
To: ACIS Science Operations Team
From: Peter Ford, NE83-545 <pgf@space.mit.edu>
Date: April 28th 2015
Subject: Correcting for ACIS EEPROM corruption (v 1.6)

1. Introduction

With Chandra well into its 16th year of operations, it is prudent to consider the longevity of the EEPROM
devices that contain the boot code for the ACIS digital processors, since they cannot be reprogrammed or
bypassed in orbit.

While designing the digital flight processor for the TESS spacecraft, our attention was drawn to the shelf life
of particular EEPROMs. The data sheet on the parts used in ACIS – the Hitachi HN58C1001 – specifies a
data retention period of 10 years. We assumed when building ACIS that this would not be a serious limita-
tion, but when we recently contacted the chief parts engineer for Space Electronics, Inc., the company that
sold us the parts for ACIS, he assured us that the data retention limit was real, but that the decay mechanisms
are still poorly understood. While a literature search has uncovered no actual failure reports, we read that
“hotter temperatures make the problem worse,” although this statement also appears largely faith-based.

We conclude that the ACIS EEPROMs will degrade. Although it is 18 years since they were last written, and
they currently show no sign of failing, there is no guarantee that they will continue to function indefinitely.
Although we cannot predict when it will happen, a time will come when both EEPROMs will have degraded
into a non-useful state; the issue in this report is to determine an operational strategy that will carry us from
the start of degradation to the end of their useful life.

In this document, the names of files, uplink commands, and telemetry packets are italicized; the names of
software functions, variables, constants, and command and telemetry fields are written in typewriter font.

2. Monitoring the active flight EEPROM

The contents of the 1 Mbyte EEPROM from BEP-A in the flight unit were last downlinked on March 10
2014. The first 111,128 words – the rest are filled with 0xff bytes – contain the bootstrap loader and the
code that initializes I_CACHE and D_CACHE, and these were found to match the file that was used to write
the flight EEPROMs. The CVS-controlled pathname of that file is “models/cur_bep/acisBepRom.bin.gz”. Since
there is no indication that reading an EEPROM will cause it to degrade faster, its contents can and should be
monitored at frequent intervals so that errors can be identified and remedial action taken, as described in Sec-
tion 7 of this Report.

The eeprom_cksum program (see Fig. A.1 in the Appendix) computes the 32-bit cyclic redundancy checksum
of the EEPROM. It is loaded into BEP I_CACHE with a single writeBep command, and is executed by an
execBep (see Fig. A.2). The checksum is compared with the ‘expected’ value; if they match, the program waits
for 10 seconds before returning; otherwise it returns immediately, in both cases reporting the actual checksum
in the returnedValue field of a bepExecuteReply packet. 4 seconds after receiving the execBep, the BEP is sent
a readBep command to dump all of EEPROM to telemetry. If the checksums match, eeprom_cksum will still
be executing and the readBep will be rejected since the BEP’s command manager will not allow the two com-
mands to execute simultaneously; if, on the other hand, the checksums differ, eeprom_cksum will already
have ended and readBep will be executed, and the contents of EEPROM will be dumped.

This rather convoluted logic is necessary since the BEP’s memory dumping routine, rdBep, cannot be called
directly from a program invoked from an execBep command because program and command would contend
for the same telemetry buffers. These buffers, located in bulk memory, are written to the DPA’s serial digital
output port by the Downlink Telemetry Controller (DTC), a dedicated hardware device. Dumping EEPROM
with a genuine readBep also allows the BEP’s telemetry manager to manage the resulting bepReadReply packets
in the normal manner, interleaving them with packets from housekeeping and active science tasks.

 MIT Kavli Institute
 One Kendall Square, Room 300-545

 Cambridge MA 02139–4307
 Tel: 617-253-7277

 Fax: 617-253-8084

 r e p o r t

mailto:pgf@space.mit.edu
mailto:pgf@space.mit.edu

3. Monitoring the spare flight EEPROM

The steps needed to monitor the EEPROM belonging to the flight unit’s backup BEP are shown in Table. 1.
Since this necessitates halting the active BEP, there may be no need to do this while BEP-A is still useable,
but recall that a BEP can be halted and, provided it remains powered up, warm-booted again without having
to reload patches, so the 9 steps will proceed rapidly. Steps 4 through 7 are shown in Fig. A.2.

 Table 1. Monitoring the EEPROM of BEP-B
1. Ensure that no science run is active and that no exposure or event packets remain to be written.
2. Execute “WSPOW00000” command to power down all FEPs and video boards.
3. Execute the “SOP_ACIS_SWAP_BEPA_B” procedure to switch from BEP-A to BEP-B.
4. Execute a “writeBep” command to copy eeprom_cksum to I_CACHE.
5. Execute an “execBep” to run the program and return the CRC-32 checksum in returnedValue.
6. Wait 4 seconds, after which eeprom_cksum will still be running if the checksums matched.
7. Execute “readBep” to dump EEPROM, but only if the checksum didn’t match.
8. Execute “SELECT BEP A” (1BSELICL with 1BSELICL1=0).
9. Execute the “SOP_ACIS_WARMBOOT_HKP” procedure to warm-boot BEP-A and restart DEA H/K.

If we find that either BEP’s bootstrap loader still functions, but that the rest of its EEPROM is so damaged
that the operating system won’t run (or won’t accept writeBep or addPatch commands), we must first dump the
contents of its initialized EEPROM via “boot-via-uplink” (see Section 5), locate the damaged words, and
then boot-via-uplink a second time while correcting for the EEPROM corruption. Procedures to perform
these functions are described in Sections 6 and 7, below.

4. Uplink Booting

When the ACIS Back-End Processor (BEP) starts, it first executes the __boot procedure in EEPROM. Un-
less the hardware BOOT_VIA_UPLINK flag (a.k.a. STAT_BOOT_MOD) is set, __boot copies the remainder of ini-
tialized EEPROM into instruction memory (I_CACHE) and data memory (D_CACHE), and then jumps to
__start in I_CACHE, to copy the default data tables from EEPROM to I_CACHE and to start the
Nucleus/RTX multi-tasking operating system.

If the BOOT_VIA_UPLINK flag is set (by a command sent to the DPA’s hardware serial interface), __boot by-
passes the rest of EEPROM and instead copies data from the BEP’s input FIFO, which buffers commands
sent to the DPA’s software serial interface. The first command must be startUpload, followed by zero or more
continueUpload commands. Subfields in startUpload define the starting loadAddress, totalCount (the total
length in words, including those in subsequent continueUpload commands), and executeAddress. If the boot-
strap loader expects continueUpload but receives startUpload instead, it terminates the previous load – leaving
the data in place – and begins the new load at the new loadAddress. In this way, a series of ‘partial’ com-
mands can initialize separate memory segments, i.e., I_CACHE, D_CACHE, and bulk memory. As soon as
totalCount is satisfied, the loader jumps to the most recent executeAddress.

The portion of the __boot procedure that is essential for uplink booting consists of 174 instruction words,
about a third of which are nops containing all zeroes. The remainder represent 0.1% of the initialized EE-
PROM, and the degradation, which turns ones into zeroes, is most likely to start in the other 99.9%. While it
is still possible to boot via uplink, we shall be able to dump the EEPROM contents and reboot the BEP from
the damaged EEPROM, patching the corruption as we go, as described in Sections 6 and 7.

5. Dumping EEPROM via uplink

Dumping the EEPROM from a procedure executing alone in bulk memory is quite straightforward because
there are no conflicting processes trying to use the DTC and we can therefore run with DTC interrupts

CORRECTING FOR ACIS EEPROM CORRUPTION V 1.6

2

turned off. The eeprom_dump procedure, listed in Fig. A.4 of the appendix, establishes a single telemetry
buffer within bulk memory and uses it repeatedly. Once the last packet is written, the procedure returns con-
trol to the bootstrap loader. If BOOT_VIA_UPLINK is still asserted, it waits for another startUpload command;
otherwise, it reboots the BEP in ‘cold’ or ‘warm’ mode, according to the state of the STAT_WARM_MOD flag.

6. Booting a damaged EEPROM via uplink

Uplinking the entire contents of initialized EEPROM in a series of startUpload and continueUpload commands
would take a very long time. Instead, assuming that the contents of the EEPROM are already known, either
from either eeprom_cksum or eeprom_dump, and the damage is confined to a limited number of words, all
that needs to be uploaded is a routine, eeprom_patch (see Fig. A.5), that copies the initialized EEPROM
contents to I_CACHE and D_CACHE, followed by a series of updates to what was copied, followed by a
jump to _start to initialize the BEP’s operating system.

7. Source Code

The following components are saved in the ACIS CVS repository under “patches/eeprom_patch”.

Name Rev Description
acis-eeprom-utils.pages 1.5 Apple Pages™ source for the current document
eeprom_cksum.bcmd 1.1 Load eeprom_cksum into iCache, execute it, wait 4 seconds, then dump EEPROM
eeprom_cksum.c 1.3 Compute EEPROM checksum and wait 10 seconds if it matches the argument
eeprom_dump.bcmd 1.1 Load and execute eeprom_dump from uplink
eeprom_dump.c 1.3 Run in bulk memory and dump EEPROM contents
eeprom_patch.bcmd 1.1 Load and execute eeprom_patch from uplink
eeprom_patch.c 1.4 Run in bulk memory, copy and patch EEPROM, then reboot the BEP
eeprom.h 1.3 C header file for load-from-uplink programs
make-bcmd.pl 1.3 Perl script to convert assembler listing into load-from-uplink command packets
Makefile 1.8 make script to compile the C programs and convert them to bcmd format

These programs are described in detail in the Appendix. Before running the make command to recreate the
bcmd files, be sure to include the directory containing the MIPS cross-compiler in $PATH and the directory
containing its runtime libraries in $LD_LIBRARY_PATH, i.e., “$CVSROOT/../$ARCH/bin” and “$CVSROOT/../
$ARCH/lib”, respectively.

V 1.6 CORRECTING FOR ACIS EEPROM CORRUPTION

3

8. References

“DPA Hardware Specification and System Description,” MIT 36-02104, Rev. C, April 15, 1997.

“Microcircuit, CMOS, 1 Megabit, electrically erasable Programmable Read-Only Memory (EEPROM),” MIT
36-02306.

“ACIS Software User’s Guide,” MIT 36-54003, Rev. A, (NAS8-37716/DR/SDM05) July 21, 1999.

“ACIS Software IP&CL Structure Definition Notes”, MIT 36-53204.0204, Rev. N, March 15, 2001.

“ACIS Software Detailed Design Specification (As-Built),” MIT 36-53200, Rev. A, (NAS8-37716/DR/
SDM03) February 3, 2000.

Gerry Kane, MIPS RISC Architecture, Prentice Hall, NJ, 1989.

Section 22.4, “Cyclic Redundancy and Other Checksums”, W. Press et al., in Numerical Recipes: The Art of Scien-
tific Computing, Cambridge University Press, 3rd edition, 2007.

9. Glossary

................................BCMD ACIS command format and the script that converts them to binary packets
BEP ACIS Back End Processor — the digital unit that controls ACIS.

....................................CRC Cyclic Redundancy Check(sum)
.....................................CVS Concurrent Versions System — version control for ACIS flight s/w.

D_CACHE The radiation-hard data cache memory used in ACIS BEPs.
DEA ACIS Detector Electronics Assembly — CCD sequencers and digital converters.
DPA ACIS Digital Processor Assembly — containing 6 FEPs and 2 BEPs.

....................................DTC Downlink Telemetry Controller (external DMA for serial BEP output)
EEPROM Electrically-Erasable Programmable Read-Only Memory.
FIFO The hardware interface between DPA software serial commands and the BEP.
I_CACHE The radiation-hard instruction cache memory used in ACIS BEPs.
MIPS Microprocessor without Interlocked Pipeline Stages — a.k.a. Mongoose CPU.

....................Nucleus/RTX Commercial multitasking operating system running in the BEP.

CORRECTING FOR ACIS EEPROM CORRUPTION V 1.6

4

Appendix – Source code

A.1 The eeprom_cksum program

The following C function returns the 32-bit cyclic redundancy checksum of each 32-bit word between its
from and to arguments. Note the convention used throughout this appendix that the ‘to’ address is that of
the first word beyond the end of the block to be summed. The third argument is the expected value of the
checksum. The remaining arguments cause the program to wait for 0.1*ticks seconds if the checksums
match. Since eeprom_cksum executes within the MemoryServer task, the appropriate C++ code to execute a
timed wait would be “memoryServer.sleep(ticks)” which is implemented in C code by passing two ar-
guments to the BEP’s Task::sleep() routine: the address of the memoryServer object and the ticks
value.

! Figure A.1. eeprom_cksum.c – return checksum of initialized EEPROM
#define CRC32_POLY 0xedb88320! /* CRC-32 polynomial generator */

unsigned eeprom_cksum(
! unsigned *from,! /* Address of first word in the block */
! unsigned *to! /* Address of first word after end of block */
! unsigned cksum,! /* Expected 32-bit CRC checksum of block */
! unsigned *task,! /* Address of the memoryServer object */
! unsigned (*sleep)(),! /* Address of the Task::sleep routine */
! unsigned ticks! /* Number of 0.1 second intervals to wait */
) {

! unsigned table[256];! /* table[] allocated on stack */
! unsigned crc = ~0;! /* CRC-32 checksum */
! unsigned *dp, ii, jj;! /* scratch */

! /* Construct the CRC look-up table */
! for (dp = table; dp < table+256; *dp++ = jj) {
! ! for (ii = 0, jj = dp-table; ii < 8; ii++) {
! ! ! jj = (jj & 1) ? ((jj >> 1) ^ CRC32_POLY) : (jj >> 1);
! ! }
! }

! /* Calculate the CRC-32 checksum of the data array */
! for (dp = addr(from); dp < to; dp++) {
! ! for (ii = 0, jj = *dp; ii < 4; ii++, jj >>= 8) {
! ! ! crc = (crc >> 8) ^ table[(crc ^ jj) & 0xff];
! ! }
! }
! crc = ~crc;

! /* Wait 0.1*ticks seconds if the CRC matches cksum in the argument list */
! if (crc == cksum) {
! ! sleep(task, ticks);
! }

! /* Return the computed checksum value */
! return crc;
}

This C program is compiled by acis-gcc, the MIPS cross-compiler, with the -Wa,-alh flags, creating a pseudo-
assembler listing. The make-bcmd.pl script (see Section A.7) then converts the listing into one or more writeBep
commands which are fed to bcmd to create the command packets that load the program into an unused block
of I_CACHE. Currently (at patch level FGH), addresses above 0x800c85d0 are available. The expected value
for the flight EEPROM checksum is 0x8e9fdcc0 and the addresses of the memoryServer object in
D_CACHE and the Task::sleep() routine in I_CACHE are read from the BEP load map. The full com-
mand sequence is shown in Fig. A.2.

V 1.6 CORRECTING FOR ACIS EEPROM CORRUPTION

5

The CRC values for the EEPROMs in BEP-A and BEP-B of the engineering unit are 0x08602ea3 and
0x56374f8d, respectively. They differ from the flight EEPROMs because they contain test data recorded at
addresses 0xbfc6c860 and above, which is filled with 0xffffffff in the flight EEPROMs. Note however
that the microboot blocks from 0xbfcffff0 through 0xbfcfffff are the same in all the EEPROMs.

A.2 Executing eeprom_cksum

The command sequence is shown below. After a writeBep command to copy the eeprom_cksum code into
I_CACHE, the program is started with an execBep command and is passed 6 parameters (see Fig. A.2.) Then,
after a 4 second wait, a readBep command tells the BEP to dump its EEPROM contents, but this will be re-
jected if eeprom_cksum is still executing, i.e., if the checksums match.

! Figure A.2. bcmd commands to load and execute the eeprom_cksum program
Load the program into an unused part of I_CACHE

write 1001 0x800c85d0 {
! 0x27bdfbe8 0xafb00410 0x2410ffff 0x27aa0010 0x27a30410 0x8fae0428 0x00000000
! ...
}

wait 4

Execute the eeprom_cksum program

exec 1002 0x800c85d0 {
! 0xbfc00000!! # address of first word of EEPROM
! 0xbfd00000!! # address of first word beyond end of EEPROM
! 0x8e9fdcc0!! # expected CRC checksum value
! 0x80004c04!! # address of memoryServer object in D_CACHE
! 0x800872d4!! # address of Task::sleep() method in I_CACHE
! 100! ! ! # sleep time in units of 0.1 seconds
}

wait 4

Try to dump EEPROM, but fail if the previous command is still executing

read 1003 0xbfc00000 262144

A.3 Boot-via-uplink programs

The remaining programs interact with the BEP hardware in several ways. The eeprom.h file (see Fig. A.3) de-
fines these hardware dependencies, e.g., the addresses of memory-mapped hardware registers and their vari-
ous sub-fields and masks, and other addresses extracted from the load map of version 11 of the flight soft-
ware, i.e., the version burned into the EEPROMs. eeprom.h also specifies the structure of bepReadReply teleme-
try packets and defines the following macros:

val(addr)! Load from, or store, into addr, an unsigned integer representing the address
of a memory-mapped hardware register. The result is given the volatile
attribute to prevent the compiler from trying to optimize access to that loca-
tion as if it were a local variable.

addr(value)! Convert value, typically an unsigned integer, into a 32-bit address.
write_icache(addr,value)! Load value into I_CACHE at address addr. It is permitted for both value

and addr to have side effects, e.g., write_icache(to++, *from++) incre-
ments the to and from pointers once each.

wait(n)! Reset the watchdog counter; then loop for n iterations, where n should be
chosen so that the execution time is ~0.4 milliseconds, thereby guaranteeing
that the end of a DTC transfer will be intercepted before the hardware in-
serts any 0xb7 fill bytes into the output stream.

CORRECTING FOR ACIS EEPROM CORRUPTION V 1.6

6

! Figure A.3. eeprom.h – common values and macros for the EEPROM programs in this appendix
#include "filesboot/mips.h"
#include "filesboot/bep.h"
#include "filesboot/mongoose.h"

/* Hardware addresses */
#define! MMAP_DTCSTART ! 0xa0180018! /* DTC start register address */
#define! MMAP_DTCEND ! 0xa018001c! /* DTC end register address */
#define! EEPROM_START ! 0xbfc00000! /* Address of first word in EEPROM */
#define! EEPROM_END ! 0xbfd00000! /* 1st word after end of EEPROM */
#define! _loadRom ! 0xbfc0b780! /* Start of EEPROM load */
#define! _ftext ! 0x80080400! /* Start of initialized I_CACHE */
#define! _etext ! 0x800c0970! /* 1st word after initialized I_CACHE */
#define! _fdata ! 0x80000000! /* Start of initialized D_CACHE */
#define! _edata ! 0x80020b70! /* 1st word after initialized D_CACHE */
#define! __start ! 0x80080400! /* System starting address */
#define! PACKET_ADDR ! 0xa0004000! /* Packet buffer address */
#define! PATCH_TABLE ! 0xa0003000! /* Patch table address */
#define! TIMER_ADDR ! 0x800bc870! /* Nucleus RTX timer routine */

/* Interrupt masks and register bits */
#define! INTR_DISABLE ! 0x10000015! /* Disable DTC interrupts */
#define! CNTL_DNLKENB! (1 << 1)! /* DTC enable in control register */
#define! STAT_DNLKINTR! (1 << 5)! /* DTC interrupt in status register */
#define! PULS_DNLKCLR! (1 << 1)! /* DTC interrupt clear in pulse register */

#define! val(a)! *(volatile unsigned *)(a)

#define! addr(a)! (unsigned *)(a)

#define! write_icache(v,a) {\
! ! ! val(ICACHE_DATA_REG) = (unsigned)(v);\
! ! ! asm volatile ("" : :);\
! ! ! val(ICACHE_ADDR_REG) = ((unsigned)(a)\
! ! ! ! & ADDR_BOUND_MASK) | ICACHEADDR_W;\
! ! }

#define! wait(n)! {\
! ! ! volatile int ii=(n);\
! ! ! val(WATCHDOG)=0xffffffff;\
! ! ! while (--ii >= 0);\
! ! }

/* Structure of a readBepReply telemetry packet */
typedef struct {
 unsigned p_sync;!! /* Packet synch word */
 unsigned p_hdr;!! /* Type, length and id */
 unsigned p_cmdid;! /* ID of execBep command */
 unsigned p_ticks;! /* BEP interrupt counter */
 unsigned *p_origin;! /* Block starting address */
 unsigned p_count;! /* Block length in words */
 unsigned *p_addr;! /* Packet starting address */
 unsigned p_data[1016];! /* Packet data content */
} PKT;

Note that writing to I_CACHE via the write_icache macro is a two-step procedure: first write the value to
the hardware register mapped into BEP memory at ICACHE_DATA_REG, and then write the I_CACHE address
to another hardware register at ICACHE_ADDR_REG. Both write operations take three machine cycles, so we
must prevent the C compiler from optimizing the program, putting the write instructions too close together.
This is done by sandwiching them either side of an ‘asm volatile (“”, : :)’ directive, which causes the
GNU compiler to add an extra nop instruction. Similarly, the loop index in the wait macro is given the
volatile attribute to prevent the compiler from ‘optimizing’ the while loop out of existence.

V 1.6 CORRECTING FOR ACIS EEPROM CORRUPTION

7

A.4 The eeprom_dump program

This program (see Fig. A.4) reports the contents of EEPROM as bepReadReply telemetry packets. It is copied
into bulk memory and executed by the bootstrap loader in response to a boot-via-uplink command. It cannot
be passed any arguments, and its execution stack is small (1024 words), but by way of compensation, we can
safely assume that the DTC isn’t being used by any other code threads. Once the last packet has been written,
eeprom_dump returns control to the bootstrap loader. If the BOOT_VIA_UPLINK flag had been cleared by a
DPA hardware command while the packets were being written, the loader will attempt to reboot the BEP
from the EEPROM image; otherwise, it will expect to read more boot-via-uplink commands.

The wait macro value (77) in eeprom_dump was chosen so as to cause a wait of 0.4 millisecond, which is
sufficiently short to guarantee that the DTC doesn’t insert fill bytes (0xb7) between packets. The bepTick-
Counter field in each bepReadReply packet is the number of waits divided by 256, which approximates the 0.1
second ticks of the BEP interrupt timer, which is unavailable while booting via uplink.

! Figure A.4. eeprom_dump.c – boot via uplink program to dump EEPROM to telemetry
#include "eeprom.h"

void eeprom_dump(void)
{
! const unsigned *from = addr(EEPROM_START);! /* Start of region to dump */
! const unsigned *to = addr(EEPROM_END);! ! /* After region to dump */
! unsigned mask = INTR_DISABLE;! ! ! /* Disable DTC interrupts */
! unsigned ticks, npkt, *dp;!! ! ! /* Counters and data pointer */

! /* Initialize the packet header */
! PKT *pkt = (PKT *)PACKET_ADDR;
! pkt->p_sync = 0x736f4166;! ! /* Store packet synch word */
! pkt->p_cmdid = 1;! ! /* Store ID of startUpload command */
! pkt->p_origin = from;! ! /* Store address of start of block */
! pkt->p_count = to-from;! ! /* Store length of block in words */

! /* Turn off interrupts and clear the DTC */
! asm volatile ("mtc0 %0,$12" : : "d" (mask));
! val(BEP_CTRL_REG) &= ~CNTL_DNLKENB;

! /* Write the packets */
! for (npkt = ticks = 0; from < to; npkt++) {
! ! int len = (to-from) > 1016 ? 1016 : (to-from);

! ! /* Fill the packet header */
! ! pkt->p_hdr = (npkt << 16) | (len + 0x407);
! ! pkt->p_ticks = ticks >> 8;
! ! pkt->p_addr = from;

! ! /* Copy packet data */
! ! for (dp = pkt->p_data-1; --len >= 0; *++dp = *from++) {
! ! ! ;
! ! }

! ! /* Start the DTC transfer */
! ! val(MMAP_DTCSTART) = (unsigned)pkt;
! ! val(MMAP_DTCEND) = (unsigned)dp;
! ! val(BEP_CTRL_REG) |= CNTL_DNLKENB;

! ! /* Wait until DTC becomes idle */
! ! while ((val(BEP_CTRL_REG) & CNTL_DNLKENB) && ++ticks) {
! ! ! wait(77);
! ! }

! ! /* Clear the DTC interrupt */
! ! val(BEP_PULS_REG) = PULS_DNLKCLR;
! }
}

CORRECTING FOR ACIS EEPROM CORRUPTION V 1.6

8

A.5 The eeprom_patch program

This program (Fig. A.5) is also run in boot-via-uplink mode. It initializes I_CACHE and D_CACHE from
the EEPROM in the same manner as the bootstrap loader itself, then applies a series of patches derived by
comparing previous dumps with the correct EEPROM contents, and finally jumps to the __start routine in
I_CACHE to continue BEP initialization.

The patches are defined by a table that must be loaded into the PATCH_TABLE address in bulk memory (de-
fined in eeprom.h) before eeprom_patch starts. The first word in the patch table specifies the number of pairs
of words that follows. The first word in each pair defines the address in I_CACHE or D_CACHE of a word
that is to be replaced, and the second word defines its replacement value. Note that the addresses, which must
begin on a word boundary, are not those of the corrupted locations in EEPROM; they are the addresses to
which the corrupted words have been copied.

If eeprom_patch is successful, the BEP will attempt to reboot and, if successful, write a bepStartupMessage
packet. If the WARMBOOT flag was set and I_CACHE had retained a set of valid patches from an earlier time,
those patches will be applied. The BOOT_VIA_UPLINK flag will still be set.

! Figure A.5. eeprom_patch.c – boot via uplink program to load from EEPROM & patch corrupted words
#include "eeprom.h"

void eeprom_patch(void)
{
! const unsigned *from = addr(_loadRom);
! const unsigned *dat = addr(PATCH_TABLE);

! /* Copy to I_CACHE */
! unsigned *to = addr(_ftext);
! while (to < addr(_etext)) {
! ! write_icache(to++, *from++);
! }

! /* Copy to D_CACHE */
! to = addr(_fdata);
! while (to < addr(_edata)) {
! ! *to++ = *from++;
! }

! /* Execute one or more patch() macros, e.g.,... */
! for (npatch = *dat++; npatch--; dat += 2) {
! ! if (*dat < I_CACHE_LO || *dat > I_CACHE_HI) {
! ! ! val(*dat) = dat[1];
! ! } else {
! ! ! write_icache(*dat, dat[1]);
! ! }
! }

! /* Jump to __start to initialize RTX */
! to = addr(__start);
! asm volatile ("jr %0" : : "d" (to));
}

A.6 An example of patching via uplink

Fig. A.6 shows a typical command sequence using eeprom_patch. The first start command loads the patch
count and the (address,value) pairs into PATCH_TABLE. Note the large totalCount field (0x1000000),
guaranteeing that the loader won’t start execution until the second start command has loaded the program.

V 1.6 CORRECTING FOR ACIS EEPROM CORRUPTION

9

mailto:pgf@space.mit.edu
mailto:pgf@space.mit.edu

! Figure A.6. bcmd commands to load and execute eeprom_patch via uplink boot
Restart the BEP in boot-via-uplink mode
halt bep
set bootmodifier on
run bep
wait 1

Load the patch table into bulk memory; then read more boot-via-uplink commands
start 0 uplink 0xa0003000 0x1000000 0 {
! 2! /* Number of (addr,value) pairs to follow */
! 0x800e30f0 0x0000ffff ! /* Replace a word in I_CACHE */
! 0x8000130c 0x00000005 ! /* Replace a word in D_CACHE */
}

wait 1

Load and execute the eeprom_patch program
start 1 uplink 0xa0000000 84 0xa0000000 {
! 0x3c04bfc0 0x3484b780 0x3c06a000 0x34c63000 0x3c038008 0x34630400
! ...
}

wait 1

Turn off the boot-via-uplink flag (optional)
set bootmodifier off

A.7 The make-bcmd.pl script

Since the programs described in this document are (intentionally) written as single routines without separate
data segments or long jumps (i.e., instructions with 26-bit address fields that must be updated by the MIPS
linker) the assembler listings can be converted into writeBep commands or, in the case of boot-via-uplink pro-
grams, into startUpload and zero or more continueUpload commands. Fig. A.7 shows a Perl script that can trans-
late a listing file into bcmd commands.

! Figure A.7. make-bcmd.pl – convert compiler listing to writeBep or startUpload/continueUpload commands
#! /usr/bin/env perl
#
Usage: make-bcmd.pl [-u] <load-address> <assembler-listing-file>

$up = shift(@ARGV) if $ARGV[0] eq ‘-u’;! # boot via uplink if -u specified
$load = shift(@ARGV);! # load and execute address
$addr = eval $load;! # convert $load to decimal
$nmax = $up ? 122 : 125;! # maximum data words in first command

@fmt = ("continue %d uplink", “write %d 0x%08x");

while (<>) {
! next unless /^\s*\d+ [0-9a-fA-F]{4} ([0-9a-fA-F]{8}) /;
! $txt .= sprintf("0x%08x\n”, unpack(“V”, pack(“N”, hex($1))));
! next if ++$words && --$nmax;
! $nmax = 125;! # max data words in remaining packets
! $txt .= sprintf (“}\nwait 1\n$fmt[! $up] {\n”, ++$ncmd, $addr += 500);
}

write command packet(s)
print $up ? “start 0 uplink $load $words” : “write 0”;
print “ $load {\n$txt}\n”;

exit 0;

CORRECTING FOR ACIS EEPROM CORRUPTION V 1.6

10

mailto:pgf@space.mit.edu
mailto:pgf@space.mit.edu

	1. Introduction
	2. Monitoring the active flight EEPROM
	3. Monitoring the spare flight EEPROM
	4. Uplink booting
	5. Dumping EEPROM via uplink
	6. Booting a damaged EEPROM via uplink
	7. Source Code
	8. References
	9. Glossary
	Appendix: Source code
	A.1 eeprom_cksum
	A.2 Example of eeprom_cksum
	A.3 Boot-via-uplink programs
	A.4 eeprom_dump
	A.5 eeprom_patch
	A.6 Example of patching via uplink
	A.7 make-bcmd.pl

