong-calls -Wa,”-alh” \
 mypatchFepX_patch.c -o mypatchFepX.o > mypatchFepX.lst

The “mypatch.pkg” file should contain two “object” definitions, “mypatch.o” and “mypatchFepX.o”, which will
be linked together and converted to “mypatch.bcmd” by running “release/Makefile”.

For the FEP patches to be applied, “mypatch.C” must patch two BEP methods from “filesscience": setupFep-
Block() to call fepManager.loadRunProgram(fepId, mypatchFepXHanger) to load the patch into fepId, and
terminate() to call fepManager.resetFeps() to ensure that the BEP reloads the usual FEP software for the
next science run. Consult the “cc3x3” patch for an example of how this is done and how to set up “mypatch.-
mak”.

9. Stand-Alone Testing

All stand-alone tests are performed in sub-directories of a patch’s “testsuite” directory. These tests are of two
types, depending on the function of the patch. If it is to correct a known deficiency, two sets of tests will be
performed, a “bug-hw” or “bug-sw” to reproduce the problem without the patch, and “fix-hw” or “fix-sw” to
verify that the patch eliminates the problem. If the patch adds a new capability to the instrument, a single
class of “smoke” tests will be developed to verify that the patch executes successfully without catching fire!
The contents of a “testsuite” directory for a bug-correction patch will look something like the following:

testsuite/bug-hw run tests here to replicate a deficiency
testsuite/bug-hw/Makefile run an expect script
testsuite/bug-hw/runtest.tcl expect script to run a test to replicate a deficiency
testsuite/fix-hw run tests here to demonstrate a patched deficiency
testsuite/fix-hw/Makefile run an expect script
testsuite/fix-hw/mypatch.bcmd copy of stand-alone patch
testsuite/fix-hw/runtest.tcl expect script to run a test to patch a deficiency  

Scripts and data files common to all tests should be stored in “testsuite” itself. The tests are written in the expect
extension of the tcl language. The ACIS convention is that each test script is passed three arguments:

basedir the directory containing the “mypatch” files
toolsdir the location of patching tools relative to “basedir”
patchdir the location of the current test directory relative to “basedir”  

Within the expect scripts, it is important to refer to auxiliary files through these arguments because their values
will change when the same scripts are used to test a patch build, and again when certifying the build. A typical
script begins as follows:

#! /usr/bin/env expect

—— Save the three command arguments ——
lassign $argv basedir toolsdir patchdir

—— Embed the procedure library ——
source $basedir/$toolsdir/lib/lib-exp/runtest_support.tcl

—— Start a command pipe ——
spawn $basedir/$toolsdir/bin/cmdclient $env(ACISSERVER)

 8

V 1.0 CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES

set cmd_id $spawn_id

—— Start a telemetry pipe ——
spawn $basedir/$toolsdir/bin/tlmclient $env(ACISSERVER)

This establishes the test environment, allowing a “send -i $cmd_id” command to issue commands to the
BEP and “expect” commands to monitor the BEP’s telemetry packets, after filtering through “psci -m -u”.
The next part of the expect script loads the patches and warm-boots the BEP:

—— Reload patches ——
cold_boot
load_patch_list “$basedir/$toolsdir/share/opt_tlmio.bcmd\

 $basedir/$toolsdir/share/opt_printswhouse.bcmd\
 $basedir/$toolsdir/share/opt_dearepl.bcmd\
 mypatch.bcmd”

—— Reboot and apply patches ——
warm_boot

—— Set the pixel switch for image loader input ——
system make loaderselect

This example loads the optional “tlmio” and “printswhouse” patches that cause software housekeeping
entries to be reported as user pseudo-packets, from which they can be recognized in “expect” commands. It
also loads the “dearepl” patch that ignores the DEA and expects input from the image loader peripheral.
Finally, it assumes that stand-alone “mypatch” is present in the test directory as “mypatch,bcmd” so it loads the
patch and tells “Makefile” to send a command to the EU’s pixel switch to select input from the image loader.

The next step is typically to power up one or more FEPs and video boards. This is done by defining a list of
6 CCD numbers to assign to the 6 FEPs (using ccdId=10 to indicate that no CCD is to be assigned).

—— Assign CCDs to FEPs ——
set ccd_list {10 7 5 0 1 3}
set last_fep {5}

—— Power up the boards ——
power_on_boards $ccd_list

—— Wait for the boards to power up ——
expect {
 -re ".*SWSTAT_FEPMAN_ENDLOAD: $last_fep\[\r\n]*” { }
 timeout { fail “Power-up Failure” }
}

The last_fep variable is set to the index of the last FEP to be powered up, and is used in the subsequent
expect statement to recognize when this FEP has been loaded, so the script can continue. We are now ready
to start a science run. We assume that “Makefile” contains targets “bias” and “image” to load the image
loader with a test bias map and a test x-ray candidate image, respectively.

—— Load parameter block and wait for acknowledgment ——
send -i $cmd_id “load q te 4
 parameterBockId = 0x00000001
 fepCcdSelect = $ccd_list
 fepMode = 2 # FEP_TE_MODE_EV3x3
 bepPackingMode = 2 # BEP_TE_MODE_GRADED
 . . .
 fepLoadOverride = 0
}
“
command_echo 1 9 {load te}

 9

CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES V 1.0

—— Send a bias map to the image loader ——
system make bias

—— Start the run and wait for acknowledgment ——
send -i $cmd_id “start 2 te 4\n”
command_echo 1 14 {start science run}

When commanding the BEP, use “send -i $cmd_id cmd” where cmd is a valid bcmd command. cmd must end
with a newline character. Then call “command_echo” to wait for the BEP to acknowledge the command.
“command_echo” takes 3 parameters: the value of the “result” field of the expected “command_echo” packet
denoting success, the value in the “commandOpcode” field, and a string to include in the resulting error mes-
sage should “command_echo” encounter a failing command or a reply timeout.

With the command under way, the expect script will typically wait until the bias map has been created, after
which it will send dummy events into the image loader and wait until the jobs starts producing exposure
records. The script commands will look something like the following:

—— Monitor job execution ——
expect {
 -re "bepStartupMessage.*\[\r\n]*" {
 fail {Bus crash reproduced}
 }
 -re "SWSTAT_FEP_STARTBIAS.*\[\r\n]*" {
 system make image
 exp_continue
 }
 -re “exposure\[^\r\n]*\[\r\n]*" {
 send -i $cmd_id “stop 3 science\n”
 command_echo 1 19 {Stop science run}
 exp_continue
 }
 -re "scienceReport.*\[\r\n]*" {
 pass {Science run ends successfully}
 }
 timeout {
 fail {Science run timed out}
 }
}

Note that each clause of the “expect” command defines a test which, if successful, causes one or more
statements to be executed. If “pass” or “fail”, the script ends immediately with an appropriate message.
Otherwise, the clause must end with “exp_continue”, otherwise the “expect” command will terminate.
Each test should result in either a “pass” or a “fail” in order to report success or failure in the test log.

Once a test script has been debugged, it should be added to the “test” directives in its “mypatch/mypatch.pkg”
file so that it will be used as a recursion test for subsequent patch loads.

Before running a stand-alone test, the “shim” interface to the engineering unit must be established. Each
“Makefile” in the “testsuite” directories must contain targets “shim” to set up the interface and “unshim” to
release it again when the tests are completed. Stand-alone tests are best run in ‘report’ mode, in which a copy
of the expect script is prefixed to its output. If you have several expect scripts, e.g., “runtest1.tcl”, “runtest2.tcl”,
etc., specify the name of the particular script in the command line, as follows:

make report SCRIPT=runtest2

If “SCRIPT=name” is omitted, “runtest.tcl” will be run. Copies of the script’s standard output and error streams
will be written to “mypatch.target.YY.MM.DD.HH:MM:SS.log” where “target” is defined in the “Makefile”.

 10

V 1.0 CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES

10. Building a Patch Load

All patch loads are compiled and tested in the “release” subdirectory of “patches” under the direction of the
“PatchRelease.spec” file in that directory. That file contains a series of directives, i.e., a command followed by
one or more arguments. The most important commands are:

releasetag tag the cvs tag associated with all required (standard) patches and all build utilities
require name the name of a required patch
optiontag tag the cvs tag associated with all optional patches and all build utilities
option name the name of an optional patch
ipcltag tag the cvs tag associated with the IP&CL definitions in this build
depends p1 p2 if optional patch p1 is included in the load, patch p2 must also be present
conflict p1 p2 optional patches p1 and p2 cannot appear in the same optional load.

The order of “require” and “option” commands is critical. They will be built in that order. The remaining
commands only affect the contents of the logs that are generated while the patch load is built and tested.

The current ACIS convention is that “releasetag” values are named “review-release-X” while under devel-
opment and “release-X” after the ECO is released, and “optiontag” values are named “review-release-X-
opt-Y” and “release-X-opt-Y”, respectively. After updating “PatchRelease.spec”, change to the “patches” directory
and type

cvs diff

to check that there are no outstanding updates not yet committed to the cvs repository. Then type

make tags

to tag the standard and optional files with the appropriate “releasetag” and “optiontag” values from
“PatchRelease.spec”.

You are now ready to build the patch load by changing to the “release” directory and typing

make distrun

which will compile everything in sub-directories named “standard” and “options” and create a “dist” subdirecto-
ry for the bcmd command files and load maps. If the compilation succeeded, save the patches in the “tools/
share” directory and copy the results to “/nfs/acis/h3/acisfs/patchbld” by typing

make share
cd ../tools/share
cvs commit

Before testing the patch load, there is one last task to perform. To ensure that the “TXinit” parameter block
of the “txings” patch retains its original location in the D-cache heap, it may be necessary to adjust the value
of “TY_DUMMY” in “txings/txings.C”. So inspect the value if “TXinit” in the “release/options/BUILD/opt_tx-
ings.map” file that you have just created and, if it isn’t 0x8003dc30, add or subtract the appropriate number of
words (each of 4 bytes) from “TY_DUMMY” to make it so. If you have made changes in “txings/txings.C”, use
“cvs commit” to copy them to the repository, then execute “make tags” in the “patches” directory and “make
distrun” and “make share” in “patches/release”.

Once a patch has been successfully tested, it should be documented in an Engineering Change Order (ECO)
and reviewed by the ACIS team. When a patch load includes several new or updated patches, they are usually
reviewed at the same time, but each patch is described by its own ECO. Find the ECO of a similar existing
patch and modify it—past examples have used various versions of Adobe Frame, Microsoft Word and Apple
Pages. Present the review board with a hardcopy or PDF of the ECO, of the source code in the “mypatch”

 11

CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES V 1.0

directory, and of the log files from the “testsuite” directories. The ECO itself should be saved in the “mypatch”
directory and checked into cvs.

11. Regression Testing

The first step in testing the many patches that go into a patch load is to establish a reliable connection to the
ACIS Engineering Unit. To start the interface, either to test a stand-alone program in a sub-directory of a
particular “testsuite” directory, or to test a patch release in the “patches/release” directory, type

make ACISSERVER=host shim

where “host” is the name of the computer that is attached to the Image Loader and the L-RCTU interface.
Currently, this is the host named “cypress.mit.edu”, running Linux CentOS 6.4. It is usually more reliable to run
the test in the same computer as the interface. It takes one or two minutes to start the interface, at which time
a message “Port CRTRTS turned on” will be written to “host.log” in the current working directory. Most tests,
including those that test patch loads, will use the Image Loader, which can be selected by typing

make ACISSERVER=host loaderselect

The regression tests may now be run by typing

 make ACISSERVER=host distcheck < /dev/null >& patch-FGH-2.log &

In this example, the standard output and error streams are redirected to a file and the tests are run in the
background. If the command is to be run from a remote window, the standard input should be redirected to
“/dev/null”. The status of the tests can be monitored by passing the file to the ./show-status command, viz.

./show-status patch-FGH-2.log
Module Test Line Lines Mins Result
fepbiasparity2 bugCc 1741 1139 0:11 *** PASS ***
fepbiasparity2 bugTe 2880 371 0:05 *** PASS ***
buscrash2 fixCc 3252 233 0:04 *** PASS ***
fepbiasparity2 fixCc 3486 1166 0:11 *** PASS ***
buscrash2 fixTba 4653 275 0:04 *** PASS ***
buscrash2 fixTe 4929 414 0:05 *** PASS ***
. . .
txings smoke 27667 10373 1:26 *** PASS ***
teignore smoke 38041 451 0:06 *** PASS ***
ccignore smoke 38493 438 0:05 *** PASS ***
All All 38727 6:45 *** PASS ***

Once a patch load has been successfully tested, i.e., all tests have reported “*** PASS ***”, you should copy
them one final time to the distribution directory,

make share

and create an ECO to describe the patch load. This is typically very short: a title page listing the individual
patch updates, a table showing the contents of the standard and optional patches, and a diagram of the BEP
and FEP storage areas showing how much space is still available in D- and I-cache.

12. Patch Certification

Once the individual patch changes and additions have been reviewed and the patch load compiled and tested,
individual combinations of optional patches must be separately validated. This is done in the “certsrc” directo-
ry. Before making any changes, type

 make clean

 12

V 1.0 CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES

to flush out the remains of previous tests. Each combination of optional patches is given its own sub-direc-
tory in “certsrc”, e.g., at patch level FGH, four optional patches were desired: “cc3x3”, “eventhist”, “compressall”
and “txings”, but only in three combinations, so the directories were named

cc3x3+eventhist
cc3x3+eventhist+compressall
cc3x3+eventhist+compressall+txings

Within each of these directories are subdirectories for testing each of the optional patches used in the comp-
ination. For instance, the “cc3x3+eventhist+compressall+txings” directory contains

cc3x3 test of cc3x3 patch in combination with other patches
cc3x3+eventhist+compressall+txings.pkg script to control certification tests and
compressall test of compressall patch in combination with other patches
eventhist test of eventhist patch in combination with other patches
smtimedlookup test of smtimedlookup patch in combination with other patches
txings test of txings patch in combination with other patches

The contents of the test directories themselves, e.g., “cc3x3+eventhist/cc3x3”, are usually copied directly from
the corresponding “smoke” or “fix-*” directories of the individual patches, with their load_patch_list ar-
guments augmented by “standard.bcmd” and the particular combination of “opt_*.bcmd” patches. New files and
directories should be added to the cvs repository via the “cvs add” command. Once the contents of the “certsrc”
directories are fixed, tag the files and run the tests, e.g.,

 cd certsrc
cvs tag release-F-opt-G-cert-H
make all < /dev/null >& cert-FGH-1.log &

The test will apply, independently, to each combination of optional patch specified by the CERTIFICATES
macro in “certsrc/Makefile”. For each combination, all the standard “fix*” and “smoke” tests will be run from
their respective “release/standard/*/testsuite” directories, but with the full set of standard and optional patches
required for this combination. This is achieved by assigning the space-delimited list of “*.bcmd” patch files to
the $CERT_PATCHES environment variable. When an expect script invokes a “load_patch_list” procedure,
the latter checks whether this variable is defined. If it is, it ignores the list of files it is commanded to load,
and loads the files named in $CERT_PATCHES instead. After testing the standard patches, “certsrc/Makefile”
runs the “smoke” tests for the optional patches in the combination. As in regression testing, the progress of
the certification test can be determined by filtering the log file through “./show-status” in the “certsrc” directory.

13. Patch Release

To create a PDF describing the patch release, first create a directory in “patches/archive” with a 3-letter name
denoting the levels of standard and optional patches, and of certification, e.g., “FGH”. In this directory, install
a “Makefile” to put everything together. The most important variables in this file are

 LEVEL= N-N-N Patch and certification levels
MOD= mypatch Name of the updated patch
ECO= nnn Number of ECO defining mypatch
ECO1= nnn Number of ECO defining the patch release
ECO2= nnn Number of ECO defining the certification
SPR= name.ps name.ps Name of one or more software problem report files
DIST= dir Directory containing notes from regression tests
CERT= dir Directory containing notes from certification

The sources to be listed in the PDF must be specified individually in the “SRC=” list. Otherwise, the “Make-
file” puts everything together automatically. It only remains to distribute it to the review board and place a
copy in “acis.mit.edu:~ftp/pub” for general access.

 13

CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES V 1.0

14. Environment Variables used while Building and Testing Patches

 ACISSERVER The name of the computer connected to the image loader and L-RCTU
ACISTOOLSDIR The pathname to ACIS EGSE tools
ARCH The type of operating system in use, e.g., “linux”, “solaris”, etc.
CERT_PATCHES Pathnames of *.bcmd patches used in certification regression tests
CVSROOT The pathname to the ACIS cvs repository
LD_LIBRARY_PATH A list of dynamic libraries to use
PATH A list of directories containing executable files

15. Existing Patches

The following table lists all patches current at this time. “Usage” refers to how the patch is tested and com-
bined in a load: a required patch is always included in the “standard” part of a load; one or more optional
patches are added to the standard part and the combination is then certified; EGSE patches are only run on
the engineering unit, either as part of regression testing and certification, or to test some other ACIS func-
tion. “Type” distinguishes in-line patches from those resulting in an object file (“*.o”) which may be linked
with other objects for inclusion in a patch load.

patch name usage loc type comment

badpix required BEP inline fix error in bad pixel location

biastiming obsolete BEP object fix hand-over between science and bias thief threads

buscrash required BEP object fix bus crash when FEP powered down while creating bias maps

buscrash2 required BEP object fix bus crash when FEP powered down while trickling bias maps

cc3x3 optional BEP object add CC 3x3 continuous clocking mode

FEP inline

ccignore optional FEP inline prevent FEP from ignoring initial science frames in CC mode

compressall optional BEP object fix bug when compressing “incompressible” raw frames

condoclk required FEP object
inline

fix sudden changes in overclocks by conditioning the running averages

cornermean required BEP inline fix reporting of negative corner mean pixel values

corruptblock required BEP inline fix response to corrupt parameter blocks

ctireport1 optional BEP object add option to report precursor charge in the outlying pixels of 5x5
timed exposure mode

FEP object
inline

ctireport2 optional BEP object add option to report precursor charge in the low-order bits of three
corner pixels in 3x3 timed exposure mode

FEP object
inline

deaeng EGSE BEP object run flight-like and engineering-like video boards in the engineering unit

dearepl EGSE BEP object replace video board access with dummies in the engineering unit

digestbiaserror required BEP inline fix bug in reporting bias parity plane errors

eventhist optional BEP object add event histogram mode

fepbiasparity1 obsolete FEP inline save diagnostics of massive numbers of FEP bias parity errors

 14

V 1.0 CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES

fepbiasparity2 required FEP object
inline

save diagnostics of massive numbers of FEP bias parity errors

feppoweroff EGSE BEP object test of BEP behavior when powering down a FEP

fepthrottle EGSE FEP object
inline

report 1% of event candidates found by a FEP

forcebiastrickle EGSE BEP object force bias trickling after RADMON_ENABLE

histogrammean required FEP inline fix bug in register overflow during histogram calculation

histogramvar required FEP inline fix bug in unsigned division during histogram calculation

hybrid obsolete BEP object test of a possible “hybrid” clocking mode

printswhouse EGSE BEP object print software housekeeping to user pseudopackets

reportgrade1 optional BEP object
inline

report gradecode statistics in software housekeeping

rquad required BEP inline fix bug in corner pixel mean computation

slowpram EGSE BEP object add delays to PRAM generation steps

smtimedlookup optional BEP object replace conditional code to select FEP and BEP processing modes with
lookup tables to facilitate development of new modes

squeegy optional BEP object
inline

add new mode to read out small areas of CCDs repeatedly within
apparently normal raw frames

teignore optional FEP inline prevents FEP from ignoring initial science frames in TE mode

tlmbusy required BEP object fix bug in telemetry output when switching between output packets

tlmio EGSE BEP object write user pseudopackets into telemetry, bypassing the output queue

txings optional BEP object trigger bilevel alarm on rising threshold crossing averages

untricklebias obsolete BEP object
inline

absorb bias thief thread within the science task

zap1expo required FEP inline prevent overclock averages from including the first exposure frame

patch name usage loc type comment

 15

CREATING AND TESTING ACIS FLIGHT SOFTWARE PATCHES V 1.0

16. References

“ACIS Software User’s Guide,” MIT 36-54003, Rev. A, (NAS8-37716/DR/SDM05) July 21, 1999.

“ACIS Software IP&CL Structure Definition Notes”, MIT 36-53204.0204, Rev. N, March 15, 2001.

“ACIS Software Detailed Design Specification (As-Built),” MIT 36-53200, Rev. A, (NAS8-37716/DR/SD-
M03) February 3, 2000.

“DPA Hardware Specification and System Description,” MIT 36-02104, Rev. C, April 15, 1997.

“Expect”, D. Libes in “Tcl/Tk Extensions”, ed. Mark Harrison, O’Reilly & Associates, Inc., 1997.

Gerry Kane, MIPS RISC Architecture, Prentice Hall, NJ, 1989.

17. Glossary

BCMD ACIS command format and the script that converts it to binary packets
BEP ACIS Back End Processor — the digital unit that controls ACIS.
CVS Concurrent Versions System — version control for ACIS flight s/w.
D-CACHE The radiation-hard data cache memory used in ACIS BEPs.
ECO Engineering Change Order.
EU ACIS Engineering Unit — a hardware simulator.
FEP ACIS Front End Processor — one of 6 digital ACIS x-ray event filters.
I-CACHE The radiation-hard instruction cache memory used in ACIS BEPs.
MIPS Microprocessor without Interlocked Pipeline Stages — a.k.a. Mongoose CPU.
PDF Portable Document Format — © Adobe, Inc.
LRCTU Littlefield Remote Command and Telemetry Unit — EU interface.
SPR Software Problem Report.

 16

	ACIS Patching
	 1. Preliminaries
	 2. Update an Existing Patch
	 3. Adding a New Patch
	 4. Contents of *.pkg Files
	 5. Replacing BEP Methods
	 6. Inline BEP Patches
	 7. Patching the FEPs
	 8. Adding New FEP Modes
	 9. Stand-alone Testing
	10. Building a Patch Load
	11. Regression Testing
	12. Patch Certification
	13. Patch Release
	14. Environment Variables
	15. Existing Patches
	16. References
	17. Glossary

