
Kavli Institute, MIT NE83-545
Building 300, One Kendall Square  

 Cambridge MA, 02139–4307 
 Tel: +1-617-253-7277 
 Fax: +1-617-253-8084
To: ACIS Science Operations Team

From: Peter Ford, NE83-545 <pgf@space.mit.edu>

Date: May 3rd 2017

Subject: Repairing Bit Errors in Compressed ACIS Packets (v 1.0)

1. Introduction

ACIS bias maps and raw image frames are usually compressed within the BEP before being sent to the space-
craft’s RCTU for storage and/or immediate transmission. The compression scheme uses the Huffman First-
Difference algorithm which subtracts each 12-bit pixel from its row neighbor and converts the result to a
varying length bit string using a fixed translation table. ACIS flight software gives the user a choice of 5 ta-
bles, each created by an entropy coding algorithm from bias and raw frames in pre-launch testing.

It is a feature of Huffman encoding that each successive bit in the compressed record is either the end of a
string in the translation table or isn’t, and is therefore part of a longer string. While a row of pixels is being
decompressed, there is no way of determining whether the data has been corrupted in transmission since all
bit patterns are equally valid. Only after the entire packet has been decompressed can corruption be detected:
if more or less than the expected number of 12-bit pixels result.

Nevertheless, bit errors in bias maps and raw frames are usually quite easy to spot, e.g., using ds9 with “scale”
and “color” functions, although not easy to correct. This report describes how to identify and correct single
bit errors in ACIS telemetry.

2. Locating the Bad Packet

Bias maps and raw frames are compressed row-by-row into a series of telemetry packets, respectively dataTe-
BiasMap and dataTeRaw. Each dataTeBiasMap packet begins with an 11-word header (of 32-bit words), fol-
lowed by 1–1012 words of compressed bias map, typically containing 8–10 complete rows. Similarly, each
dataTeRaw packet begins with a 6-word header followed by 1–1017 words of compressed data, containing 2–5
raw rows. The following discussion will concentrate on recovering damaged dataTeBiasMap packets.

Having determined the range of bad CHIPY values from ds9, the next step is to locate the damaged packet. In
the current processing phase directory, the packet headers are found in “psci/acisphase.run.bias.log.gz”, e.g.,

dataTeBiasMap[1546210,8672,82890:016,145:22302] = {
 telemetryLength = 816
 formatTag = 14 # TTAG_SCI_TE_BIAS
 sequenceNumber = 8601
 biasStartTime = 0x84e61df6
 biasParameterId = 0x006e6034
 ccdId = 1 # CCD_I1
 fepId = 3 # FEP_3
 dataPacketNumber = 97
 initialOverclocks = 654 713 487 843
 pixelsPerRow = 1023
 rowsPerBias = 1023
 ccdRow = 53
 ccdRowCount = 9
 compressionTableSlotIndex = 1
 compressionTableIdentifier = 0xfffffffe
 pixelCount = 10240
 data = [805]
}

Bias packets are filled from the highest row number downwards, i.e., starting at row 1023 (or less in subframe
mode). This particular packet contains 10 rows (i.e., one more than the rowCount value), starting at row 53
(one less than its Image Y value in ds9) and ending at row 44.

 r e p o r t

mailto:pgf@space.mit.edu

REPAIRING BIT ERRORS IN COMPRESSED ACIS PACKETS v 1.0

3. Locating the Bad Bit

This is made easy by the find-bias-bit.pl script, which flips every bit in the damaged packet until the result
“seems” reasonable, i.e., until it results in a valid decompression and shows no gross difference between the
recompressed rows and those of the preceding and following packets. The options are as follows:

find-bias-bit.pl
 [-P dir] # preserve temporary files []
 [-2] # two-bit search []
 [-b] # byte search []
 [-c ccd] # this ccdId []
 [-f fep] # this fepId []
 [-h file] # Huffman table [/nfs/acis/h4/tools/lib/huff.dat]
 [-i id] # this biasParameterId []
 [-n val] # column variance limit [0]
 [-r from[,to]] # range of bit offsets [0]
 [-t file] # ACIS command table [/nfs/acis/h1/www/bin/current.dat]
 [-v] # verbose []
 ccdRow # the ccdRow of the bad packet []
 [file...] # input EHS file(s)

This perl script reads the ACIS telemetry that includes the bad bias packet and the dumpedTeBlock that controls
the run that created it. The packet is identified by its ccdRow and, if necessary, by the fepId, ccdId, and/or biasPa-
rameterId of its bias map. If no EHS file is specified, the input to stdin must contain ACIS packets, e.g., as out-
put from getnrt, getPackets, or getp. find-bias-bit.pl will start the psci program and feed it sets of 5 or 6 packets:

If the damaged packet is either the first or last packet in the map, packets 2 and 4 are taken from the two
nearest the damaged one. Packet 5 is needed to force psci to write a partially filled bias map. The group of
packets is repeatedly sent to psci, flipping each bit in turn in the data portion of the damaged packet.

The script monitors the stderr output from psci. If a, “unpacking failure” is reported, the corresponding bias
map is ignored. Otherwise, the bias map is read and the pixels corresponding to packets 2, 3, and 4 identified.
Then, for each column, the difference is taken between the value of each pixel in the “bad” packet and the
average of the pixels from the “good” packets in that same column. These differences are squared and
summed over all columns, to form a measure that is minimized over all possible bit flips to identify the most
likely damaged bit.

The result is the following pair of lines, the first detailing the input parameters and the second the result of
the computation, which typically takes about 10 minutes on a fast processor.

ccdId 1 fepId 3 biasId 0x006e6034 ccdRow 53 npkt 97 sigma 0 bits 25760
varmin 9.35913 bitmin 9604 vcdu 82890:016 seqnum 8601 pkt[311] 0x8353e153 -> 0x8353e143

The crucial numbers are (from+bitmin), the bit offset of the error within the dataTeBiasMap.data[] ar-
ray, and the hexadecimal values of the original and corrected words. From is zero unless supplied as the first
or only argument of the -r option. If the -b flag is used, the eight least significant 8 bits of bitmin contain
the corrected value of the byte at bit offset (from+8*(bitmin>>8)) from the start of the compressed data
array. Similarly, if the -2 flag is used, the two corrupt bits are located at bit offsets (from+(bitmin/(to-
from+1))) and (from+(bitmin%(to-from+1))).

1 dumpedTeBlock A duplicate of the latest dumpedTeBlock preceding the damaged bias packet
2 dataTeBiasMap The bias packet preceding the damaged one

3 dataTeBiasMap The damaged packet with one bit “flipped”
4 dataTeBiasMap The bias packet following the damaged one
5 dataTeBiasMap The last bias packet in the damaged map
6 scienceReport A “generic” end-of-run packet reporting no errors

 2

v 1.0 REPAIRING BIT ERRORS IN COMPRESSED ACIS PACKETS

4. Correcting the EHS File

Having located the bad bit, byte, or bits, the next step is to find the corresponding data in the EHS telemetry
file. This is made complicated by the segmentation applied by the Chandra telemetry system into separate
minor frames and, within those frames, to separate blocks of science data. To assist in locating the bits, the
getnrt script has a special –W option that instructs it to report the location of a word in an ACIS packet, e.g.,

getnrt -W 0x8353e153 2016_145_0404_145_1142_Dump_EM_51198.gz >/dev/null
0x8353e153 located in EHS block 82890:016 at byte +34160703

If multiple copies of the word are reported, the VCDU count reported by find-bias-bit.pl can be used to distin-
guish between them. Unless the ACIS word (e.g., 0x8353e153 in our example) is split between EHS segments,
the byte can be easily replaced. Since ACIS uses LSB (little endian) format, the byte at offset +34160703 con-
tains the bad 0x53 value, +34160703 contains 0xe1, etc., so 0x53 can be replaced by 0x43 as follows:

gunzip -c 2016_145_0404_145_1142_Dump_EM_51198.gz |\
 perl -e ‘read(STDIN,$_,9e9); substr($_,34160703,1) = pack(“C”,0x43); print’ |\
 gzip > 2016_145_0404_145_1142_Dump_EM_51198-a.gz

However, if the replacement isn’t in the first (lowest) byte of the word, it is safer to check that the word isn’t
split into separate EHS blocks or segments, as illustrated in the Makefile in section 7. If it is, it is best to dump
the ACIS packet and the individual EHS block separately to locate the byte to be replaced.

5. Conclusion

Single bit errors in bias map or raw image packets can be repaired with relatively little work but it isn’t possi-
ble to automate the process in all circumstances because the corruption could involve more than one bit, the
“fixed” packet may be hard to distinguish from the damaged one, and the packed 32-bit word may be split
between separate EHS blocks or segments.

6. References

1. User Interface to the ACIS Instrument, “acistools.pdf”, pp. 2-15, revised January 30, 2015.

2. ACIS IP&CL Structure Definition Notes, MIT Report 36–53206.0204, Revision N (2003).

7. Example

The following Makefile was used to locate the one-bit bias error in OBSID 18294. It includes all of the steps
described in this report with the addition of a final test to recreate the full bias map.

#
Fix a bad bit in a TE bias packet
#
OBSID = 18294
DIR = /nfs/maax/r2/eC
EHS = 2016_145_0404_145_1142_Dump_EM_51198.gz
PKTS = $(DIR)/acis91a/pkts/run-34.pkts.gz
HUFF = $$ACISTOOLSDIR/lib/huff.dat
DAT = /nfs/acis/h1/www/bin/current.dat
FIND = find-bias-bit.pl -h$(HUFF) -t$(DAT)
IN = $(DIR)/ssr/$(EHS)

identification of the bad dataTeBiasMap packet
CCDID = 1
FEPID = 3
BIASID = 0x006e6034
CCDROW = 53
SIGMA = 0
V = -v

Continued overleaf

 3

ftp://acis.mit.edu/pub/acistools.pdf

REPAIRING BIT ERRORS IN COMPRESSED ACIS PACKETS v 1.0

Bad and replacement word extracted from $(OBSID).txt, in LSB order
OLDVAL = 0x8353e153
NEWVAL = 0x8353e143

Byte offset of bad byte in uncompressed EHS file, original and repaired byte values.
REPL = 34160703,0x53,0x43
To replace two-bit errors, use -2 flag and 6 comma-separated values in $(REPL)

all: $(OBSID).test

Locate the bad bit within its dataTeBiasMap packet
$(OBSID).txt: $(IN)

$(FIND) $V -c$(CCDID) -f$(FEPID) -i$(BIASID) -n$(SIGMA) $(CCDROW) $? > $@

locate the word in the EHS file
$(OBSID).loc: $(OBSID).txt

@getnrt -W $(OLDVAL) $(IN) >/dev/null 2>$@

Create a copy of the SSR file with the damaged byte fixed
$(OBSID).log: $(OBSID).loc

@gunzip -c $(IN) |\
perl \
 -e ‘$$f=“$(EHS): byte 0x%02x at +%d %s 0x%02x\n",' \
 -e ‘read(STDIN,$$_,9e9) > 0 || die “$(EHS): $$!\n";' \
 -e ‘@P = ($(REPL)) ;’ \
 -e ‘while(($$o,$$a,$$b,@P) = @P) {’ \
 -e ‘ ($$n=unpack(“C”,substr($$_,$$o,1))) == $$a ||' \
 -e ‘ die sprintf($$f,$$n,$$o,”!=”,$$a);’ \
 -e ‘ substr($$_,$$o,1) = pack(“C”,$$b);’ \
 -e ‘ warn sprintf($$f,$$a,$$o,”replaced by”,$$b);’ \
 -e ‘}; print’ 2>$@ |\
gzip >./$(EHS)

Run psci once again to check that the EHS file is fixed
$(OBSID).test: $(OBSID).log

@getnrt -O ./$(EHS) |\
psci -q -t $(DAT) -h $(HUFF) -l foo 2>$@ && \
for i in foo.*.bias.log ; do \
 j=`expr "$$i" : 'foo\.\([0-9]*\)\.bias\.log'` ;\
 grep "biasParameterId *= $(ID)" $$i >/dev/null && \
 gzip -cf foo.$$j.$(FEP).bias.fits > test.$(FEP).bias.fits.gz && \
 ls -l test.$(FEP).bias.fits.gz >>$@ && rm -f foo.* && break ;\
done

Extract the damaged dataTeBiasMap packet to assist in locating the damaged byte
NSEQ = 8601
$(OBSID).pkt: $(IN)

@getnrt $(IN) | fpkt -c $(CCD) -s $(NSEQ) 14 >$@

Extract the VCDU range in EHS format to assist in locating the damaged byte
VCDU1 = 82890:016
VCDU2 = 82890:024
$(OBSID).ehs: $(IN)

@set -- `ehs2mnf -V $(IN) |\
awk '/ $(VCDU1) / {s=$$3} / $(VCDU2) / {print s,$$3-s}'` ;\
gunzip -c $(IN) |\
perl -e "read(STDIN,\$$_,$$1);print if read(STDIN,\$$_,$$2)" >$@

Note the optional $(OBSID).pkt target that extracts the damaged dataTeBiasMap packet and $(OBSID).ehs
that extracts one or more EHS blocks. Hexadecimal dumps of these files may be useful in locating a replace-
ment byte if it is located in a 32-bit word that is split between telemetry segments.

 4

	ACIS Bias Bit Flip
	1. Introduction
	2. Locating the Bad Packet
	3. Locating the Bad Bit
	4. Correcting the EHS File
	5. Conclusion
	6. References
	7. Example

