C H A N D R A
S C I E N C E
C E N T E R O B S E R V A T I O N C A T A L O G |
![]() |
OBSID: |
Title: |
Investigator: |
Observer: |
Phone: |
Email: |
Target Name: |
Sequence Number: |
Instrument: |
Grating: |
SI Mode: |
Raster Scan: |
Annotated DOT: |
Proposal Number: |
Right Ascension: |
Declination: |
Status: |
Start Date: |
Category: |
Type: |
AO Cycle: |
Dither Flag: |
Y Offset: |
Z Offset: |
Est. Count Rate: |
Order-1 Count Rate: |
Exposure Time: |
Time Remaining: |
Reqd Start Time: |
Reqd Stop Time: |
Period: |
Epoch: |
Start of Period: |
End of Period: |
PS Margin: |
PE Margin: |
Max Segments: |
Duty Cycle?: |
Cycle Count: |
Primary Exp Time: |
Secondary Exp Time: |
Event Filter?: |
Filter Threshold: |
Filter Range: |
Bias Requested?: |
Bias Frequency: |
Bias After?: |
Spatial Window?: |
Abstract: In recent years, many old Type I and Type IIb supernovae (SNe) have shown signatures of late-time interaction between the SN ejecta and circumstellar material (CSM) from the progenitor system. One of those objects, SN 2004dk, has displayed fascinating late-time interaction behavior which may be modeled as a CSM that was "pre-prepared" by a fast wind interaction with a slow wind. Chandra and VLA data from 2019 show increasing X-ray flux and a radio flux as high as at discovery over 15 years ago. We propose X-ray and radio observations to test this wind-bubble model and further constrain the mass-loss history of the progenitor, including when it may have made the transition to being hydrogen-deficient. |
psci Run: |
Processing Date: |
psci Directory: |
OBSID: |
SIM Mode: |
OTG Mode: |
Seq Number: |
Target Name: |
AO: |
Start VCDU: |
Start Time (UTC): |
Stop Time (UTC): |
Kilosecs: |
% Frames: |
# CCDs: |
# Frames: |
# Events: |
Events/sec: |
PSCI errors: |
% drops: |
Bias Errs: |
FP Temp: |
Parameter Block: |
Window Block: |
# Windows: |
FEP Mode: |
BEP Mode: |
Start Row: |
# Rows: |
Primary Exposure: |
Secondary Exposure: |
Duty Cycle: |
Summing?: |
Bias?: |
Trickle?: |
Bias Run: |